首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sorption and degradation of the herbicide 2,4-D [2,4-dichlorophenoxyacetic acid] were determined for 123 surface soils (0 to 15 cm) collected in 2002 and in 2004 between 49 degrees to 60 degrees north longitude and 110 degrees to 120 degrees west latitude in Alberta, Canada. The soils were characterized by soil organic carbon content (SOC), pH, electrical conductivity, soil texture, cation exchange capacity, carbonate content, and total soil microbial activity. The 2,4-D sorption coefficients, Kd and Koc, were highly variable with coefficients of variation of 89 and 59%, respectively, at the provincial scale. Both Kd and Koc were well described by regression models with SOC and soil pH as variables, regardless of scale. Surprisingly, variations in 2,4-D mineralization were much smaller than variations in sorption. Variability in total 2,4-D mineralization was particularly low, with a coefficient of variation of only 7% at the provincial scale. Average 2,4-D half-lives in ecoregions ranged from 1.7 to 3.5 d, much lower than the field dissipation half-life of 10 d reported for 2,4-D in general pesticide property databases. Regression models describing degradation parameters were generally poor or not significant because 2,4-D mineralization was only weakly associated with measured 2,4-D sorption parameters and soil properties. As such, regional variations in herbicide sorption coefficients should be measured or calculated based on soil properties, to assign distinct pesticide fate model input parameters when estimating 2,4-D off-site transport at the provincial scale. Spatial variations in herbicide degradation appear less important for Alberta as 2,4-D half-lives were similar in soils across the province. The rapid mineralization of 2,4-D is noteworthy because 2,4-D is widely used in Alberta and perhaps adaptation of soil microbial communities allowed for accelerated degradation regardless of soil properties or the extent of 2,4-D sorption by soil.  相似文献   

2.
The sorption of 2,4-D and glyphosate herbicides in soil was quantified for 287 surface soils (0-15 cm) collected in a 10 x 10 m grid across a heavily eroded, undulating, calcareous prairie landscape. Other variables that were determined included soil carbonate content, soil pH, soil organic carbon content (SOC), soil texture, soil loss or gain by tillage and water erosion, and selected terrain attributes and landform segments. The 2,4-D sorption coefficient (Kd) was significantly associated with soil carbonate content (-0.66; P < 0.001), soil pH (-0.63; P < 0.001), and SOC (0.47; P < 0.001). Upper slopes were strongly eroded and thus had a significantly greater soil carbonate content and less SOC compared with lower slopes that were in soil accumulation zones. The 2,4-D Kd was almost twice as small in upper slopes than in lower slopes. The 2,4-D Kd was also significantly associated with nine terrain attributes, particularly with compounded topographic index (0.59; P < 0.001), gradient (-0.48; P < 0.001), mean curvature (-0.43; P < 0.001), and plan curvature (-0.42 P < 0.001). Regression equations were generated to estimate herbicide sorption in soils. The predicted power of these equations increased for 2,4-D when selected terrain attributes were combined with soil properties. In contrast, the variation of glyphosate sorption across the field was much less dependent on our measured soil properties and calculated terrain attributes. We conclude that the integration of terrain attributes or landform segments in pesticide fate modeling is more advantageous for herbicides such as 2,4-D, whose sorption to soil is weak and influenced by subtle changes in soil properties, than for herbicides such as glyphosate that are strongly bound to soil regardless of soil properties.  相似文献   

3.
Sorption data and subsequent predictive models for evaluating acidic pesticide behavior on variable-charge soils are needed to improve pesticide management and environmental stewardship. Previous work demonstrated that sorption of pentachlorophenol (PCP), a model organic acid, was adequately modeled by accounting for pH-and pKa-dependent chemical speciation and using two organic carbon-normalized sorption coefficients; one each for the neutral and anionic species. Such models do not account for organic anion interaction to positively charged surface sites, which can be significant for variable-charge minerals present in weathered soils typical of tropical and subtropical regions. The role of anion exchange in sorption of ionizable chemicals by variable-charge soils was assessed by measuring sorption of PCP by several variable-charge soils from aqueous solutions of CaCl2, CaSO4, Ca(H2PO4)2 as a function of pH. Differences in sorption from phosphate and chloride electrolyte solutions were attributed to pentachlorophenolate interactions with anion exchange sites. Suppression of PCP sorption by phosphate ranged from negligible in a soil with essentially no positively charge sites, as measured by negligible anion exchange capacity, to as much as 69% for variable-charge soils. Pentachlorophenolate exchange correlated well with the ratio of pH-dependent anion exchange capacity to net surface charge. Sorption reversibility of PCP by both CaCl2 and Ca(H2PO4)2 solutions was also demonstrated. Results for PCP clearly demonstrate that sorption to anion exchange sites in variable-charge soils should be considered in assessing pesticide mobility and that phosphate fertilizer application may increase the mobility of acidic pesticides.  相似文献   

