首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Chlorinated solvents such as tetrachloroethene (perchloroethene, PCE) and trichloroethene (TCE) have been extensively used in various industrial applications for many years. Because neither are typically consumed through their various uses, they are often released to the environment through industrial application or disposal. Once released, PCE and TCE tend to migrate downward into groundwater, where they persist. In the current case study, cheese whey was used as a groundwater amendment to facilitate the reductive dechlorination of a chlorinated solvent plume underlying an auto dealer/repair shop in Harris County, Texas. From September 2010 to January 2014, over 32,000 gallons of cheese whey were injected into the subsurface resulting in a marked reduction in oxidation–reduction potential (ORP) and nitrate concentrations, coupled with an increase in ferrous iron concentrations. Statistical trend analyses indicate the primary contaminants, PCE and TCE, as well as the daughter product cis‐1,2‐dichloroethene (cDCE), all exhibited a positive response, as evidenced by statistically decreasing trends, and/or reversal in concentration trends, subsequent to cheese whey injections. Maximum concentrations of PCE and TCE in key test wells decreased by as much as 98.97 percent and 99.17 percent, respectively. In addition, the bacterial genus Dehalococcoides, capable of complete reduction of PCE to non‐toxic ethene, was found to be more abundant in the treatment area, as compared to background concentrations. Because cheese whey is a by‐product of the cheese making process, the cost of the product is essentially limited to transport. This study demonstrates cheese whey to be an effective groundwater amendment at a cost which is orders of magnitude lower than popular industry alternatives.  相似文献   

2.
Historic mineral ore processing operations at the former Cyprus Foote Mineral Site located in East Whiteland Township, Pennsylvania, have resulted in the creation of an approximately 10,000‐foot‐long off‐site groundwater plume impacted with lithium and bromate. The plume emanating from the site is impacting the groundwater quality of downgradient private residences. As an early part of the remedial implementation, the private residences were provided with public water connections while the source control efforts were being designed and implemented. Bromate and lithium have recently emerged as groundwater contaminants subjected to increased regulatory scrutiny. This is evidenced in a recently lowered Federal Maximum Contaminant Level (MCL) for bromate of 0.010 milligrams per liter and a Medium‐Specific Concentration (MSC) of 0.005 mg/L for lithium recently proposed by the Pennsylvania Department of Environmental Protection (PADEP) for all groundwater within the Commonwealth. Elevated concentrations for bromate and lithium were detected above the Proposed Remediation Goals (PRGs) for the site, MCLs, and MSCs at a distance of 7,300 feet and 9,200 feet from the source area, respectively. To reduce the contaminant concentrations within the groundwater plume, which will ultimately result in a regressing plume, and to enable the Brownfield redevelopment of this Superfund site, auger‐based, in situ soil stabilization (ISS) with depths of up to 75 feet below ground surface (bgs) was selected as the remedy. The remedial implementation required the temporary removal and relocation of over 100,000 cubic yards of overburden to expose the lithium‐bearing tailings prior to treatment. Using customized 90‐foot‐long, 9‐foot‐diameter augers attached to cranes and drilling platforms, ancillary support excavators, and approximately 21,000 tons of reagent; 2,019 ISS columns were advanced to depths ranging from 10 to 74 feet bgs. This resulted in the creation of an in situ low‐permeablity 117,045‐yd3 “quasi‐monolith,” which encompasses a lateral extent of approximately three acres. The integration of a comprehensive ISS design with a comprehensive long‐term groundwater‐monitoring plan ensured the success of the ISS implementation and will enable a continued evaluation of the off‐site groundwater quality. © 2009 Wiley Periodicals, Inc.  相似文献   

