首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multiple factors may affect the scale-up of laboratory multi-tracer injection into structured porous media to the field. Under transient flow conditions and with multiscale heterogeneities in the field, previous attempts to scale-up laboratory experiments have not answered definitely the questions about the governing mechanisms and the spatial extent of the influence of small-scale mass transfer processes such as matrix diffusion. The objective of this research is to investigate the effects of multiscale heterogeneity, mechanistic and site model conceptualization, and source term density effect on elucidating and interpreting tracer movement in the field. Tracer release and monitoring information previously obtained in a field campaign of multiple, conservative tracer injection under natural hydraulic gradients at a low-level waste disposal site in eastern Tennessee, United States, is used for the research. A suite of two-pore-domain, or fracture-matrix, groundwater flow and transport models are calibrated and used to conduct model parameter and prediction uncertainty analyses. These efforts are facilitated by a novel nested Latin-hypercube sampling technique. Our results verify, at field scale, a multiple-pore-domain, multiscale mechanistic conceptual model that was used previously to interpret only laboratory observations. The results also suggest that, integrated over the entire field site, mass flux rates attributable to small-scale mass transfer are comparable to that of field-scale solute transport. The uncertainty analyses show that fracture spacing is the most important model parameter and model prediction uncertainty is relatively higher at the interface between the preferred flow path and its parent bedrock. The comparisons of site conceptual models indicate that the effect of matrix diffusion may be confined to the immediate neighborhood of the preferential flow path. Finally, because the relatively large amount of tracer needed for field studies, it is likely that source term density effect may exaggerate or obscure the effect of matrix diffusion on the movement of tracers from the preferred flow path into the bedrock.  相似文献   

2.
Subsurface solute transport through structured soil is studied by model interpretation of experimental breakthrough curves from tritium and phosphorus tracer tests in three intact soil monoliths. Similar geochemical conditions, with nearly neutral pH, were maintained in all the experiments. Observed transport differences for the same tracer are thus mainly due to differences in the physical transport process between the different monoliths. The modelling is based on a probabilistic Lagrangian approach that decouples physical and chemical mass transfer and transformation processes from pure and stochastic advection. Thereby, it enables explicit quantification of the physical transport process through preferential flow paths, honouring all independently available experimental information. Modelling of the tritium breakthrough curves yields a probability density function of non-reactive solute travel time that is coupled with a reaction model for linear, non-equilibrium sorption–desorption to describe the phosphorus transport. The tritium model results indicate that significant preferential flow occurs in all the experimental soil monoliths, ranging from 60–100% of the total water flow moving through only 25–40% of the total water content. In agreement with the fact that geochemical conditions were similar in all experiments, phosphorus model results yield consistent first-order kinetic parameter values for the sorption–desorption process in two of the three soil monoliths; phosphorus transport through the third monolith cannot be modelled because the apparent mean transport rate of phosphorus is anomalously rapid relative to the non-adsorptive tritium transport. The occurrence of preferential flow alters the whole shape of the phosphorus breakthrough curve, not least the peak mass flux and concentration values, and increases the transported phosphorus mass by 2–3 times relative to the estimated mass transport without preferential flow in the two modelled monoliths.  相似文献   

3.
4.
Penetration of reactive solute into a soil during a cycle of water infiltration and redistribution is investigated by deriving analytical closed form solutions for fluid flux, moisture content and contaminant concentration. The solution is developed for gravitational flow and advective transport and is applied to two scenarios of solute applications encountered in the applications: a finite pulse of solute dissolved in irrigation water and an instantaneous pulse broadcasted onto the soil surface. Through comparison to simulations of Richards' flow, capillary suction is shown to have contrasting effects on the upper and lower boundaries of the fluid pulse, speeding penetration of the wetting front and reducing the rate of drying. This leads to agreement between the analytical and numerical solutions for typical field and experimental conditions. The analytical solution is further incorporated into a stochastic column model of flow and transport to compute mean solute concentration in a heterogeneous field. An unusual phenomenon of plume contraction is observed at long times of solute propagation during the drying stage. The mean concentration profiles match those of the Monte-Carlo simulations for capillary length scales typical of sandy soils.  相似文献   

