首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
建立了新型的搅拌棒吸附萃取(SBSE)和热脱附系统(TDU)结合的气相色谱(GC)测定地表水中多环芳烃的方法。考察了萃取时间、搅拌条件及萃取温度对实验的影响,对7种多环芳烃(萘、荧蒽、苯并[b]荧蒽、苯并[k]荧蒽、苯并[ghi]苝、茚并[1,2,3-cd]芘和苯并[a]芘)的加标回收率为89.17%~99.38%,相对标准偏差(RSD)为1.6%~5.6%(n=3)。通过实际样品中PAHs的分析表明,该法快速、灵敏、简单,能满足痕量分析的需求。  相似文献   

2.
Surfactant soil washing can remove polycyclic aromatic hydrocarbons (PAHs) from contaminated soil, and the white rot fungus, Phanerochaete chrysosporium Burdsall in Burdsall & Eslyn, can oxidize PAHs. The objective of this study was to develop a novel bioremediation technology using a combination of abiological surfactant soil washing followed by PAH biological oxidation in soil washwater using P. chrysosporium in a rotating biological contactor (RBC) reactor. Soil used for experimentation was an 11-month aged contaminated soil spiked with a total of nine PAHs: acenaphthene, fluorene, phenanthrene, fluoranthene, pyrene, chrysene, benzo(a)pyrene, dibenz(a-h)anthracene, and benzo(ghi)perylene. After 11 months of aging, recovery percentages of high molecular weight PAHs [i.e., from chrysene to benzo(ghi)perylene] were greater than 86%, while those of low molecular weight PAHs (i.e., from acenaphthene to pyrene) were less than 19%. Total removal efficiency for any of the nine PAHs was greater than 90% using a combination of surfactant soil washing and P. chrysosporium oxidation of soil washwater in the RBC reactor when used in batch operation, and greater than 76% when used in continuous operation. The treatment of PAH-contaminated soil using a combination of surfactant soil washing and subsequent PAH removal from the resultant washwater in an RBC reactor, in the presence of immobilized P. chrysosporium, permits (i) a rapid abiological cleanup of soil for compliance with relevant soil quality standards and (ii) PAH biological removal in soil washwater for compliance with aqueous discharge standards.  相似文献   

3.
This paper presents a hybrid technology of soil remediation based on the integration of biodegradation and electroosmosis. We employed soils with different texture (clay soil and loamy sand) containing a mixture of polycyclic aromatic hydrocarbons (PAH) present in creosote, and inoculation with a representative soil bacterium able to degrade fluorene, phenanthrene, fluoranthene, pyrene, anthracene, and benzo[a]pyrene. Two different modes of treatment were prospected: (i) inducing in soil the simultaneous occurrence of biodegradation and electroosmosis in the presence of a biodegradable surfactant, and (ii) treating the soils sequentially with electrokinetics and bioremediation. Losses of PAH due to simultaneous biodegradation and electroosmosis (induced by a continuous electric field) were significantly higher than in control cells that contained the surfactant but no biological activity or no current. The method was especially successful with loamy sand. For example, benzo[a]pyrene decreased its concentration by 50% after 7 d, whereas 22 and 17% of the compound had disappeared as a result of electrokinetic flushing and bioremediation alone, respectively. The use of periodical changes in polarity and current pulses increased by 16% in the removal of total PAH and in up to 30% of specific compounds, including benzo[a]pyrene. With the aim of reaching lower residual levels through bioremediation, an electrokinetic pretreatment was also evaluated as a way to mobilize the less bioaccessible fraction of PAH. Residual concentrations of total biodegradable PAH, remaining after bioremediation in soil slurries, were twofold lower in electrokinetically pretreated soils than in untreated soils. The results indicate that biodegradation and electroosmosis can be successfully integrated to promote the removal of PAH from soil.  相似文献   

4.
以小麦秸秆为原材料,在300℃下缺氧裂解3、6、8 h制备生物炭,比较了3种生物炭的产率、pH值、灰分以及C、H、N元素含量,表征了300℃、6 h生物炭的表面形态,并用其作为修复材料,对大港油田的石油污染土壤进行修复。结果表明,随裂解时间的延长,生物炭产率下降,pH值升高,灰分含量增加,H/C值下降,但产率、pH值、灰分和H/C值都是从3h到6h差异显著,6h到8h差异不显著。C元素含量先升高后下降。石油污染土壤经生物炭修复14 d和28 d后,总石油烃降解率分别为45.48%和46.88%,均显著高于对照组。修复14 d后土壤中的萘、苊、苯并[a]蒽、屈、苯并[b]荧蒽、苯并[k]荧蒽、苯并[a]芘、茚并[1,2,3-cd]芘也都有不同程度的下降,其中苯并[a]芘含量下降幅度达98.18%,其他几种PAH的降解率也都高于对照组,28 d后这些PAH的含量又有上升趋势。这说明小麦秸秆裂解时间对生物炭的性质有影响;300℃、6 h生物炭可以用来修复石油污染的土壤。  相似文献   