4.
Adsorption of 2,4-dichlorophenoxyacetic acid by an Andosol   总被引:1,自引:0,他引:1  
To identify the important soil components involved in 2,4-dichlorophenoxyacetic acid (2,4-D) adsorption on Andosols, 2,4-D adsorption on a surface horizon of an Andosol was compared with that on hydrogen peroxide (H2O2)-treated (soil organic matter [SOM] was removed), acid-oxalate (OX)-treated (active metal hydroxides and SOM were removed), and dithionite-citrate-bicarbonate (DCB)-treated (free and active metal [hydr]oxides and SOM were removed) soil samples at equilibrium pHs ranging from 4 to 8. Although the untreated soil contained a large amount of organic C (71.9 g kg-1), removal of SOM had little effect on 2,4-D adsorption. Active surface hydroxyls, which were attached to the active and free metal (hydr)oxides and metal SOM complexes, were identified as the most important soil functional group for 2,4-D adsorption. The dominant mechanism of the 2,4-D adsorption was a ligand exchange reaction in which the carboxylic group of 2,4-D displaced the active surface hydroxyl associated with metals and formed a strong coordination bond between the 2,4-D molecule and soil solid phase. The ligand exchange reaction reasonably accounted for the selective adsorption of 2,4-D over Cl-, competitive adsorption of phosphate over 2,4-D, reduction in plant-growth-inhibitory activity of soil-adsorbed 2,4-D, and the high 2,4-D adsorption ability of Andosols. Although a humic acid purified from the soil did not adsorb 2,4-D, the presence of the humic acid increased 2,4-D adsorption on Al and Fe, probably by inhibiting the hydrolysis and polymerization of Al and Fe resulting in the preservation of available adsorption sites on these metals. The adsorption behavior of 2,4-D on soils could be a good index for predicting the adsorption behavior of other organic acids in soils.  相似文献   

5.
Irrigation effects on pesticide mobility have been studied, but few direct comparisons of pesticide mobility or persistence have been conducted on turfgrass versus bare soil. The interaction of irrigation practices and the presence of turfgrass on the mobility and dissipation of mefenoxam [N-(2,6-dimethylphenyl)-N-(methoxyacetyl)-D-alanine methyl ester] and propiconazole (1-[[2-(2,4-dichlorophenyl)-4-propyl-1,3-dioxolan-2-yl]methyl]-1H-1,2,4-triazole) was studied. Sampling cylinders (20-cm diam.) were placed in either creeping bentgrass [Agrostis stolonifera L. var. palustris (Huds.) Farw.] or bare soil. Mefenoxam was applied at 770 g a.i. ha(-1) and propiconazole was applied at 1540 g a.i. ha(-1) on 14 June 1999. Sampling cylinders were removed 2 h after treatment and 4,8,16, 32, and 64 days after treatment (DAT) and the cores were sectioned by depth. Dissipation of mefenoxam was rapid, regardless of the amount of surface organic matter or irrigation. The half-life (t1/2) of mefenoxam was 5 to 6 d in turf and 7 to 8 d in bare soil. Most mefenoxam residues found in soil under turfgrass were in the 0- to 1-cm section at 0, 4, and 8 DAT. Residues were found in the 15- to 30-cm section at 4, 8, 16, 32, and 64 DAT, regardless of turf cover or irrigation. The t1/2 of propiconazole was 12 to 15 d in turfgrass and 29 d in bare soil. Little movement of propiconazole was observed in either bare soil or turf.  相似文献   