5.
Matrix diffusion is an important process for solute transport in fractured rock, and the matrix diffusion coefficient is a key parameter for describing this process. Previous studies have indicated that the effective matrix diffusion coefficient values, obtained from a large number of field tracer tests, are enhanced in comparison with local values and may increase with test scale. In this study, we have performed numerical experiments to investigate potential mechanisms behind possible scale-dependent behavior. The focus of the experiments is on solute transport in flow paths having geometries consistent with percolation theories and characterized by multiple local flow loops formed mainly by small-scale fractures. The water velocity distribution through a flow path was determined using discrete fracture network flow simulations, and solute transport was calculated using a previously derived impulse-response function and a particle-tracking scheme. Values for effective (or up-scaled) transport parameters were obtained by matching breakthrough curves from numerical experiments with an analytical solution for solute transport along a single fracture. Results indicate that a combination of local flow loops and the associated matrix diffusion process, together with scaling properties in flow path geometry, seems to be an important mechanism causing the observed scale dependence of the effective matrix diffusion coefficient (at a range of scales).  相似文献   

6.
The heterogeneity of hydrogeologic properties at different scales may have different effects on flow and transport processes in a subsurface system. A model for the unsaturated zone of Yucca Mountain, Nevada, is developed to represent complex heterogeneity at two different scales: (1) layer scale corresponding to geologic layering and (2) local scale. The layer-scale hydrogeologic properties are obtained using inverse modeling, based on the available measurements collected from the Yucca Mountain site. Calibration results show a significant lateral and vertical variability in matrix and fracture properties. Hydrogeologic property distributions in a two-dimensional, vertical cross-section of the site are generated by combining the average layer-scale matrix and fracture properties with local-scale perturbations generated using a stochastic simulation method. The unsaturated water flow and conservative (nonsorbing) tracer transport through the cross-section are simulated for different sets of matrix and fracture property fields. Comparison of simulation results indicates that the local-scale heterogeneity of matrix and fracture properties has a considerable effect on unsaturated flow processes, leading to fast flow paths in fractures and the matrix. These paths shorten the travel time of a conservative tracer from the source (repository) horizon in the unsaturated zone to the water table for small fractions of total released tracer mass. As a result, the local-scale heterogeneity also has a noticeable effect on global tracer transport processes, characterized by an average breakthrough curve at the water table, especially at the early arrival time of tracer mass. However, the effect is not significant at the later time after 20% tracer mass reaches the water table. The simulation results also verify that matrix diffusion plays an important role in overall solute transport processes in the unsaturated zone at Yucca Mountain.  相似文献   

7.
It is known that under unsaturated conditions, the transport of solutes can deviate from ideal advective-dispersive behaviour even for macroscopically homogeneous porous materials. Causes may include physical non-equilibrium, sorption kinetics, non-linear sorption, and the irregular distribution of sorption sites. We have performed laboratory experiments designed to identify the processes responsible for the non-ideality of radioactive Sr transport observed under unsaturated flow conditions in an Aeolian sandy deposit from the Chernobyl exclusion zone. Miscible displacement experiments were carried out at various water contents and corresponding flow rates in a laboratory model system. Results of our experiments have shown that breakthrough curves of a conservative tracer exhibit a higher degree of asymmetry when the water content decreases than at saturated water content and same Darcy velocity. It is possible that velocity variations caused by heterogeneities at the macroscopic scale are responsible for this situation. Another explanation is that molecular diffusion drives the solute mass transfer between mobile and immobile water regions, but the surface of contact between these water regions is small. At very low concentrations, representative of a radioactive Sr contamination of the pore water, sorption and physical disequilibrium dominate the radioactive Sr transport under unsaturated flow conditions. A sorption reaction is described by a cation exchange mechanism calibrated under fully saturated conditions. The sorption capacity, as well as the exchange coefficients are not affected by desaturation. The number of accessible exchange sites was calculated on the basis that the solid remained in contact with water and that the fraction of solid phase in contact with mobile water is numerically equal to the proportion of mobile water to total water content. That means that for this type of sandy soil, the nature of mineral phases is the same in advective and non-advective domains. So sorption reaction parameters can be estimated from more easily conducted saturated experiments, but hydrodynamic behaviour must be characterized by conservative tracer experiments under unsaturated flow conditions.  相似文献   