5.
通过对大连市工业区、居民区和城市背景区3种类型区域连续7个月大气样品的采集,分析PAHs在大气中的污染特征,并对其毒性进行评价。结果显示,城市工业区大气中PAHs含量最高,其次是居民区,城市背景区最低。3种类型采样点大气中PAHs的组成相似,菲是含量最多的物质,其次是荧蒽、芴和芘。16种PAHs基于苯并[a]芘的总毒性当量浓度为:工业区5.1 ng/m^3;居民区3.6 ng/m^3;城市背景区4.6 ng/m^3。3种类型功能区大气中PAHs的TEQ值都高于我国的《空气质量标准》(GB 3095-2012)中规定的大气中苯并[a]芘的年平均浓度(1 ng/m^3)或24 h平均浓度(2.5 ng/m^3)。  相似文献   

6.
There may be important biological sources of polycyclic aromatic hydrocarbons (PAHs) to the global environment, particularly of naphthalene, phenanthrene, and perylene, that originate in the tropics. We (i) studied the distribution of PAHs among different compartments of a typical Cerrado to locate their sources and (ii) quantified the PAH storage of this ecosystem. The sum of 20 PAH (sigma20PAHs) concentrations ranged from 25 to 666 microg kg(-1) in plant tissue, 7.4 to 32 microg kg(-1) in litterfall, 206 to 287 microg kg(-1) in organic soil, and 10 to 79 microg kg(-1) in mineral soil. Among the living biomass compartments, the bark had the highest mean PAH concentrations and coarse roots the lowest, indicating that PAHs in the plants originated mainly from aboveground sources. Naphthalene and phenanthrene were the most abundant individual PAHs, together contributing 33 to 96% to the sigma20PAHs concentrations. The total storage of the X20PAHs in Cerrado was 7.5 mg m(-2) to a 0.15-m soil depth and 49 mg m(-2) to a 2-m soil depth. If extrapolated to the entire Brazilian Cerrado region, roughly estimated storages of naphthalene and phenanthrene correspond to 7300 and 400 yr of the published annual emissions in the United Kingdom, respectively. The storage of benzo[a]pyrene, a typical marker for fossil fuel combustion, in the Cerrado only corresponds to 0.19 yr of UK emissions. These results indicate that the Brazilian savanna comprises a huge reservoir of naphthalene and phenanthrene originating most likely from the aboveground parts of the vegetation or associated organisms. Thus, the Cerrado might be a globally important source of these PAHs.  相似文献   

7.
A Level III fugacity model was applied to characterize the transfer processes and environmental fate of benzo[a]pyrene in wastewater-irrigated areas of Tianjin, China. The physical-chemical properties and transfer parameters of benzo[a]pyrene were used in the model and the concentration distribution of benzo[a]pyrene in sediment, soil, water, air, fish, and crop compartments, as well as transfer fluxes across the compartments, were then derived under steady-state assumptions. The calculated results were compared with monitoring data for air, soil, water, and sediment collected from the literature. The results indicate that there was generally good agreement and the differences were within an order of magnitude for air, soil, and sediment. The concentration of benzo[a]pyrene in the ambient air in the area was very low with a majority present sorbed to aerosol. In the water compartment, approximately 70% of benzo[a]pyrene dissolved in water phase. Relatively high concentrations of the compound were found in the soil and sediment, with the soil serving as the dominant sink in the area. Benzo[a]pyrene, with a slow metabolic rate, was found to accumulate in fish in the area.  相似文献   