3.
A laboratory study was conducted for the selection of appropriate remedial technologies for a partially anaerobic aquifer contaminated with chlorinated volatile organics (VOCs). Evaluation of in situ bioremediation demonstrated that the addition of electron donors to anaerobic microcosms enhanced biological reductive dechlorination of tetrachloroethene (PCE), trichloroethene (TCE), and 1,1,1‐trichloroethane (1,1,1‐TCA) with half‐lives of 20, 22, and 41 days, respectively. Nearly complete reductions of PCE, TCE, 1,1,1‐TCA, and the derivative cis‐dichloroethene were accompanied by a corresponding increase in chloride concentrations. Accumulation of vinyl chloride, ethene, and ethane was not observed; however, elevated levels of 14CO2 (from 14C‐TCE spiked) were recovered, indicating the occurrence of anaerobic oxidation. In contrast, very little degradation of 1,2‐dichloropropane (1,2‐DCP) and 1,1‐dichlorethane (1,1‐DCA) was observed in the anaerobic microcosms, but nutrient addition enhanced their degradation in the aerobic biotic microcosms. The aerobic degradation half‐lives for 1,2‐DCP and 1,1‐DCA were 63 and 56 days, respectively. Evaluation of in situ chemical oxidation (ISCO) demonstrated that chelate‐modified Fenton's reagent was effective in degrading aqueous‐phase PCE, TCE, 1,1,1‐TCA, 1,2‐DCP, etc.; however, this approach had minimal effects on solid‐phase contaminants. The observed oxidant demand was 16 g‐H2O2/L‐groundwater. The oxidation reaction rates were not highly sensitive to the molar ratio of H2O2:Fe2+:citrate. A ratio of 60:1:1 resulted in slightly faster removal of chemicals of concern (COCs) than those of 12:1:1 and 300:1:1. This treatment resulted in increases in dissolved metals (Ca, Cr, Mg, K, and Mn) and a minor increase of vinyl chloride. Treatment with zero‐valent iron (ZVI) resulted in complete dechlorination of PCE, and TCE to ethene and ethane. ZVI treatment reduced 1,1,1‐TCA only to 1,1‐DCA and chloroethane (CA) but had little effect on reducing the levels of 1,2‐DCP, 1,1‐DCA, and CA. The longevity test showed that one gram of 325‐mesh iron powder was exhausted in reaction with > 22 mL of groundwater. The short life of ZVI may be a barrier to implementation. The ZVI surface reaction rates (ksa) were 1.2 × 10?2 Lm?2h?1, 2 × 10?3 Lm?2h?1, and 1.2 × 10?3 Lm?2h?1 for 1,1,1‐TCA, TCE, and PCE, respectively. Based upon the results of this study, in situ bioremediation appeared to be more suitable than ISCO and ZVI for effectively treating the groundwater contamination at the site. © 2004 Wiley Periodicals, Inc.  相似文献   

4.
The East Gate Disposal Yard (EGDY) at Fort Lewis is the source of a large trichloroethene (TCE) plume at this military installation. Source reduction using thermal treatment was applied using electrical resistance heating. A total of about 5,800 kg of TCE‐equivalent volatile organic compounds (VOCs; TCE and dichloroethene) was extracted during thermal treatment of the three zones selected for source reduction. Pretreatment groundwater TCE concentrations were measured up to 100 ppm. Posttreatment groundwater TCE concentrations within the treatment zones averaged less than 100 ppb. Posttreatment soil TCE concentrations decreased by over 96 percent compared to pretreatment soil concentrations. The overall contaminant flux from EGDY was reduced by an estimated 60 to 90 percent by the source reduction effort. The traditional and new techniques for site characterization and remediation performance monitoring applied at EGDY provide insight for installing, operating, monitoring, and assessing thermal treatment. © 2009 Wiley Periodicals, Inc.  相似文献   