6.
A batch reactor was used to determine sorption kinetic parameters (k2, F, and K*) and the equilibrium sorption coefficient (K). The two-site nonequilibrium (TSNE) batch sorption kinetics model was used to calculate the kinetic parameters. Two probe organic pesticides, atrazine [2-chloro-4-ethylamino-6-isopropylamino-s-triazine] and diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea] were studied using three carbonatic soils from South Florida (Chekika, Perrine, and Krome), one noncarbonatic soil from Iowa (Webster), and one organic soil (Lauderhill) from South Florida. Carbonatic soils contained more than 600 g kg(-1) CaCO3. Sorption is initially very fast up to 3 h and then slowly reaches equilibrium. All soil-chemical combinations reached sorption equilibrium after about 24 h and all sorption isotherms were linear. The sorption kinetics data were well described by the TSNE model for all soil-chemical combinations except for the marl soil data (Perrine-Atrazine), which were better described by the one-site nonequilibrium (OSNE) model. Diuron, with higher K, undergoes slower sorption kinetics than atrazine. The Lauderhill soil containing organic carbon (OC) of 450 g kg(-1) exhibited slowest sorption kinetics for both pesticides. An inverse relationship between k3 and K was observed for atrazine and diuron separately in Chekika, Webster, and Lauderhill soils but not in Perrine and Krome soils. The sorption kinetic parameters were used to distinguish the sorption behavior between atrazine and diuron and to identify differences between soils. Normalizing the sorption coefficient (K) to OC showed that atrazine and diuron had K oc values in carbonatic soils that were a third of reported literature values for noncarbonatic soils. Using existing literature K oc values in solute transport models will most likely underestimate the mobility of atrazine, diuron, and other neutral organic chemicals in carbonatic soils.  相似文献   

7.
Application of organic chemicals to a newly irrigated sugarcane (Saccharum officinarum L.) area located in the semiarid western part of Reunion Island has prompted local regulatory agencies to determine their potential to contaminate ground water resources. For that purpose, simple indices known as the ground water ubiquity score (Gustafson index, GUS), the retardation factor (RF), the attenuation factor (AF), and the log-transformed attenuation factor (AFT) were employed to assess the potential leaching of five herbicides in two soil types. The herbicides were alachlor [2-chloro-2',6'-diethyl-N-(methoxy-methy) acetanilide], atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-1,3,5-triazine], diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea], 2,4-D [(2,4-dichlorophenoxy) acetic-acid], and triclopyr [((3,5,6-trichloro-2-pyridyl)oxy) acetic-acid]. The soil types were Vertic (BV) and Andepts (BA) Inceptisols, which are present throughout the Saint-Gilles study area on Reunion Island. To calculate the indices, herbicide sorption (K(oc)) and dissipation (half-life, DT50) properties were determined from controlled batch experiments. Water fluxes below the root zone were estimated by a capacity-based model driven by a rainfall frequency analysis performed on a 13-yr data series. The results show a lower risk of herbicide leaching than in temperate regions due to the tropical conditions of the study area. Higher temperatures and the presence of highly adsorbent soils may explain smaller DT50 and higher K(oc) values than those reported in literature concerning temperate environments. Based on the RF values, only 2,4-D and triclopyr appear mobile in the BV soil, with all the other herbicides being classified from moderately to very immobile in both soils. The AFT values indicate that the potential leaching of the five herbicides can be considered as unlikely, except during the cyclonic period (about 40 d/yr) when there is a 2.5% probability of recharge rates equal to or higher than 50 mm/d. In that case, atrazine in both soils, 2,4-D and triclopyr in the BV soil, and diuron and alachlor in the BA soil present a high risk of potential contamination of ground water resources.  相似文献   

8.
Iron oxides are important components influencing the adsorption of various inorganic and organic compounds in soils and sediments. In this study the adsorption on iron oxides of nonionic and ionic pesticides was determined as a function of solution pH, ionic strength, and pesticide concentration. The investigated iron oxides included two-line ferrihydrite, goethite, and lepidocrocite. Selected pesticides comprised atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine), isoproturon [3-(4-isopropylphenyl)-1,1-dimethylurea)], mecoprop [(RS)-2-(4-chloro-2-methylphenoxy)propionic acid], 2,4-D (2,4-dichlorophenoxyacetic acid), and bentazone [3-isopropyl-1H-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide]. The adsorption of the nonionic pesticides (atrazine and isoproturon) was insignificant, whereas the adsorption of the acidic pesticides (mecoprop, 2,4-D, and bentazone) was significant on all investigated iron oxides. The adsorption capacity increased with decreasing pH, with maximum adsorption reached close to the pKa values. The addition of CaCl2 in concentrations from 0.0025 to 0.01 M caused the adsorption capacity to diminish. The adsorption of bentazone was significantly lower than the adsorption of mecoprop and 2,4-D, illustrating the importance of a carboxyl group in the pesticide structure. The adsorption capacity on the iron oxides increased in the order: lepidocrocite < goethite < two-line ferrihydrite. The maximum adsorption capacities of meco-prop and 2,4-D on goethite were found to be equivalent to the site density of singly coordinated hydroxyl groups on the faces of the dominant (110) form, suggesting that singly coordinated hydroxyl groups are responsible for adsorption. Differences in adsorption capacities between iron oxides can be explained by differences in the surface site density of singly coordinated hydroxyl groups. The maximum measured adsorption capacity of mecoprop on two-line ferrihydrite was equivalent to 0.2 mol/mol Fe.  相似文献   