8.
Sequential supercritical fluid (CO2) extraction (SSFE) was applied to eight historically contaminated soils from diverse sources with the aim to elucidate the sorption-desorption behavior of high molecular weight polycyclic aromatic hydrocarbons (PAHs). The method involved five extraction phases applying successively harsher conditions by increasing fluid temperature and density mobilizing target compounds from different soil particle sites. Two groups of soils were identified based on readily desorbing (available) PAH fractions obtained under mildest extraction conditions (e.g., readily desorbing fractions of fluoranthene and pyrene significantly varied between the soils ranging from <10 to >90%). Moreover, extraction behavior strongly correlated with molecular weight revealing decreasing available PAH fractions with increasing weight. Physicochemical soil parameters such as particle size distribution and organic dry mass were found to have no distinct effect on the sorption-desorption behavior of PAHs in the different soils. However, PAH profiles significantly correlated with readily available pollutant fractions; soils with relatively less mobile PAHs had higher proportions of five- and six-ring PAHs and vice versa. Eventually, biodegradability corresponded well with PAH recoveries under the two mildest extraction phases. However, a quantitative relationship was only established for soils with biodegradable PAHs. Out of eight soils, five showed no biodegradation including the four soils with the lowest fraction of readily desorbing PAHs. Only one soil (which was found to be highly toxic to Vibrio fischeri) did not match the overall pattern showing no PAH biodegradability but large fractions of highly mobile PAHs, concluding that mass transfer limitations may only be one of many factors governing biodegradability of PAHs.  相似文献   

9.
Contamination of soil by hazardous substances poses a significant threat to human, environmental, and ecological health. Cleanup of the contaminants using destructive, invasive technologies has proven to be expensive and more importantly, often damaging to the natural resource properties of the soil, sediment, or aquifer. Phytoremediation is defined as the cleanup of contaminated sites using plants. There has been evidence of enhanced polycyclic aromatic hydrocarbons (PAHs) degradation in rhizosphere soils for a limited number of plants. However, research focusing on the degradation of PAHs in the rhizosphere of trees is lacking. The objective of this study was to assess the potential use of trees to enhance degradation of PAHs located in manufactured gas plant-impacted soils. In greenhouse studies with intact soil cores, acenaphthene, anthracene, fluoranthene, naphthalene, and phenanthrene decreased significantly (p < 0.05) in green ash (Fraxinus pennsylvanica Marshall) and hybrid poplar (Populus deltoides x P. nigra DN 34) phytoremediation treatments when compared to the unplanted soil control. Increases in PAH microbial degraders in rhizosphere soil were observed when compared to unvegetated soil controls. In addition, the rate of degradation or biotransformation of PAHs was greatest for soils with black willow (Salix nigra Marshall), followed by poplar, ash, and the unvegetated controls. These results support the hypothesis that a variety of plants can enhance the degradation of target PAHs in soil.  相似文献   

10.
A variety of anthropogenic sources release hazardous polyaromatic hydrocarbons (PAHs) into the phyllosphere which is an excellent niche for diverse fungi, and some of them have PAHs degradation capabilities. Therefore, this research attempted to determine the PAHs (phenanthrene, anthracene, naphthalene, and pyrene) degradation capability of phyllosphere inhabited Penicillium species. The leaf samples were collected from highly polluted urban areas (Panchikawatta, Pettah, Orugodawatta, Maradana, Sapugaskanda, and Colombo Fort) in Sri Lanka to isolate fungal species inhabiting the phyllosphere. Furthermore, their distribution patterns among the leaf tissue layers were studied using bright-field microscopic observations. Moreover, the best PAH degraders were screened out using plate assays and confirmed through High Performance Liquid Chromatography (HPLC) analysis. Further, their enzymatic activities during the PAHs degradation were analyzed. As per the microscopic observations, the highest fungal distribution was in the upper epidermis of the leaves followed by the fungal distribution in the interspaces of palisade mesophyll layers. Out of isolated fungal species, two Penicillium spp. (Penicillium citrinum P23B-91 and Penicillium griseofulvum P9B - 30) showed the highest PAHs (phenanthrene, anthracene, naphthalene, and pyrene) degradation capabilities. Manganese peroxidase (MnP) enzyme dominated phenanthrene degradation in P. griseofulvum P9B - 30, which showed the highest phenanthrene degradation ability (61%). In addition, P. citrinum P23B-91 was good at degrading anthracene (88%) and also displayed a higher MnP activity during the anthracene degradation than laccase and lignin peroxidase activities. The discoveries from the toxicity assay during the PAHs degradation processes revealed that the produced byproducts had no toxic effects on the fungal growth cycle and the phyllosphere. Therefore this phyllosphere Penicillium spp. are ideal for the bioremediation of polluted air in urbanized areas.  相似文献   