5.
Chlorinated ethenes such as trichloroethene (TCE), cis‐1,2‐dichloroethene (cis‐1,2‐DCE), and vinyl chloride along with per‐ and polyfluoroalkyl substances (PFAS) have been identified as chemicals of concern in groundwater; with many of the compounds being confirmed as being carcinogens or suspected carcinogens. While there are a variety of demonstrated in‐situ technologies for the treatment of chlorinated ethenes, there are limited technologies available to treat PFAS in groundwater. At a former industrial site shallow groundwater was impacted with TCE, cis‐1,2‐DCE, and vinyl chloride at concentrations up to 985, 258, and 54 µg/L, respectively. The groundwater also contained maximum concentrations of the following PFAS: 12,800 ng/L of perfluoropentanoic acid, 3,240 ng/L of perfluorohexanoic acid, 795 ng/L of perfluorobutanoic acid, 950 ng/L of perfluorooctanoic acid, and 2,140 ng/L of perfluorooctanesulfonic acid. Using a combination of adsorption, biotic, and abiotic degradation in situ remedial approaches, the chemicals of concern were targeted for removal from the groundwater with adsorption being utilized for PFAS whereas adsorption, chemical reduction, and anaerobic biodegradation were used for the chlorinated ethenes. Sampling of the groundwater over a 24‐month period indicated that the detected PFAS were treated to either their detection, or below the analytical detection limit over the monitoring period. Postinjection results for TCE, cis‐1,2‐DCE, and vinyl chloride indicated that the concentrations of the three compounds decreased by an order of magnitude within 4 months of injection, with TCE decreasing to below the analytical detection limit over the 24‐month monitoring period. Cis‐1,2‐DCE, and vinyl chloride concentrations decreased by over 99% within 8 months of injections, remaining at or below these concentrations during the 24‐month monitoring period. Analyses of Dehalococcoides, ethene, and acetylene over time suggest that microbiological and reductive dechlorination were occurring in conjunction with adsorption to attenuate the chlorinated ethenes and PFAS within the aquifer. Analysis of soil cores collected pre‐ and post‐injection, indicated that the distribution of the colloidal activated carbon was influenced by small scale heterogeneities within the aquifer. However, all aquifer samples collected within the targeted injection zone contained total organic carbon at concentrations at least one order of magnitude greater than the preinjection total organic carbon concentrations.  相似文献   

6.
In January 2005, a gasoline tanker carrying approximately 8,500 gallons of gasohol (gasoline containing 10 percent ethanol) overturned and caught fire in the front yard of a residence. Emergency response crews responded to the accident, extinguished the fire, and recovered residual gasoline on the ground surface. Soil impacted by the release was then removed and disposed of off‐site and free‐phase gasohol was recovered using a combination of vacuum recovery, pumping, and bailing to the extent practicable. Following free product recovery efforts, a feasibility evaluation was completed to select a technology to address the remaining dissolved‐phase contaminants that resulted in biosparging pilot testing and, ultimately, the installation of a full‐scale biosparging system. The full‐scale system has been operating for approximately 21 months, and contaminant concentrations within the heart of the plume have decreased dramatically over a short period of time—in most cases, to below applicable cleanup standards. Despite the complex hydrogeologic conditions and significant initial concentrations, biosparging has proven to be an effective technology to remediate this gasohol release, and it is anticipated that drinking‐water standards can be achieved following two to three years of biosparging (i.e., an additional 3 to 15 months of operations). © 2010 Wiley Periodicals, Inc.  相似文献   

7.
A new use for biofilm barriers was developed and successfully applied to treat nitrate‐contaminated groundwater down to drinking water standards. The barrier was created by stimulating indigenous bacteria with injections of molasses as the carbon donor and a combination of yeast extract and trimetaphosphate as nutrients. This injection of amendments results in bacterial growth in the aquifer, which attaches to the sand grains to create a reactive semipermeable biofilm. The biofilm barrier presented in this article reduced the migration of contaminants and provided an active zone for remediation. The cylindrical biobarrier was constructed using eight wells on the perimeter forming a 60‐foot‐diameter reactive biodenitrification region. Another well at the center was installed to continuously extract the treated water. The intent was to produce a continuous source of nitrate‐free water. The system operated for over one year, and during this period, the biobarrier was revived multiple times by reinjecting molasses in the perimeter wells. Nitrate concentrations of treated water decreased from 275 mg/L (as nitrogen) to < 1 mg/L. © 2005 Wiley Periodicals, Inc.  相似文献   

