首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
A glass house experiment was conducted to investigate the effect of soil arsenic on photosynthetic pigments, chlorophyll-a and -b, and their correlations with rice yield and growth. The experiment was designed with three replications of six arsenic treatments viz. control, 10, 20, 30, 60, 90 mg of As kg(-1) soil. Arsenic concentration in initial soil, to which the above mentioned concentrations of arsenic were added, was 6.44+/-0.24 mg kg(-1). Both chlorophyll-a and -b contents in rice leaf decreased significantly (p<0.05) with the increase of soil arsenic concentrations. No rice plant survived up to maturity stage in soil treated with 60 and 90 mg of As kg(-1). The highest chlorophyll-a and -b contents were observed in control treatment (2.62+/-0.24 and 2.07+/-0.14 mg g(-1) were the average values of chlorophyll-a and -b, respectively of the five rice varieties) while 1.50+/-0.20 and 1.04+/-0.08 mg g(-1) (average of five rice varieties) of chlorophyll-a and -b, respectively were the lowest. The content of photosynthetic pigments in these five rice varieties did not differ significantly (p>0.05) from each other in control treatment though they differed significantly (p<0.05) from each other in 30 mg of As kg(-1) soil treatment. Among the five rice varieties, chlorophyll content in BRRI dhan 35 was found to be mostly affected with the increase of soil arsenic concentration while BRRI hybrid dhan 1 was least affected. Well correlations were observed between chlorophyll content and rice growth and yield suggesting that arsenic toxicity affects the photosynthesis which ultimately results in the reduction of rice growth and yield.  相似文献   

2.
Rice can be a major contributor to dietary arsenic exposure because of the relatively high total arsenic concentration compared to other grains, especially for people whose main staple is rice. This study employed in vitro gastrointestinal fluid digestion to determine bioaccessible or gastrointestinal fluid extractable arsenic concentration in rice. Thirty-one rice samples, of which 60 % were grown in the United States, were purchased from food stores in New York City. Total arsenic concentrations in these samples ranged from 0.090 ± 0.004 to 0.85 ± 0.03 mg/kg with a mean value of 0.275 ± 0.161 mg/kg (n = 31). Rice samples with relatively high total arsenic (>0.20 mg/kg, n = 18) were treated by in vitro artificial gastrointestinal fluid digestion, and the extractable arsenic ranged from 53 % to 102 %. The bioaccessibility of arsenic in rice decreases in the general order of extra long grain, long grain, long grain parboiled, to brown rices.  相似文献   

3.
Rice can be a major contributor to dietary arsenic exposure because of the relatively high total arsenic concentration compared to other grains, especially for people whose main staple is rice. This study employed in vitro gastrointestinal fluid digestion to determine bioaccessible or gastrointestinal fluid extractable arsenic concentration in rice. Thirty-one rice samples, of which 60 % were grown in the United States, were purchased from food stores in New York City. Total arsenic concentrations in these samples ranged from 0.090 ± 0.004 to 0.85 ± 0.03 mg/kg with a mean value of 0.275 ± 0.161 mg/kg (n = 31). Rice samples with relatively high total arsenic (>0.20 mg/kg, n = 18) were treated by in vitro artificial gastrointestinal fluid digestion, and the extractable arsenic ranged from 53 % to 102 %. The bioaccessibility of arsenic in rice decreases in the general order of extra long grain, long grain, long grain parboiled, to brown rices.  相似文献   

4.
The acquaintance of arsenic concentrations in rice grain is vital in risk assessment. In this study, we determined the concentration of arsenic in 282 brown rice grains sampled from Hainan Island, China, and discussed its possible relationships to the considered soil properties. Arsenic concentrations in the rice grain from Hainan Island varied from 5 to 309 μg/kg, with a mean (92 μg/kg) lower than most published data from other countries/regions and the maximum contaminant level (MCL) for Asi in rice. The result of correlation analysis between grain and soil properties showed that grain As concentrations correlated significantly to soil arsenic speciation, organic matter and soil P contents and could be best predicted by humic acid bound and Fe-Mn oxides bound As fractions. Grain arsenic rises steeply at soil As concentrations lower than 3.6 mg/kg and gently at higher concentrations.  相似文献   