11.
Traditionally, solvent extractions are routinely used in the assessment of contaminated land. However, vigorous solvent extractions only give total concentrations rather than that relating to the bioaccessible fraction. Recently, less harsh, aqueous-based extraction methods have been shown to be a better estimate of the microbial degradation of polycyclic aromatic hydrocarbons (PAHs). The aqueous-based hydroxypropyl-beta-cyclodextrin (HPCD) extraction technique was tested using 14C-PAHs in soils and compared against indigenous microbial mineralization (a measure of bioaccessibility) of 14C-phenanthrene in the presence of pyrene or benzo[a]pyrene (B[a]P) over a range of concentrations (0, 5, 10, or 50 mg kg(-1)) and aged for 0, 25, 50, and 100 d in four soils. At each time point, the total loss, extractability, and mineralization of 14C-phenanthrene was measured in each of the soils. The presence of the other PAHs had little effect on the behavior of 14C-phenanthrene in any of the soils. Comparisons between the amounts of 14C-phenanthrene extracted using HPCD and mineralized were made and showed that there was a correlation (1:1). This study demonstrates that HPCD extraction is able to predict the microbial accessibility fraction of 14C-phenanthrene in the presence of other PAHs in a range of soils, further supporting the applicability of this technique.  相似文献   

12.
The survey of polycyclic aromatic hydrocarbons (PAHs) and their relation to potential pollution sources were investigated in suspended particulate matter (SPM), surface waters, and sediments from Elelenwo Creek, southern Nigeria. Total PAH concentrations varied from 2,021.35 to 3,926.84 μg/kg dry weights in SPM and from 4,238.00 to 5,490.84 μg/kg dry weights in sediments. Furthermore, concentration levels of PAHs varied from 720.46 to 857.65 μg/l in the surface waters, which indicates that the aquatic ecosystem is polluted by PAHs. The 2, 3-ring PAHs were not dominant in SPM (34.73%), surface water (40.09%), and sediments (22.43%). While anthracene was more abundant, of the 2, 3-ring PAHs in SPM, the most abundant in the surface waters and sediments were fluorene and acenaphthylene. Four origin indices or concentration ratios of PAH isomer pairs were used to evaluate the suitability of these compounds as tracers to distinguish between the contamination arising from different sources. A critical appraisal of the PAH indices, therefore, suggested that biomass combustion is the major PAH source in the environmental matrices. Relative PAH patterns in the environmental matrices were also evaluated using principal component analysis, and were found to correlate with the PAH patterns of the different potential contamination sources.  相似文献   

13.
Understanding temporal and spatial distributions of naturally occurring total organic carbon (TOC) in sediments is critical because TOC is an important feature of surface water quality. This study investigated temporal and spatial distributions of sediment TOC and its relationships to sediment contaminants in the Cedar and Ortega Rivers, Florida, USA, using three-dimensional kriging analysis and field measurement. Analysis of field data showed that large temporal changes in sediment TOC concentrations occurred in the rivers, which reflected changes in the characteristics and magnitude of inputs into the rivers during approximately the last 100 yr. The average concentration of TOC in sediments from the Cedar and Ortega Rivers was 12.7% with a maximum of 22.6% and a minimum of 2.3%. In general, more TOC accumulated at the upper 1.0 m of the sediment in the southern part of the Ortega River although the TOC sedimentation varied with locations and depths. In contrast, high concentrations of sediment contaminants, that is, total polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), were found in sediments from the Cedar River. There was no correlation between TOC and PAHs or PCBs in these river sediments. This finding is in contradiction to some other studies which reported that the sorption of hydrocarbons is highly related to the organic matter content of sediments. This discrepancy occurred because of the differences in TOC and hydrocarbon source input locations. It was found that more TOC loaded into the southern part of the Ortega River, while almost all of the hydrocarbons entered into the Cedar River. This study suggested that the locations of their input sources as well as the land use patterns should also be considered when relating hydrocarbons to sediment TOC.  相似文献   