8.
Denitrification experiments have provided data showing the pitfalls and successes in developing a sustainable injection/extraction system in a sand and gravel aquifer. Experiments increase in complexity from continuous injection at one well to automated‐pulsed eight well injections. In both continuous and pulsed injection of organic carbon, 40 mg NO3‐N l?1 was reduced below the detection limit of < 0.1 mg NO3‐N l?1 in the denitrification zones. Under continuous injection, accumulation of bacterial exudates in the vicinity of the injection well resulted in injection well clogging within ten days. Periodic cleaning of the injection well and the adjacent gravel matrix was accomplished by using a tool developed to circulate a cleaning solution composed of 5 percent H2O2 and 0.02 percent NaOCl; but, biofouling could not be eliminated. In the later experiments, acetate became the carbon amendment because ethanol promoted more biomass development. A specialized pulse injection procedure was developed to separate nitrate from acetate‐C and was successful in alleviating the proliferation of bacterial exudates without affecting the performance of the denitrification system. Using pulsed injection, a maximum of 72 percent nitrate reduction was accomplished in the extraction well water, and denitrification was sustained for three months without clogging. © 2003 Wiley Periodicals, Inc.  相似文献   

9.
Enhanced anaerobic dechlorination is being conducted to remediate a 50‐acre groundwater area impacted with chlorinated volatile organic compounds (CVOCs). The plume, which is over 3,000 feet (ft) long, initially contained tetrachloroethene and breakdown products at concentrations of 2 to 3 milligrams per liter. The site's high groundwater flow velocity (greater than 1,000 ft per year) was incorporated into the design to help with amendment distribution. Bioaugmentation was conducted using a mixed culture containing Dehalococcoides ethenogenes. There is evidence that it has migrated to distances exceeding 600 ft. The major benefit of the high groundwater flow velocity is greater areal coverage by the remediation system, but the downside is the difficulty in delivering sufficient donor to create the required anaerobic conditions. Overall performance has been excellent with total CVOC reductions and conversion to ethene of 98 percent within a 25‐acre area downgradient of the treatment transect that has operated the longest. © 2011 Wiley Periodicals, Inc.  相似文献   

10.
In situ remediation of aniline from soils and groundwater using biological and physical treatments was conducted at the BASF Corporation facility in Geismar, Louisiana. To mitigate the migration of aniline, remediate contaminated soil and groundwater, and determine concentrations, 24 immobilized microbe bioreactors were fixed in the subsoil, and a horizontal recovery well and 7 monitoring wells were installed. Soil and monitoring wells were sampled quarterly to assess bioplug impact on the aniline concentrations. The recovery well was sampled monthly to estimate the pounds of aniline removed from groundwater. Soil pH, composition, and microbial counts were used to estimate the fate and transport. Aniline levels were lowered significantly after remediation and total cancer risk was below levels for industrial sites, as established by State of Louisiana Risk Evaluation/Corrective Action Program guidelines. © 2010 Wiley Periodicals, Inc.  相似文献   

11.
Degradation of chlorinated ethenes under aerobic conditions has been reported using a cometabolic pathway. A site in Illinois had shallow contamination and sandy soils, which in combination created aerobic conditions. The aerobic conditions prevented the degradation of chlorinated ethenes by reductive dechlorination. Biodegradation of chloroethenes under aerobic conditions does not occur naturally at all sites; however, it can be enhanced if microorganisms capable of cometabolic degradation are introduced into the soil. In this study, trichloroethene (TCE) removal in the soil was enhanced by the injection of a commercially available microbial inoculum (CL‐OUT® inoculum, CL‐Solutions, Cincinnati, OH) and nutrients and was compared to chlorinated ethene removal in soil that had received nutrients only and soil that had received activated sludge and nutrients. Trichloroethene removal was measured after one week, seven weeks, and eleven weeks. After one week, no significant TCE removal had occurred in any of the test microcosms. After seven weeks, a slight decrease in TCE levels accompanied by an increase in cis‐1,2‐dichloroethene (cis‐1,2‐DCE) was seen in the microcosms that had received CL‐OUT®. After 11 weeks, a marked decrease in TCE levels was observed in the microcosms that had received CL‐OUT®. No significant TCE decrease was observed in any of the other microcosms. These data suggest that organisms capable of aerobic TCE degradation were not present at the site; however, the addition of an inoculum containing such organisms enabled aerobic degradation to occur. © 2008 Wiley Periodicals, Inc.  相似文献   