9.
Determination of sorption of hydrophilic, weakly sorbing organic compounds in soil by conventional batch methods using a slurried suspension is often prone to considerable errors because small changes in the solution concentration on equilibration must be accurately determined. This difficulty is exacerbated for compounds susceptible to degradation, which also decreases the solution concentration. The objective of this study was to determine sorption of hydrophilic pesticides by applying an unsaturated transient flow method, which enables determination of sorption at sufficiently small solution to soil ratios. The method makes use of piston-like displacement of the antecedent solution in equilibrium with sorbed phase when pesticide-free water is infiltrated into a soil column spiked with a pesticide. Pesticide sorption and the solution concentration are inferred from a plot of total pesticide content per unit mass of soil vs. water content in a region where the antecedent solution is accumulated. Thus, extraction of solution from relative dry soil is unnecessary. We tested this method for two hydrophilic pesticides, monocrotophos [dimethyl (E)-1-methyl-2-(methyl-carbamoyl) vinyl phosphate] and dichlorvos (2,2-dichlorovinyl dimethyl phosphate). The sorption coefficient, K(d), obtained for monocrotophos was slightly lower than that by batch method (K(d) = 0.10 vs. 0.19 L kg(-1)), whereas for dichlorvos, a compound highly susceptible to degradation, the unsaturated flow method yielded a much smaller K(d) (0.19 vs. 3.22 L kg(-1)). The K(d) values for both compounds were consistent with the observed retardation in the pesticide displacement in the columns. The proposed method is more representative of field conditions and particularly suitable for weakly sorbing organic compounds in soils.  相似文献   

10.
Sorption of butachlor to various types of common soil components was investigated. Six pure minerals (montmorillonite [Mont], kaolinite [Kaol], Ca homoionic montmorillonite [Ca-Mont] and kaolinite [Ca-Kaol], amorphous hydrated Al and Fe oxides [AHOs-Al, AHOs-Fe]), four soil alkali-extractable pure humic acids (HAs), and the four corresponding HAs originated real unmodified and HO-treated soils were selected as the representative sorbents. Results showed that the HAs played a crucial role, and clay minerals (especially Mont) also showed an important effect in butachlor sorption. The AHOs may likely influence only in a mediator way by enhancing the availability of sorption domains of HAs. By removing 78% (on average) of the total organic carbon (TOC) from the soils with HO, the content ratio of clay to TOC (RCO) increased by an average of 367% and became >60. This change simultaneously decreased the sorption capacity of soils (40%, on average). Considering that the surface sorption domain on clay minerals may be highly exposed and more competitive after the partial removal of soil organic matter (SOM), this reaffirmed the potential contribution from clay minerals. It can thus be inferred that in the real soil where SOM and clay minerals are associated, the coating of clay minerals may have weakened the partition function of SOM or blocked some sorption domain within SOM, resulting in a decreased sorption of butachlor. Therefore, clay minerals, especially 2:1 type expanding minerals, may play a dual function vs. SOM content for the sorption of butachlor in soil.  相似文献   

11.
A lignocellulosic substrate (LS) obtained from our local agroindustry was used as a low-cost and effective adsorbent for the removal of pesticides from wastewaters. The studied pesticides were terbumeton (N-(1,1-dimethyl)-Nethyl-6-methoxy-1,3,5-triazine-2,4-diamine), desethyl terbumeton (N-(1,1-dimethylethyl)-6-methoxy-1,3,5-triazine-2,4-diamine), dimetomorph (4-[3-(4-chlorophenyl)-3-(3,4-dimethoxyphenyl)acryloyl]morpholine), and isoproturon (3-(4-isopropylphenyl)-1,1-dimethylurea). Batch and column experiments were conducted as a function of pH and pesticide concentration under laboratory and industrial conditions. The concentration range studied for the pesticides varied from 2 x 10(-7) to 3 x 10(-4) mol L(-1). The influence of organic and inorganic pollutants was assessed by studying the retention of pesticide in the presence of copper(II) and a surfactant. These experiments indicated that LS is an efficient adsorbent toward the investigated pesticides and has little influence of the other pollutants. The kinetic adsorptions are fast, and the amounts of adsorbed pesticide varied from 1 to 8 g kg(-1) of LS. These retention capacities show that LS can provide a simple, effective, and cheap method for removing pesticides from contaminated waters. Thus, this biomaterial may be useful for cleaning up polluted waters.  相似文献   