5.
Yan YP  He JY  Zhu C  Cheng C  Pan XB  Sun ZY 《Chemosphere》2006,65(10):1690-1696
A pot experiment with 38 commonly cultured rice cultivars showed that the effect of Cu (100 mg kg(-1)) on rice growth, grain yield and accumulation of Cu in brown rice varied greatly with different cultivars. Although the average Cu concentration in brown rice of the 38 cultivars was significantly increased (P<0.01) compared with the control, in none of the cultivars did Cu concentration in brown rice exceed the maximum permissible limit of 10 mg Cu kg(-1). This suggests that rice grown in Cu-contaminated paddy soil (100 mg Cu kg(-1)) will not adversely affect human health through the food chain. Because of the significant negative correlation between grain weight and Cu concentration in brown rice with the soil Cu treatment, screening for cultivars with low Cu accumulation in brown rice and high grain yield for Cu-contaminated areas is feasible. The present research led to the recommendation of three such cultivars: Jiahua, Zhenxian 866, Zhe 733. The average grain yield under Cu treatment (100 mg Cu kg(-1) soil) was significantly (P<0.01) reduced compared with the control. The decreases or increases of grain yields mainly resulted from the combined effects of the panicles per pot, spikelets per panicle and filled spikelets per panicle under the soil Cu treatment. Furthermore, there were significant (r=0.869, P<0.01) positive correlations between the RC (relative changes) of spikelets per panicle and filled spikelets per panicle under the soil Cu treatment.  相似文献   

6.
In the present study, potential health risks posed to human population from Ropar wetland and its vicinity, by consumption of inorganic arsenic (i-As) via arsenic contaminated rice grains and groundwater, were assessed. Total arsenic (t-As) in soil and rice grains were found in the range of 0.06–0.11 mg/kg and 0.03–0.33 mg/kg, respectively, on dry weight basis. Total arsenic in groundwater was in the range of 2.31–15.91 μg/L. i-As was calculated from t-As using relevant conversion factors. Rice plants were found to be arsenic accumulators as bioconcentration factor (BCF) was observed to be >1 in 75% of rice grain samples. Further, correlation analysis revealed that arsenic accumulation in rice grains decreased with increase in the electrical conductivity of soil. One-way ANOVA, cluster analysis and principal component analysis indicated that both geogenic and anthropogenic sources affected t-As in soil and groundwater. Hazard index and total cancer risk estimated for individuals from the study area were above the USEPA limits of 1.00 and 1.00 × 10?6, respectively. Kruskal-Wallis H test indicated that groundwater intake posed significantly higher health risk than rice grain consumption (χ 2(1) = 17.280, p = 0.00003).  相似文献   

7.
Xu J  Yang L  Wang Z  Dong G  Huang J  Wang Y 《Chemosphere》2006,62(4):602-607
Pot soil experiments showed that copper (Cu) is highly toxic to rice. Rice grain yields decreased exponentially and significantly with the increase of soil Cu levels. Rice grain yield was reduced about 10% by soil Cu level of 100 mg kg(-1), about 50% by soil Cu level of 300-500 mg kg(-1) and about 90% by soil Cu concentration of 1,000 mg kg(-1). Root was more sensitive to soil Cu toxicity than other parts of rice plant at relatively lower soil Cu levels (less than 300-500 mg kg(-1)), but the growth of whole rice plant was severely inhibited at high soil Cu levels (300-500 mg kg(-1) or above). Cu concentrations in rice grain increased with soil Cu levels below 150-200 mg kg(-1), but decreased with soil Cu levels above 150-200 mg kg(-1), with peak Cu concentration at soil Cu level of 150-20 mg kg(-1). Cu was not distributed evenly in different parts of rice grain. Cu concentration in cortex (embryo) was more than 2-fold that in chaff and polished rice. More than 60% of the Cu in grain was accumulated in polished rice, about 24% in cortex (embryo), and about 12% in chaff. So, about 1/3 of the Cu in rice grain was eliminated after grain processing (chaff, cortex and embryo was removed).  相似文献   

8.
Residues of chlorantraniliprole in rice field ecosystem   总被引:4,自引:0,他引:4  
Zhang JM  Chai WG  Wu YL 《Chemosphere》2012,87(2):132-136
The fate of chlorantraniliprole was studied in rice field ecosystem, and a simple and reliable analytical method was developed for determination of chlorantraniliprole in soil, rice straw, paddy water and brown rice. Chlorantraniliprole residues were extracted from samples with acetonitrile. The extract was cleaned up with QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method, and determined by high-performance liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). The average recoveries were 76.9-82.4% from soil, 83.6-89.3% from rice straw, 95.2-103.1% from paddy water and 84.9-87.7% from brown rice. The relative standard deviation was less than 15%. The limits of detection (LODs) of chlorantraniliprole calculated as a sample concentration (S/N ratio of 3) were 0.012 μg L(-1) for paddy water, 0.15 μg kg(-1) for soil, brown rice and rice straw. The results of the kinetics study of chlorantraniliprole residue showed that chlorantraniliprole degradation in soil, water and rice straw coincided with C=0.01939e(-0.0434t), C=0.01425e(-0.8111t), and C=1.171e(-0.198t), respectively; the half-lives were about 16.0 d, 0.85 d and 3.50 d, respectively. The degradation rate of chlorantraniliprole in water was the fastest, followed by rice straw. The final residues of chlorantraniliprole on brown rice were lower than maximum residue limit (MRL) of 0.02 mg kg(-1) after 14 d Pre-Harvest Interval (PHI). Therefore, a dosage of 150 mL a.i.hm(-2) was recommended, which could be considered as safe to human beings and animals.  相似文献   