8.
When soil structure varies in different soil types and the horizons of these soil types, it has a significant impact on water flow and contaminant transport in soils. This paper focuses on the effect of soil structure variations on the transport of pesticides in the soil above the water table. Transport of a pesticide (chlorotoluron) initially applied on soil columns taken from various horizons of three different soil types (Haplic Luvisol, Greyic Phaeozem and Haplic Cambisol) was studied using two scenarios of ponding infiltration. The highest infiltration rate and pesticide mobility were observed for the Bt1 horizon of Haplic Luvisol that exhibited a well-developed prismatic structure. The lowest infiltration rate was measured for the Bw horizon of Haplic Cambisol, which had a poorly developed soil structure and a low fraction of large capillary pores and gravitational pores. Water infiltration rates were reduced during the experiments by a soil structure breakdown, swelling of clay and/or air entrapped in soil samples. The largest soil structure breakdown and infiltration decrease was observed for the Ap horizon of Haplic Luvisol due to the low aggregate stability of the initially well-aggregated soil. Single-porosity and dual-permeability (with matrix and macropore domains) flow models in HYDRUS-1D were used to estimate soil hydraulic parameters via numerical inversion using data from the first infiltration experiment. A fraction of the macropore domain in the dual-permeability model was estimated using the micro-morphological images. Final soil hydraulic parameters determined using the single-porosity and dual-permeability models were subsequently used to optimize solute transport parameters. To improve numerical inversion results, the two-site sorption model was also applied. Although structural changes observed during the experiment affected water flow and solute transport, the dual-permeability model together with the two-site sorption model proved to be able to approximate experimental data.  相似文献   

9.
This study presents a new method to visualise forced-gradient tracer tests in 2-D using a laboratory-scale aquifer physical model. Experiments were designed to investigate the volume of aquifer sampled in vertical dipole flow tracer tests (DFTT) and push-pull tests (PPT), using a miniature monitoring well and straddle packer arrangement equipped with solute injection and recovery chambers. These tests have previously been used to estimate bulk aquifer hydraulic and transport properties for the evaluation of natural attenuation and other remediation approaches. Experiments were performed in a silica glass bead-filled box, using a fluorescent tracer (fluorescein) to deduce conservative solute transport paths. Digital images of fluorescein transport were captured under ultraviolet light and processed to analyse tracer plume geometry and obtain point-concentration breakthrough histories. Inorganic anion mixtures were also used to obtain conventional tracer breakthrough histories. Concentration data from the conservative tracer breakthrough curves was compared with the digital images and a well characterised numerical model. The results show that the peak tracer breakthrough response in dipole flow tracer tests samples a zone of aquifer close to the well screen, while the sampling volume of push-pull tests is limited by the length of the straddle packers used. The effective sampling volume of these single well forced-gradient tests in isotropic conditions can be estimated with simple equations. The experimental approach offers the opportunity to evaluate under controlled conditions the theoretical basis, design and performance of DFTTs and PPTs in porous media in relation to measured flow and transport properties.  相似文献   

10.
Tracer experiments conducted using a flow field established by injecting water into one borehole and withdrawing water from another are often used to establish connections and investigate dispersion in fractured rock. As a result of uncertainty in the uniqueness of existing models used for interpretation, this method has not been widely used to investigate more general transport processes including matrix diffusion or advective solute exchange between mobile and immobile zones of fluid. To explore the utility of the injection-withdrawal method as a general investigative tool and with the intent to resolve the transport processes in a discrete fracture, two tracer experiments were conducted using the injection-withdrawal configuration. The experiments were conducted in a fracture which has a large aperture (>500 microm) and horizontally pervades a dolostone formation. One experiment was conducted in the direction of the hydraulic gradient and the other in the direction opposite to the natural gradient. Two tracers having significantly different values of the free-water diffusion coefficient were used. To interpret the experiments, a hybrid numerical-analytical model was developed which accounts for the arcuate shape of the flow field, advection-dispersion in the fracture, diffusion into the matrix adjacent to the fracture, and the presence of natural flow in the fracture. The model was verified by comparison to a fully analytical solution and to a well-known finite-element model. Interpretation of the tracer experiments showed that when only one tracer, advection-dispersion, and matrix diffusion are considered, non-unique results were obtained. However, by using multiple tracers and by accounting for the presence of natural flow in the fracture, unique interpretations were obtained in which a single value of matrix porosity was estimated from the results of both experiments. The estimate of porosity agrees well with independent measurements of porosity obtained from core samples. This suggests that: (i) the injection-withdrawal method is a viable tool for the investigation of general transport processes provided all relevant experimental conditions are considered and multiple conservative tracers are used; and (ii) for the conditions of the experiments conducted in this study, the dominant mechanism for exchange of solute between the fracture and surrounding medium is matrix diffusion.  相似文献   