12.
To evaluate the effects of dissolved organic carbon on sorption and mobility of the insecticide imidacloprid [1-(6-chloro-3-pyridinyl) methyl-N-nitro-2-imidazolidinimine] in soils, adsorption and column experiments were performed by using a typical calcareous soil from southeastern Spain and two different types of dissolved organic carbon, that is, dissolved organic carbon extracts from a commercial peat (DOC-PE) and high-purity tannic acid (DOC-TA). The experiments were carried out from a 0.01 M CaCl2 aqueous medium at 25 degrees C. The results obtained from the sorption experiments show that the presence of both DOC-PE and DOC-TA, over a concentration range of 15 to 100 mg L(-1), produces in all cases a decreasing amount of imidacloprid adsorbed in the soil studied. From the column experiments the retardation coefficients (RC) were calculated for imidacloprid by using either 0.01 M CaCl2 aqueous solution (RC = 2.10), 0.01 M CaCl2 DOC-PE solution (RC = 1.65), or 0.01 M CaCl2 DOC-TA solution (RC = 1.87). The results indicate that mobility of imidacloprid is increased 21.4 and 11.0% in the presence of DOC-PE and DOC-TA solutions, respectively. Dissolved organic carbon reduces imidacloprid sorption by competing with the pesticide molecules for sorption sites on the soil surface, allowing enhanced leaching of imidacloprid and potentially increasing ground water contamination.  相似文献   

13.
Field studies have demonstrated that prolonged pesticide-soil contact times (aging) may lead to unexpected persistence of these compounds in the environment. Although this phenomenon is well documented in the field, there have been very few controlled laboratory studies that have tested the effects of long-term aging and the role of differing sorbates on contaminant sorption-desorption behavior and fate in soils. This study examines the sorption-desorption behavior of chlorobenzene, ethylene dibromide (1,2-dibromomethane), atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine), and 2, 4-D (2,4-dichlorophenoxyacetic acid) on one soil type after 1 d, 30 d, and 14 mo of aging. Sorption isotherms were evaluated after each aging period to observe changes in the uptake of each compound by soil. Desorption kinetic data were generated after each aging period to observe changes in release from soil, and desorption parameters were evaluated using a three-site desorption model that includes equilibrium, nonequilibrium, and nondesorption sites. The data indicate no statistically significant increase in sorption for ethylene dibromide or chlorobenzene from 1 to 30 d, although sorption of 2,4-D increased slightly, and sorption of atrazine decreased slightly. Statistically significant increases in linear sorption coefficients (Kd), from 1 d to 14 mo of aging, were apparent for ethylene dibromide and 2,4-D. The Kd values for chlorobenzene, measured after 1 d, 30 d, and 14 mo of aging, were statistically indistinguishable. Aging affected the distribution of chemicals within sorption sites. With aging, the desorbable fraction decreased and the nondesorbable fraction, which was apparent after only 1 d of pesticide-soil contact, increased for all chemicals studied.  相似文献   