14.
Recent reports suggest that Mycobacterium is better adapted to soils containing poorly bioavailable polycyclic aromatic hydrocarbons (PAHs) compared to Sphingomonas. To study this hypothesis, artificial conditions regarding PAH profile and PAH bioavailability were induced in two PAH-contaminated soils and the response of the eubacterial, Mycobacterium, and Sphingomonas communities to these changed conditions was monitored during laboratory incubation. Soil K3663 with a relatively high proportion of high molecular weight PAHs was amended with phenanthrene or pyrene to artificially change the soil into a soil with a relatively increased bioavailable PAH contamination. Soil AndE with a relatively high proportion of bioavailable low molecular weight PAHs was treated by a single-step Tenax extraction to remove the largest part of the easily bioavailable PAH contamination. In soil K3663, the added phenanthrene or pyrene compounds were rapidly degraded, concomitant with a significant increase in the number of phenanthrene and pyrene degraders, and minor and no changes in the Mycobacterium community and Sphingomonas community, respectively. However, a transient change in the eubacterial community related to the proliferation of several gamma-proteobacteria was noted in the phenanthrene-amended soil. In the extracted AndE soil, the Sphingomonas community initially developed into a more diverse community but finally decreased in size below the detection limit. Mycobacterium in that soil never increased to a detectable size, while the eubacterial community became dominated by a gamma-proteobacterial population. The results suggest that the relative bioavailability of PAH contamination in soil affects bacterial community structure but that the behavior of Mycobacterium and Sphingomonas in soil is more complex than prospected from studies on their ecology and physiology.  相似文献   

15.
Polycyclic aromatic hydrocarbons (PAHs) have earned considerable attention due to their widespread environmental distribution and toxicity. In the environment, PAHs decompose by a variety of biotic and abiotic pathways. In both polar and nonpolar environments, phenanthrene (Phe, a common, three-ring PAH) is converted by sunlight to more polar products such as 9,10-phenanthrenequinone (PheQ) and subsequent oxidation products such as the corresponding open-ring dicarboxylic acid product. Biodegradation of phenanthrene also usually leads to oxidative metabolites, and eventually ends in mineralization. Our experimental objective was to investigate the photodegradation of phenanthrene and determine the effect of reaction products such as PheQ on microbial biodegradation of two- and three-ring PAHs. Abiotic experiments were performed to examine the photolytic breakdown of Phe; Phe was converted to PheQ, which catalyzed its own formation. In biodegradation experiments PheQ (0.04-4 mg/L) caused marked inhibition of naphthalene (Nap) biodegradation by a Burkholderia species; Phe did not. Only 20% of the naphthalene was degraded in the presence of PheQ compared with 75% in the control culture with no PheQ added. No PAH-degrading cultures were able to use PheQ as sole carbon source; however, the Phe-degrading enrichment culture dominated by a Sphingomonas species was able to degrade PheQ cometabolically in the presence of Phe. These results may explain why photooxidized phenanthrene-containing mixtures can resist biodegradation.  相似文献   

16.
镇江东部地区土壤中多环芳烃的污染特征及来源解析   总被引:1,自引:0,他引:1  
王琳  董铮  曹旭静  梅雯 《四川环境》2009,28(6):15-17
分析了镇江东部扬中地区土壤中16种优先控制的多环芳烃(PAHs)污染物的含量特征及污染水平。结果表明,该地区土壤的多环芳烃总量为2.4~49.9μg/Kg,其中荧蒽的含量最高,同我国其他地区相比,其污染水平比较低。5个采样点PAHs含量表明有两个点受工业企业影响,其他3个点具有类似的面源污染即地质成因来源。  相似文献   

17.
Phytoremediation offers an ecologically and economically attractive remediation technique for soils contaminated with polycyclic aromatic hydrocarbons (PAHs). In addition to the choice of plant species, agronomic practices may affect the efficiency of PAH phytoremediation. Inorganic nutrient amendments may stimulate plant and microbial growth, and clipping aboveground biomass might stimulate root turnover, which has been associated with increases in soil microbial populations. To assess the influence of fertilization and clipping on PAH dissipation in a nutrient-poor, aged PAH-contaminated soil, a 14-mo phytoremediation study was conducted using perennial ryegrass (Lolium perenne) as a model species. Six soil treatments were performed in replicate: unplanted; unplanted and fertilized; planted; planted and fertilized; planted and clipped; and planted, clipped, and fertilized. Plant growth, soil PAH concentrations, and the concentrations of total and PAH-degrading microorganisms were measured after 7 and 14 mo. Overall, planting (with nearly 80% reduction in total PAHs) and planting + clipping (76% reduction in total PAHs) were the most effective treatments for increased PAH dissipation after 14 mo. Fertilization greatly stimulated plant and total microbial growth, but negatively affected PAH dissipation (29% reduction in total PAHs). Furthermore, unplanted and fertilized soils revealed a similar negative impact (25% reduction) on PAH dissipation after 14 mo. Clipping did not directly affect PAH dissipation, but when combined with fertilization (61% reduction in total PAHs), appeared to mitigate the negative impact of fertilization on PAH dissipation. Therefore, fertilization and clipping may be included in phytoremediation design strategies, as their combined effect stimulates plant growth while not affecting PAH dissipation.  相似文献   