11.
During winter operations at airports, large amounts of organic deicing chemicals (DIC) accumulate beside the runways and infiltrate into the soil during spring. To study the transport and degradation of DIC in the unsaturated zone, eight undisturbed soil cores were retrieved at Oslo airport, Norway, and installed as lysimeters at a nearby field site. Before snowmelt in 2010 and 2011, snow amended with a mix of the DICs propylene glycol (PG) and formate as well as bromide as conservative tracer was applied. Water samples were collected and analyzed until summer 2012. Water flow and solute transport varied considerably among the lysimeters but also temporally between 2010 and 2011. High infiltration rates during snowmelt resulted in the discharge of up to 51 and 82 % PG in 2010 and 2011, respectively. The discharge of formate remained comparatively low, indicating its favored degradation even at freezing temperatures compared with PG. Manganese (Mn) and iron (Fe) were observed in the drainage in autumn owing to the anaerobic degradation of residual PG during summer. Our findings suggest that upper boundary conditions, i.e., snow cover and infiltration rate, and the extent of preferential flowpaths, control water flow and solute transport of bromide and PG during snowmelt. PG may therefore locally reach deeper soil regions where it may pose a risk for groundwater. In the long term, the use of DIC furthermore causes the depletion of potential electron acceptors and the transport of considerable amounts of Fe and Mn. To avoid an overload of the unsaturated zone with DIC and to maintain the natural redox system, the development of suitable remediation techniques is required.  相似文献   

12.
This study numerically investigates the influence of initial water content and rain intensities on the preferential migration of two fluorescent tracers, Acid Yellow 7 (AY7) and Sulforhodamine B (SB), through variably-saturated fractured clayey till. The simulations are based on the numerical model HydroGeoSphere, which solves 3D variably-saturated flow and solute transport in discretely-fractured porous media. Using detailed knowledge of the matrix, fracture, and biopore properties, the numerical model is calibrated and validated against experimental high-resolution tracer images/data collected under dry and wet soil conditions and for three different rain events. The model could reproduce reasonably well the observed preferential migration of AY7 and SB through the fractured till, although it did not capture the exact depth of migration and the negligible impact of the dead-end biopores in a near-saturated matrix. A sensitivity analysis suggests fast flow mechanisms and dynamic surface coating in the biopores, and the presence of a plough pan in the till.  相似文献   

13.
Rapid movement of agricultural chemicals through soil to groundwater via preferential flow pathways is one cause of water contamination. Previous studies have shown that time domain reflectometry (TDR) could be used to characterize solute transport in soil. However, previous studies have only scarcely addressed preferential flow. This study presents an extended application of TDR for determining preferential flow properties. A TDR method was tested in carefully controlled laboratory experiments using 20-cm long and 12-cm diameter undisturbed, structured soil columns. The method used a vertically installed TDR probe and a short pulse of tracer application to obtain residual mass (RM) breakthrough curves (BTC). The RM BTC obtained from TDR were used to estimate mobile/immobile model (MIM) parameters that were compared to the parameter estimates from effluent data. A conventional inverse curve fitting method (CXTFIT) was used to estimate parameters. The TDR-determined parameters were then used to generate calculated effluent BTC for comparison with observed effluent BTC for the same soil columns. Time moments of the calculated and observed BTC were calculated to quantitatively evaluate the calculated BTC. Overall, the RM BTC obtained from TDR were similar to the RM BTC obtained from effluent data. The TDR-determined parameters corresponded well to the parameters obtained from the effluent data, although they were not within the 95% confidence intervals. Correlation coefficients between the parameters obtained from TDR and from effluent data for the immobile water fraction (theta im/theta), mass exchange coefficient (alpha), and dispersion coefficient (Dm) were 0.95, 0.95, and 0.99, respectively. For three of the four soil cores, theta im/theta ranged from 0.42 to 0.82, indicating considerable preferential flow. The TDR-calculated effluent BTC also were similar to the observed effluent BTC having an average coefficient of determination of 0.94. Time moments obtained from calculated BTC were representative of those obtained from observed BTC. The vertical TDR probe method was simple and minimally destructive and provided representative preferential flow properties that enabled the characterization of solute transport in soil.  相似文献   

14.
Results of a fault test performed in the unsaturated zone of Yucca Mountain, Nevada, were analyzed using a three-dimensional numerical model. The fault was explicitly represented as a discrete feature and the surrounding rock was treated as a dual-continuum (fracture-matrix) system. Model calibration against seepage and water-travel-velocity data suggests that lithophysal cavities connected to fractures can considerably enhance the effective fracture porosity and therefore retard water flow in fractures. Comparisons between simulation results and tracer concentration data also indicate that matrix diffusion is an important mechanism for solute transport in unsaturated fractured rock. We found that an increased fault-matrix and fracture-matrix interface areas were needed to match the observed tracer data, which is consistent with previous studies. The study results suggest that the current site-scale model for the unsaturated zone of Yucca Mountain may underestimate radionuclide transport time within the unsaturated zone, because an increased fracture-matrix interface area and the increased effective fracture porosity arising from lithophysal cavities are not considered in the current site-scale model.  相似文献   