9.
Inorganic arsenic is a chronic exposure carcinogen. Analysis of UK baby rice revealed a median inorganic arsenic content (n = 17) of 0.11 mg/kg. By plotting inorganic arsenic against total arsenic, it was found that inorganic concentrations increased linearly up to 0.25 mg/kg total arsenic, then plateaued at 0.16 mg/kg at higher total arsenic concentrations. Inorganic arsenic intake by babies (4-12 months) was considered with respect to current dietary ingestion regulations. It was found that 35% of the baby rice samples analysed would be illegal for sale in China which has regulatory limit of 0.15 mg/kg inorganic arsenic. EU and US food regulations on arsenic are non-existent. When baby inorganic arsenic intake from rice was considered, median consumption (expressed as μg/kg/d) was higher than drinking water maximum exposures predicted for adults in these regions when water intake was expressed on a bodyweight basis.  相似文献   

10.
This study monitored the influence of arsenic-contaminated irrigation water on alkaline soils and arsenic uptake in agricultural plants at field level. The arsenic concentrations in irrigation water ranges from <0.005 to 1.014 mg L(-1) where the arsenic concentrations in the soils were measured from 6.1 to 16.7 mg As kg(-1). The arsenic content in different parts of plants are found in the order of roots>shoots>leaves>edible parts. The mean arsenic content of edible plant material (dry weight) were found in the order of onion leaves (0.55 mg As kg(-1))>onion bulb (0.45 mg As kg(-1))>cauliflower (0.33 mg As kg(-1))>rice (0.18 mg As kg(-1))>brinjal (0.09 mg As kg(-1))>potato (<0.01 mg As kg(-1)).  相似文献   

11.
The dynamics of arsenic in four paddy fields in the Bengal delta   总被引:4,自引:0,他引:4  
Irrigation with arsenic contaminated groundwater in the Bengal Delta may lead to As accumulation in the soil and rice grain. The dynamics of As concentration and speciation in paddy fields during dry season (boro) rice cultivation were investigated at 4 sites in Bangladesh and West Bengal, India. Three sites which were irrigated with high As groundwater had elevated As concentrations in the soils, showing a significant gradient from the irrigation inlet across the field. Arsenic concentration and speciation in soil pore water varied temporally and spatially; higher As concentrations were associated with an increasing percentage of arsenite, indicating a reductive mobilization. Concentrations of As in rice grain varied by 2-7 fold within individual fields and were poorly related with the soil As concentration. A field site employing alternating flooded-dry irrigation produced the lowest range of grain As concentration, suggesting a lower soil As availability caused by periodic aerobic conditions.  相似文献   

12.
The determination of arsenic compounds in algae collected on the Catalan coast (Western Mediterranean) is reported. Ten algae species and the seagrass Posidonia oceanica were analyzed. Total arsenic in the samples was determined by microwave digestion and inductively coupled plasma mass spectrometry (ICPMS). Arsenic speciation in water extracts of samples was analyzed by liquid chromatography with both anionic and cationic exchange with ICPMS detection (LC-ICPMS). The total arsenic content of the algae samples ranged from 2.96 to 39.0mg As kg(-1). The following compounds were detected: arsenite (As(III)), arsenate (As(V)), methylarsonate (MA), dimethylarsinate (DMA), sulfonate sugar (SO3-sug), sulfate sugar (SO4-sug), phosphate sugar (PO4-sug), arsenobetaine (AB), arsenocholine (AC), trimethylarsine oxide (TMAO) and glycerol sugar (Gly-sug). The main arsenic species found were arsenosugars. Significant percentages of arsenobetaine (0.54 mg As kg(-1), 28% of the extractable arsenic and 0.39 mg As kg(-1), 18% of the extractable arsenic) were found in Ulva rigida and Enteromorpha compressa. These results are discussed in relation to the presence of epiphytes.  相似文献   