18.
Sixteen USEPA priority polycyclic aromatic hydrocarbons (PAHs) extracted by Soxhlet extraction (S-PAHs) with dichloromethane and routine accelerated solvent extraction (A-PAHs) with 1:1 toluene/methanol, respectively, were investigated in 24 soil samples from two cities in the center of the Pearl River Delta, South China. Polycyclic aromatic hydrocarbons, methylphenanthrene and perylene, in two soils, two sediments, and an immature oil shale were also sequentially extracted by accelerated solvent extraction (ASE) with each of four different organic solvents for three times. The A-PAHs' concentrations are 2.41 times the S-PAHs' concentrations. For sequential three ASEs, PAHs in the first extract account for 56 to 67% of their total concentrations in the sequential three extractions and toluene displays the best extraction performance among the four solvents. Diagnostic ratios of PAHs in Soxhlet extraction, routine ASE, and sequential ASE with each solvent for a given sample are very similar, suggesting their identical petrogenic and pyrogenic sources in the soils and sediments. But the PAH ratios for the shale have an obvious petrogenic origin. The perylene/5-ring PAH ratios indicate a diagenetic source, especially in the shale and sediments. The correlation analysis shows that A-PAHs/S-PAHs is better associated with the contents of total organic carbon (TOC) than those of black carbon (BC). The above results indicate the significant petrogenic origin of PAHs and the important effect of organic matter on their extraction and distribution in the investigated field soils/sediments.  相似文献   

19.
Microbial biodegradation of polycyclic aromatic hydrocarbons (PAHs) during the process of bioremediation can be constrained by lack of nutrients, low bioavailability of the contaminants, or scarcity of PAH-biodegrading microorganisms. This study focused on addressing the limitation of nutrient availability for PAH biodegradation in oil-contaminated beach sediments. In our previous study, three nutrient sources including inorganic soluble nutrients, the slow-release fertilizer Osmocote (Os; Scotts, Marysville, OH) and Inipol EAP-22 (Ip; ATOFINA Chemicals, Philadelphia, PA), as well as their combinations, were applied to beach sediments contaminated with an Arabian light crude oil. Osmocote was the most effective nutrient source for aliphatic biodegradation. This study presents data on PAH biodegradation in the oil-spiked beach sediments amended with the three nutrients. Biodegradation of total target PAHs (two- to six-ring) in all treatments followed a first-order biodegradation model. The biodegradation rates of total target PAHs in the sediments treated with Os were significantly higher than those without. On Day 45, approximately 9.3% of total target PAHs remained in the sediments amended with Os alone, significantly lower than the 54.2 to 58.0% remaining in sediment treatments without Os. Amendment with Inipol or soluble nutrients alone, or in combination, did not stimulate biodegradation rates of PAHs with a ring number higher than 2. The slow-release fertilizer (Os) is therefore recommended as an effective nutrient amendment for intrinsic biodegradation of PAHs in oil-contaminated beach sediments.  相似文献   

20.
The solubilization of phenanthrene (PHE) and pyrene (PYR) by rhamnolipid biosurfactant was systematically investigated. The solubilities of both polycyclic aromatic hydrocarbons (PAHs) were increased linearly with the biosurfactant concentration at above critical micelle concentration. A competitive effect was observed between PHE and PYR. The solubility of PHE in a mixed system was lower than that in a single PAH system, whereas the solubility of PYR in a mixed system was enhanced. This is because the hydrophobicity of PYR is higher than that of PHE, so PYR is favored in the competitive solubilization. The combined effect of biosurfactant and dissolved organic matter (DOM) on PAH solubilization was also examined. Two kinds of DOM (derived from soil and from compost) were used. There was an obvious enhancement of solubility for PHE and PYR in systems with concurrence of DOM and biosurfacrant compared with systems with only DOM or biosurfactant; however, the enhancement in the mixed system was less than their additive. This could be explained as the formation of a DOM-biosurfactant complex. In addition, the solubility enhancement of PAHs in a compost-DOM system was higher than that in a soil-DOM system. This could be explained as functional group differences of two DOM types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号