12.
An in situ bioremediation (ISB) pilot study, using whey powder as an electron donor, is being performed at Site 19, Edwards Air Force Base, California, to treat groundwater contaminated with trichloroethene (TCE) via anaerobic reductive dechlorination. Challenging site features include a fractured granitic aquifer, complex geochemistry, and limited biological capacity for reductive dechlorination. ISB was conducted in two phases with Phase I including one‐and‐a‐half years of biostimulation only using whey powder and Phase II including biostimulation with buffered whey powder and bioaugmentation. Results of Phase I demonstrated effective distribution of whey during injections resulting in depletion of high concentrations of sulfate and methanogenesis, but acid production due to whey fermentation and limited buffering capacity of the aquifer resulted in undesirable impacts to pH. In addition, cis‐1,2‐dichloroethene (cis‐1,2‐DCE) stall was observed, which correlated to the unsuccessful growth of native Dehalococcoides populations. Therefore, Phase II included the successful buffering of whey powder using bicarbonate, which mitigated negative pH effects. In addition, bioaugmentation resulted in successful transport of Dehalococcoides populations to greater than 50 feet away from the injection point four months after inoculation. A concomitant depletion of accumulated cis‐1,2‐DCE was observed at all wells affected by bioaugmented Dehalococcoides. © 2008 Wiley Periodicals, Inc.  相似文献   

13.
An Accelerated Remediation Technologies (ART) In‐Well Technology pilot test was performed to evaluate the removal of chlorinated volatile organic compounds (VOCs) from groundwater. The ART In‐Well Technology was installed in one well located in the source area where dense nonaqueous‐phase liquid has been identified and VOC concentrations exceed 140,000 μg/L. Monitoring wells at the site were positioned between 10 and 170 feet from the ART test well. Overall, VOC concentrations from samples collected from the groundwater monitoring wells and in the vapors extracted for discharge from the ART treatment well were analyzed over the testing period. Monitoring results showed that concentrations of perchloroethylene were reduced in the closest monitoring well to nondetectable concentrations within 90 days. The cumulative removal of chlorinated VOCs from the ART test well over the six‐month pilot test period exceeded 9,500 pounds based on air monitoring data. The ART technology proved effective and cost‐efficient in reducing contaminant concentrations and removing a large mass of contamination from the subsurface in a short period of time. The radius of influence of the ART technology at the site was estimated to range between 65 and 170 feet. © 2007 Wiley Periodicals, Inc.  相似文献   

14.
The chlorinated volatile organic compounds (CVOCs), tetrachloroethene (PCE), trichloroethene (TCE), and 1,1,1‐trichloroethane (1,1,1‐TCA), often found as commingled contaminants of concern (COCs) in groundwater, can degrade via a variety of biotic and abiotic reductive pathways. In situ remediation of a groundwater contaminant source area containing commingled 1,1,1‐TCA, PCE, and TCE was conducted using a combined remedy/treatment train approach. The first step was to create geochemically reducing conditions in the source area to degrade the CVOCs to lesser chlorinated CVOCs (i.e., 1,1‐dichloroethane [1,1‐DCA], 1,1‐dichlorethene [1,1‐DCE], cis‐1,2‐dichoroethene [cis‐1,2‐DCE], and vinyl chloride [VC]) via enhanced reductive dechlorination (ERD). Carbon substrates were injected to create microbial‐induced geochemically reducing conditions. An abiotic reductant (zero‐valent iron [ZVI]) was also used to further degrade the CVOCs, minimizing the generation of 1,1‐DCE and VC, and co‐precipitate temporarily mobilized metals. An in situ aerobic zone was created downgradient of the treatment zone through the injection of oxygen. Remaining CVOC degradation products and temporarily mobilized metals (e.g., iron and manganese) resulting from the geochemically reducing conditions were then allowed to migrate through the aerobic zone. Within the aerobic zone, the lesser chlorinated CVOCs were oxidized and the solubilized metals were precipitated out of solution. The injection of a combination of carbon substrates and ZVI into the groundwater system at the site studied herein resulted in the generation of a geochemically reducing subsurface treatment zone that has lasted for more than 4.5 years. Mass concentrations of total CVOCs were degraded within the treatment zone, with near complete transformation of chlorinated ethenes and a more than 90 percent reduction of CVOC mass concentrations. Production of VC and 1,1‐DCE has been minimized through the combined effects of abiotic and biological processes. CVOC concentrations have declined over time and temporarily mobilized metals are precipitating out of the dissolved phase. Precipitation of the dissolved metals was mitigated using the in situ oxygenation system, also resulting in a return to aerobic conditions in downgradient groundwater. Chloroethane (CA) is the dominant CVOC degradation product within the treatment zone and downgradient of the treatment zone, and it is expected to continue to aerobically degrade over time. CA did not accumulate within and near the aerobic oxygenation zone. The expectations for the remediation system are: (1) the concentrations of CVOCs (primarily in the form of CA) will continue to degrade; (2) total organic carbon concentrations will continue to decline to pre‐remediation levels; and, (3) the groundwater geochemistry will experience an overall trend of transitioning from reducing back to pre‐remediation mildly oxidizing conditions within and downgradient of the treatment zone.  相似文献   