15.
16.
17.
A model-based interpretation of laboratory-scale experimental data is presented. Hydrolysis experiments carried out using thin glass tanks filled with glass beads to construct a hypothetical and inert, homogeneous porous medium were analysed using a 2D numerical model. A new empirical formula, based upon results for non-reactive (tracer) experiments is used to calculate transversal dispersivity values for a range of grain sizes and any flow velocities. Combined with effective diffusion coefficients calculated from Stokes-Einstein type equations, plume lengths arising from mixing between two solutes can be predicted accurately using numerical modelling techniques. Moreover, pH and ion concentration profiles lateral to the direction of flow of the mixing species can be determined at any given point downstream, without the need for result fitting. In our case, this approach does not lead to overpredictions of lateral mixing, as previously reported when using parameters derived from non-reactive tracer experiments to describe reactive solute transport. The theory is based on the assumption of medium homogeneity.  相似文献   

18.
Fresh water scarcity is an increasing problem worldwide. Strategies to alleviate water scarcity include the use of low-quality water for irrigation. The risk of groundwater contamination by pollutants in this water is affected by soil heterogeneity and preferential flow. These risk factors can be assessed by measuring the spatio-temporal redistribution of uniformly applied water and solutes. We placed a soil monolith (height 29 cm) from an Australian vineyard on a 100-cell multi-compartment sampler (MCS). At this vineyard, treated wastewater is used in response to the severe shortage of water in the summer. We studied the leaching risk associated with heterogeneous or preferential flow by irrigating the soil column with 24 applications to simulate one year. We applied simulated rainfall as well as wastewater (which contained chloride) during summer while relying on rainfall only in winter. We compared the chloride leaching with the leaching of bromide, which was applied during one of the applications as a pulse. During the entire simulated year, leaching of solutes from the monolith was measured. The results indicate that the assumption of uniform flow would underestimate the risk for the fresh groundwater reserves: 25 % of the solutes are transported though 6 % of the soil’s cross-section. The spatial distribution of drainage and solute leaching varied little during the experiment. Consequently, the mass flux density pattern of the bromide pulse was comparable to that of the repeatedly applied chloride. However, the MCS data suggested lateral ‘escape’ from chloride to non-mobile areas, which means in the long run, considerable quantities of these solutes can build up in areas that do not receive irrigation water.  相似文献   

19.
A unique infiltration tracer experiment was performed whereby a fluorescent dye was applied to the land surface in an agricultural field, near Perth, Ontario, Canada, to simulate the transport of solutes to two pumped monitoring wells drilled into the granitic gneiss aquifer. This experiment, interpreted using the discrete-fracture capability of the numerical model HydroGeoSphere, showed that solute transport from the surface through thin soil (less than 2m) to wells in fractured bedrock can be extremely rapid (on the order of hours). Also, it was demonstrated that maximum concentrations of contaminants originating from the ground surface will not necessarily be the highest in the shallow aquifer horizon. These are important considerations for both private and government-owned drinking water systems that draw water from shallow fractured bedrock aquifers. This research illustrates the extreme importance of protecting drinking water at the source.  相似文献   

20.
Dispersion data is abundant for water flow in the saturated zone but is lacking for airflow in unsaturated soil. However, for remediation processes such as soil vapour extraction, characterization of airflow dispersion is necessary for improved modelling and prediction capabilities. Accordingly, gas-phase tracer experiments were conducted in five soils ranging from uniform sand to clay at air-dried and wetted conditions. The disturbed soils were placed in one-dimensional stainless steel columns, with sulfur hexafluoride used as the inert tracer. The tested interstitial velocities were typical of those present in the vicinity of a soil vapour extraction well, while wetting varied according to the water-holding capacity of the soils. Results gave dispersivities that varied between 0.42 and 2.6 cm, which are typical of values in the literature. In air-dried soils, dispersion was found to increase with the pore size variability of the soil. For wetted soils, particle shape was an important factor at low water contents, while at high water contents, the proportion of macroporous space filled with water was important. The relative importance of diffusion decreased with increasing interstitial velocity and water content and was, in general, found to be minor compared to mechanical mixing across all conditions studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号