13.
Effect of bound residues of metsulfuron-methyl in soil on rice growth   总被引:3,自引:0,他引:3  
Li ZJ  Xu JM  Muhammad A  Ma GR 《Chemosphere》2005,58(9):1177-1183
A pot experiment was conducted to appraise the hazards of bound residues of metsulfuron-methyl in soil at six levels (0, 0.050, 0.089, 0.158, 0.281, and 0.500 mg kg(-1)) to the growth of four rice varieties (Xiushui 63, Eryou 810, Liangyoupeijiu, and Zhenong 952). The morphological characteristics of rice roots like root number, total length, surface area of rice roots, and rice biomass were determined. The results showed that the bound residues of metsulfuron-methyl in soil impacted the growth of rice. Root number, total length of roots, surface area of roots, and biomass were restrained by bound residues of metsulfuron-methyl in soil. The inhibition rate of root growth increased from 69.46-81.32% to 85.18-95.97% with the increasing of levels of bound residues of metsulfuron-methyl from 0.05 mg kg(-1) to 0.50 mg kg(-1). The number of rice roots could be taken as a sensitive index to screen the rice varieties endurable to bound residues of metsulfuron-methyl in soil and to predict the potential hazards of bound residues of metsulfuron-methyl in soil to rice. The level of bound residues of metsulfuron-methyl in soil causing the root numbers decreased by 50% (IC50) followed the order of Xiushui 63 < Eryou 810 < Liangyoupeijiu < Zhenong 952.  相似文献   

14.
The effects of Cd, Ni, Pb, and Zn on arsenic accumulation by the arsenic hyperaccumulator Pteris vittata were investigated in a greenhouse study. P. vittata was grown for 8 weeks in an arsenic-contaminated soil (131 mg As kg(-1)), which was spiked with 50 or 200 mg kg(-1) Cd, Ni, Pb, or Zn (as nitrates). P. vittata was effective in taking up arsenic (up to 4100 mg kg(-1)) and transporting it to the fronds, but little of the metals. Arsenic bioconcentration factors ranged from 14 to 36 and transfer factors ranged from 16 to 56 in the presence of the metals, both of which were reduced with increasing metal concentration. Fern biomass increased as much as 12 times compared to the original dry weight after 8 weeks of growth (up to 19 g per plant). Greater concentrations of Cd, Ni, and Pb resulted in greater catalase activity in the plant. Most of the arsenic in the plant was present as arsenite, the reduced form, indicating little impact of the metals on plant arsenic reduction. This research demonstrates the capability of P. vittata in hyperaccumulating arsenic from soils in the presence of heavy metals.  相似文献   

15.
This greenhouse experiment evaluated arsenic removal by Pteris vittata and its effects on arsenic redistribution in soils. P. vittata grew in six arsenic-contaminated soils and its fronds were harvested and analyzed for arsenic in October, 2003, April, 2004, and October, 2004. The soil arsenic was separated into five fractions via sequential extraction. The ferns grew well and took up arsenic from all soils. Fern biomass ranged from 24.8 to 33.5 g plant(-1) after 4 months of growth but was reduced in the subsequent harvests. The frond arsenic concentrations ranged from 66 to 6,151 mg kg(-1), 110 to 3,056 mg kg(-1), and 162 to 2,139 mg kg(-1) from the first, second and third harvest, respectively. P. vittata reduced soil arsenic by 6.4-13% after three harvests. Arsenic in the soils was primarily associated with amorphous hydrous oxides (40-59%), which contributed the most to arsenic taken up by P. vittata (45-72%). It is possible to use P. vittata to remediate arsenic-contaminated soils by repeatedly harvesting its fronds.  相似文献   

16.
Arsenic poses a major environmental and human health problem because of its carcinogenic nature and effect on the ecosystem. Therefore, a cost effective and socially acceptable technique is needed for its remediation. The effect of different combinations of compost amended with zeolite and/or iron oxide (up to 20% w/w) was tested on a contaminated soil with high arsenic levels (34470 mg kg(-1)). The bioavailability of arsenic was determined in terms of uptake by rye grass (Lolium perenne L.) under greenhouse experimental conditions. The results indicated that the arsenic concentrations in the rye grass was reduced to 2 mg kg(-1) dry weight by using 15% compost with 5% iron oxide and 15% compost with 5% zeolite. Less than 0.01% of the total arsenic content in the soil was being taken up by the plants. Both treatments were effective in establishing significantly higher plant growth on the contaminated soil compared to other treatments. The results from sequential extraction tests indicated that in all the compost-amended soils, there was a reduction in the soluble fraction (10-37%). Arsenic in soil was examined using Scanning Electron Microscopy coupled with Energy Dispersive X-ray spectroscopy. The results indicated that arsenic was distributed mostly within the matrix of iron and oxygen in treated samples. Amongst various treatment mixtures tested, high percent of compost (15%) with zeolite (5%) and/or iron oxide (5%) is effective in reducing arsenic uptake by plants and establish re-vegetation on the contaminated soil.  相似文献   