15.
A new treatment process was employed to treat wastewater generated from a factory manufacturing syntan (synthetic tannin). In this treatment process, in-situ production of hypochlorous acid was achieved by the use of an aqueous sodium chloride solution for chlorine production. As the graphite anode and stainless steel cathode zones were kept unseparated, the hypochlorous acid was produced by electrolysis. The hypochlorous acid was utilized for the oxidation of organic matter present in the wastewater. The results showed that for an initial COD concentration of 10,000 mg/l, a turbidity of 277 NTU, a tannin concentration of 4000 mg/l, a temperature of 27±1°C, a current density of 42.5 mA/cm2, a sodium chloride content of 3% and an electrolysis period of 210 min showed an effluent COD concentration of 230 mg/l, a turbidity of 9 NTU, a tannin concentration below the detection limit and a temperature of 37±2°C.  相似文献   

16.
A treatablity study (TS) was conducted to evaluate the efficacy of in situ chemical oxidation (ISCO) using activated persulfate, alone and in combination with air sparging (AS), for treating a source area contaminated with residual light nonaqueous‐phase liquid (LNAPL), dissolved‐phase fuel hydrocarbons (HCs), and dissolved‐phase chlorinated alkenes at Edwards Air Force Base (AFB), California. The TS was implemented in two phases. Phase I included injecting a solution of sodium persulfate and sodium hydroxide (NaOH) into groundwater via an existing well where residual LNAPL and dissolved‐phase contaminants were present. Because the results of Phase I indicated a limited distribution of the activated persulfate, Phase II was performed to assess whether AS could enhance the distribution of the sodium persulfate. Each phase was followed by groundwater monitoring and sampling at the injection well and at three monitoring wells, located 20 to 44 feet from the injection well. Results from Phases I and II of the TS indicated that (1) alkaline‐activated persulfate was effective in promoting the dissolution of LNAPL and the degradation of dissolved‐phase contaminants, but only at the injection well; (2) the addition of AS was effective in enhancing the radius of persulfate distribution from less than 20 feet to greater than 44 feet, and (3) persulfate alone (i.e., not in an activated state) was effective in reducing the concentrations of dissolved‐phase fuel HC and chlorinated alkenes. © 2009 Wiley Periodicals, Inc.  相似文献   

17.
A field demonstration of a mulch permeable reactive barrier (PRB), or “biowall,” as an in situ treatment technology for explosives in groundwater is summarized. Organic mulch consists of insoluble carbon biopolymers that are enzymatically hydrolyzed during decomposition to release aqueous total organic carbon (TOC). The released TOC is then available for microorganisms to use as an electron donor to transform electrophilic contaminants via reductive pathways. A 100‐foot‐long and 2‐foot‐thick mulch biowall was installed at the Pueblo Chemical Army Depot in Colorado to treat a shallow groundwater plume containing hexahydro‐1,3,5‐trinitro‐1,3,5‐triazine (RDX). To discourage groundwater flow bypassing around and under the biowall in this highly permeable formation, a hydraulic control was installed and the PRB was keyed into the bedrock. Technology performance was monitored using a monitoring well network to establish the development and extent of the downgradient treatment zone. Performance objectives of the field demonstration were: (1) greater than 90 percent removal of RDX across the PRB and the treatment zone; (2) an RDX concentration of less than 0.55 μg/L in the treatment zone; and (3) cumulative toxic intermediate concentration (nitroso intermediates of RDX, MNX, DNX, and TNX) of less than 20 percent of the upgradient RDX concentration. All performance objectives were met within seven months after installation once the system reached a pseudo‐steady state. By this point, a sustained reducing/treatment zone had been created downgradient of the mulch PRB that showed greater than 93 percent RDX removal, RDX concentrations less than 0.55 μg/L, and no accumulation of toxic intermediates. The mulch biowall implemented during this demonstration was successful at meeting performance objectives while addressing the majority of potential concerns of the technology. © 2009 Wiley Periodicals, Inc.  相似文献   