14.
Prosulfuron [1-(4-methoxy-6-methyltriazin-2-yl)-3-[2-(3,3,3-trifluoropropyl) phenylsulfonyl]-urea), a relatively new sulfonylurea herbicide, is a weak acid (pK(a) 3.76), and therefore, will undergo pH-dependent speciation and sorption. Understanding prosulfuron sorption in soils is important for predicting its environmental fate. Soil and solution factors controlling sorption were investigated by measuring prosulfuron sorption on five model sorbents (amorphous silica, alpha-alumina, CaSWy1 montmorillonite, commercial humic acid, and anion exchange resin) and 10 variable-charge soils from CaCl(2) and Ca(H(2)PO(4))(2) solutions as a function of pH and ionic strength. Anion exchange of prosulfuron accounted for up to 82% of overall sorption in the pH range from 3 to 7. The relative importance of anion exchange to prosulfuron sorption was positively correlated to the ratio of anion and cation exchange capacities. Comparison between organic carbon (OC)-normalized sorption (K(oc)) versus pH for humic acid and variable-charge soils show similar trends with sorption decreasing with increasing pH. However, K(oc) values estimated from variable-charge soils in the lower pH range where anion exchange has the greatest contribution to sorption was almost one log unit greater than that estimated from humic acid clearly exemplifying the impact of anion exchange. Similarity in K(oc)-pH curves for humic acid and variable-charge soils may result from the fact that (i) cation exchange capacity increases with increasing OC content, thus effective anion exchange capacity is reduced; and (ii) the relative contribution of hydrophobic and hydrophilic sorption mechanisms was fairly constant. Given that both hydrophilic and hydrophobic sorption of prosulfuron decrease with increasing pH, addition of fertilizer and lime amendments may enhance the potential for off-site leaching of recently applied acidic pesticides.  相似文献   

15.
Leaching to the ground water of metabolites from the herbicide metribuzin [4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazin-5-one] has been measured in a Danish field experiment in concentrations exceeding the European Union threshold limit for pesticides at 0.1 microg/L. In the present work, degradation and sorption of metribuzin and the metabolites desamino-metribuzin (DA), diketo-metribuzin (DK), and desamino-diketo-metribuzin (DADK) were studied in a Danish sandy loam topsoil and subsoil from the field in question, using accelerated solvent extraction and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Fast dissipation of metribuzin and the metabolites was observed in the topsoil, with 50% disappearance within 30 to 40 d. A two-compartment model described degradation of metribuzin and DA, whereas that of DADK could be described using first-order kinetics. Part of the dissipation was probably due to incorporation into soil organic matter. Degradation in subsoil occurred very slowly, with extrapolated half-lives of more than one year. Sorption in the topsoil followed the order DA > metribuzin > DK > DADK. Subsoil sorption was considerably lower, and was hardly measurable for metribuzin and DK. Abiotic degradation was considerably higher in the topsoil than the subsoil, especially concerning the de-amination step, indicating that organic matter may be related to the degradation process. The present results confirm observations of metribuzin and transformation product leaching made in the field experiment and demonstrate the need for knowledge on primary metabolites when assessing the risk for pesticide leaching.  相似文献   

16.
The polycyclic nitramine CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane) is being considered for use as a munition, but its environmental fate and impact are unknown. The present study consisted of two main elements. First, sorption-desorption data were measured with soils and minerals to evaluate the respective contributions of organic matter and minerals to CL-20 immobilization. Second, since CL-20 hydrolyzes at a pH of >7, the effect of sorption on CL-20 degradation was examined in alkaline soils. Sorption-desorption isotherms measured using five slightly acidic soils (5.1 < pH < 6.9) containing various amounts of total organic carbon (TOC) revealed a nonlinear sorption that increased with TOC [K(d) (0.33% TOC) = 2.4 L kg(-1); K(d) (20% TOC) = 311 L kg(-1)]. Sorption to minerals (Fe(2)O(3), silica, kaolinite, montmorillonite, illite) was very low (0 < K(d) < 0.6 L kg(-1)), suggesting that mineral phases do not contribute significantly to CL-20 sorption. Degradation of CL-20 in sterile soils having different pH values increased as follows: sandy agricultural topsoil from Varennes, QC, Canada (VT) (pH = 5.6; K(d) = 15 L kg(-1); 8% loss) < clay soil from St. Sulpice, QC, Canada (CSS) (pH = 8.1; K(d) = 1 L kg(-1); 82% loss) < sandy soil provided by Agriculture Canada (SAC) (pH = 8.1, K(d) = approximately 0 L kg(-1); 100% loss). The faster degradation in SAC soil compared with CSS soil was attributed to the absence of sorption in the former. In summary, CL-20 is highly immobilized by soils rich in organic matter. Although sorption retards abiotic degradation, CL-20 still decomposes in soils where pH is >7.5, suggesting that it will not persist in even slightly alkaline soils.  相似文献   