17.
Arsenic occurs as a persistent constituent in many of the chemical weapons dumped into the Baltic Sea; it can be used as an indicator of leakage and dispersal of released munitions to the marine environment. Total arsenic was analysed in sediment samples taken from the Lithuanian economic zone in the Baltic Sea, which included samples from the chemical munitions dumpsite in the Gotland Basin and national monitoring stations in the southeastern Baltic Sea. Arsenic concentrations in sediments ranged from 1.1 to 19.0 mg kg(-1), with an average of 3.4 mg kg(-1). Although there was evidence of slightly elevated arsenic content in sediments near the weapons dumpsite, arsenic concentrations were nevertheless quite low relative to other investigations in the Baltic and North Seas.  相似文献   

18.
Inorganic arsenic and trace elements in Ghanaian grain staples   总被引:1,自引:0,他引:1  
A total of 549 samples of rice, maize, wheat, sorghum and millet were obtained from markets in Ghana, the EU, US and Asia. Analysis of the samples, originating from 21 countries in 5 continents, helped to establish global mean trace element concentrations in grains; thus placing the Ghanaian data within a global context. Ghanaian rice was generally low in potentially toxic elements, but high in essential nutrient elements. Arsenic concentrations in rice from US (0.22 mg/kg) and Thailand (0.15 mg/kg) were higher than in Ghanaian rice (0.11 mg/kg). Percentage inorganic arsenic content of the latter (83%) was, however, higher than for US (42%) and Thai rice (67%). Total arsenic concentration in Ghanaian maize, sorghum and millet samples (0.01 mg/kg) was an order of magnitude lower than in Ghanaian rice, indicating that a shift from rice-centric to multigrain diets could help reduce health risks posed by dietary exposure to inorganic As.  相似文献   

19.
Domkal is one of the 19, out of 26 blocks in Murshidabad district where groundwater contains arsenic above 0.05 mg/l. Many millions of cubic meters of groundwater along with arsenic and other heavy metals are coming out from both the hand tubewells, used by the villagers for their daily needs and shallow big diameter tubewells, installed for agricultural irrigation and depositing on soil throughout the year. So there is a possibility of soil contamination which can moreover affect the food chain, cultivated in this area. A somewhat detailed study was carried out, in both micro- and macrolevel, to get an idea about the magnitude of soil contamination in this area. The mean concentrations (mg/kg) of As (5.31), Fe (6740), Cu (18.3), Pb (10.4), Ni (18.8), Mn (342), Zn (44.3), Se (0.53), Mg (534), V (44.6), Cr (33.1), Cd (0.37), Sb (0.29) and Hg (0.54) in fallow land soils are within the normal range. The mean As (10.7), Fe (7860) and Mg (733) concentrations (mg/kg) are only in higher side whereas Hg (0.17 mg/kg) is in lower side in agricultural land soils, compared to the fallow land soils. Arsenic concentrations (11.5 and 28.0 mg/kg respectively) are high in those agricultural land soils where irrigated groundwater contains high arsenic (0.082 and 0.17 mg/l respectively). The total arsenic withdrawn and mean arsenic deposition per land by the 19 shallow tubewells per year are 43.9 kg (mean: 2.31 kg, range: 0.53-5.88 kg) and 8.04 kg ha(-1) (range: 1.66-16.8 kg ha(-1)) respectively. For the macrolevel study, soil arsenic concentration decreases with increase of distance from the source and higher the water arsenic concentration, higher the soil arsenic at any distance. A proper watershed management is urgently required to save the contamination.  相似文献   

20.
Arsenic concentrations of 73 soil samples collected in the semi-arid Zimapán Valley range from 4 to 14 700 mg As kg(-1). Soil arsenic concentrations decrease with distance from mines and tailings and slag heaps and exceed 400 mg kg(-1) only within 500 m of these arsenic sources. Soil arsenic concentrations correlate positively with Cu, Pb, and Zn concentrations, suggesting a strong association with ore minerals known to exist in the region. Some As was associated with Fe and Mn oxyhydroxides, this association is less for contaminated than for uncontaminated samples. Very little As was found in the mobile water-soluble or exchangeable fractions. The soils are not arsenic contaminated at depths greater than 100 cm below the surface. Although much of the arsenic in the soils is associated with relatively immobile solid phases, this represents a long-term source of arsenic to the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号