18.
In the 1960s, trichloroethene (TCE) was used at what is now designated as Installation Restoration Program Site 32 Cluster at Vandenberg Air Force Base to flush missile engines prior to launch and perhaps for other degreasing activities, resulting in releases of TCE to groundwater. The TCE plume extends approximately 1 kilometer from the previous launch facilities beyond the southwestern end of the site. To limit further migration of TCE and chlorinated degradation by‐products, an in situ, permeable, reactive bioremediation barrier (biobarrier) was designed as a cost‐effective treatment technology to address the TCE plume emanating from the source area. The biobarrier treatment would involve injecting carbon‐based substrate and microbes to achieve reductive dechlorination of volatile organic compounds, such as TCE. Under reducing conditions and in the presence of certain dechlorinating microorganisms, TCE degrades to nontoxic ethene in groundwater. To support the design of the full‐scale biobarrier, a pilot test was conducted to evaluate site conditions and collect pertinent design data. The pilot test results indicated possible substrate delivery difficulties and a smaller radius of influence than had been estimated, which would be used to determine the final biobarrier well spacing. Based on these results, the full‐scale biobarrier design was modified. In January 2010, the biobarrier was implemented at the toe of the source area by adding a fermentable substrate and a dechlorinating microbial culture to the subsurface via an injection well array that spanned the width of the TCE plume. After the injections, the groundwater pH in the injection wells continued to decrease to a level that could be detrimental to the population of Dehalococcoides in the SDC‐9TM culture. In addition, 7 months postinjection, the injection wells could not be sampled due to fouling. Cleaning was required to restore their functions. Bioassay and polymerase chain reaction analyses were conducted, as well as titration tests, to assess the need for biobarrier amendments in response to the fouling issues and low pH. Additionally, slug tests were performed on three wells to evaluate possible localized differences in hydraulic conductivity within the biobarrier. Based on the test results, the biobarrier was amended with sodium carbonate and inoculated a second time with SDC‐9TM. The aquifer pH was restored, and reductive dechlorination resumed in the treatment zone, evidenced by the reduction in TCE and the increase in degradation products, including ethene. © 2011 Wiley Periodicals, Inc.  相似文献   

19.
The degradation rate of dioxins added to the activated sludge from a leachate treatment plant of a landfill under denitrification conditions was estimated using six bioreactors. Over 99% of the added dioxins (600ng) were degraded within 7 days. Furthermore, continuous cultivation was carried out for 1 month. The activated sludge degraded 600ng of dioxins (that is, all of the added dioxins) placed in each reactor every 7 days, and this activity was maintained for 35 days. Under aerobic conditions with this sludge, the dioxins were not degraded in 7 days, but 90% of the 600ng of dioxins was degraded in 35 days. The high level of activity observed in the present study may only occur under anaerobic conditions, especially under denitrifying conditions.  相似文献   

20.
In situ chemical fixation represents a promising and potentially cost‐effective treatment alternative for metal‐contaminated soils. This article presents the findings of the use of iron‐bearing soil amendments to reduce the leachability and bioaccessibility of arsenic in soils impacted by stack fallout from a zinc smelter. The focus of this investigation was to reduce the lead bioaccessibility of the soils through addition with phosphorus‐bearing amendments. However, as phosphorus addition was expected to increase arsenic mobility, the fixation strategy also incorporated use of iron‐bearing amendments to offset or reverse these effects. The findings of this investigation demonstrated that inclusion of iron‐bearing chemicals in the amendment formulation reduced arsenic leachability and bioaccessibility without compromising amendment effectiveness for reducing lead bioaccessibility. These results suggest that in situ chemical fixation has the potential to be an effective strategy for treatment of the impacted soils. © 2003 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号