17.
Numerous studies have reported a spectrum of sorption phenomena in soils, sediments, and organic matter isolates of those materials that are inconsistent with a partition model proposed in the late 1970s and early 1980s, a model predicated on a hypothesis that sorption is linear and noncompetitive. To explain these nonideal phenomena, prior studies have proposed a hard-soft (glassy-rubbery) model for SOM (soil and sediment organic matter), while others have attributed them singularly to BC (black carbon: soot and charcoal) particles present in topsoils and sediments. In this study, we demonstrated nonideal sorption behavior (isotherm nonlinearity, competitive effects) for a group of apolar compounds in a large set of natural and model organic materials, including a commercial lignin and humic acids from different sources. Complete oxidation of samples by an acidic dichromate method was taken to signify the absence of BC. (However, polymethylene units are stable even if functionalized on both ends, making the technique unreliable for quantifying BC.) Other samples were inferred free of BC by their source and method of preparation. Characterization by thermalanalytical methods indicated the glassy character of the organic materials. The origin of the nonideal behaviors appears to be the glassy character of these materials. Sorption nonlinearity increased or decreased by changing temperature, cosolvent content, or degree of cross-linking by metal ions as predicted for organic solids in a glassy state. We conclude that macromolecular humic substances in the environment may exhibit nonideal sorption behavior in soils and sediments, quite apart from any such behaviors attributable to BC.  相似文献   

18.
Atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine) is retained against leaching losses in soils principally by sorption to organic matter, but the mechanism of sorption has been a matter of controversy. Conflicting evidence exists for proton transfer, electron transfer, and hydrophobic interactions between atrazine and soil humus, but no data are conclusive. In this paper we add to the database by investigating the role of (i) hydroxyatrazine (6-hydroxy-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine) and (ii) hydrophobicity in the sorption of atrazine by Brazilian soil humic substances. We demonstrate, apparently for the first time, that hydroxyatrazine readily forms electron-transfer complexes with humic substances. These complexes probably are the cause of the well-known strong adsorption by humic acids and they may be the undetected cause of apparent electron-transfer complexes between soil organic matter and atrazine, whose transformation to the hydroxy form is facile. We also present evidence that supports the important contribution of hydrophobic interactions to the pH-dependent sorption of atrazine by humic substances.  相似文献   

19.
Pesticides applied to agricultural soils are subject to environmental concerns because leaching to groundwater reservoirs and aquatic habitats may occur. Knowledge of field variation of pesticide-related parameters is required to evaluate the vulnerability of pesticide leaching. The mineralization and sorption of the pesticides glyphosate and metribuzin and the pesticide degradation product triazinamin in a field were measured and compared with the field-scale variation of geochemical and microbiological parameters. We focused on the soil parameters clay and organic carbon (C) content and on soil respiratory and enzymatic processes and microbial biomass. These parameters were measured in soil samples taken at two depths (Ap and Bs horizon) in 51 sampling points from a 4-ha agricultural fine sandy soil field. The results indicated that the spatial variation of the soil parameters, and in particular the content of organic C, had a major influence on the variability of the microbial parameters and on sorption and pesticide mineralization in the soil. For glyphosate, with a co-metabolic pathway for degradation, the mineralization was increased in soils with high microbial activity. The spatial variability, expressed as the CV, was about five times higher in the Bs horizon than in the Ap horizon, and the local-scale variation within 100 m(2) areas were two to three times lower than the field-scale variation within the entire field of about 4 ha.  相似文献   

20.
This study examines the effect of soil organic matter heterogeneity on equilibrium sorption and desorption of phenanthrene, naphthalene, 1,3,5-trichlorobenzene (1,3,5-TCB), and 1,2-dichlorobenzene (1,2-DCB) by soils and sediments. Two estuary sediments, a Pahokee peat (PP; Euic, hyperthermic Lithic Haplosaprist), and two subsamples (base- and acid-treated peat [TP] and acid-treated peat [FP]) of the peat were used as the sorbents. The contents of black carbon particles were quantified with a chemical extraction method. Petrographical examinations revealed the presence of the condensed soil and sediment organic matter (SOM) in Pahokee peat. The Freundlich isotherm model in two different forms was used to fit both sorption and desorption data. The results show that the sorption and desorption isotherms are generally nonlinear and that the apparent sorption-desorption hysteresis is present for phenanthrene and TCB. Detailed analysis of sorption data for the tested sorbent-sorbate systems indicates that black carbon is probably responsible for sorption isotherm nonlinearity for the two sediments, whereas the humic substances and kerogen may play the dominant role in nonlinear sorption by the peat. This investigation suggests that the microporosity of SOM is important for the hydrophobic organic contaminant (HOC) sorption capacity on the peat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号