首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil and tree-ring chemistry response to liming in a sugar maple stand   总被引:1,自引:0,他引:1  
An evaluation of the impact of dolomitic lime [CaMg(CO3)2] on soils (five years after treatment) and sapwood chemistry (after four growing seasons) was realized for a Ca-deficient sugar maple stand at the lake Clair watershed. The effect on humus chemistry was significant: exchangeable Mg and Ca, effective acidity (EA), base saturation (BSe), pH, and effective cation exchange capacity (CECe) significantly increased, while exchangeable Fe significantly decreased. In the B horizon, liming increased exchangeable Ca, Mg, and Mn concentrations while decreasing other acid cations. No significant temporal trends in element concentrations in tree rings could be detected, although the lime treatment significantly changed the average xylem Mg and Mn concentrations as well as the average Mg/Mn and Ca/Mn ratios of the sapwood. The absence of temporal trends in rings from the last 20 yr implied a significant re-equilibration of elements through the sapwood. Significant relationships were found between averaged xylem Ca/Mn and Mg/Mn ratios and exchangeable humus Ca, Mg, Mn, Al, Fe, and H+ concentration, EA, CECe, and BSe, suggesting that the average xylem Ca/Mn and Mg/Mn ratios are strong indicators of the soil acid-base status.  相似文献   

2.
Two water treatment sludges (WTS-A, WTS-B), two red muds (RM), and red gypsum (RG), all rich in iron oxy-hydroxides, were added to a soil highly polluted with As and Cu at 2% (w/w) to reduce metal bioavailability. Because the amendments increased soil pH to approximately 6, a lime treatment to the same pH and an unamended treatment were included for comparison. All the amendments had significant positive effects on the soil microbial biomass and growth of ryegrass (Lolium multiflorum Lam. cv. Avance), but only WTS-A improved lettuce (Lactuca sativa L. cv. Tom Thumb) growth. The mineralization of added ammonium nitrogen was not significantly affected by the treatments, while a physiologically based extraction test (PBET) showed that bioaccessibility of As was low (< 5%) and decreased only in the WTS-A treatment. Concentrations of As in soil pore water and extractable As only decreased in the WTS and RG treatments. In contrast, Cu concentrations in soil pore water and extractable Cu decreased in all treatments, by more than 84% in the WTS, RM, and RG treatments. Non-isotopically exchangeable As and Cu were present in colloids in the soil pore water. Untreated soil had < 4% isotopically exchangeable As and this decreased by approximately 50%, with WTS, RM, and RG. The labile Cu pool represented a large proportion (34%) of the total Cu pool, and the isotopically exchangeable and soluble Cu were strongly correlated with soil pH. Acidification of the treated soils showed that the labile As and Cu both increased in the treated soils compared with untreated soils. The significance of the treatment effects on soil fertility and potential off-site transport of As and Cu to ground water are discussed.  相似文献   

3.
Pesticide spills are common occurrences at agricultural cooperatives and farmsteads. When inadvertent spills occur, chemicals normally beneficial can become point sources of ground and surface water contamination. We report results from a field trial where approximately 765 m3 of soil from a metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamide] spill site was treated with zerovalent iron (Fe0). Preliminary laboratory experiments confirmed metolachlor dechlorination by Fe0 in aqueous solution and that this process could be accelerated by adding appropriate proportions of Al2(SO4)3 or acetic acid (CH3COOH). The field project was initiated by moving the stockpiled, contaminated soil into windrows using common earth-moving equipment. The soil was then mixed with water (0.35-0.40 kg H2O kg(-1)) and various combinations of 5% Fe0 (w/w),2% Al2(SO4)3 (w/w), and 0.5% acetic acid (v/w). Windrows were covered with clear plastic and incubated without additional mixing for 90 d. Approximately every 14 d, the plastic sheeting was removed for soil sampling and the surface of the windrows rewetted. Metolachlor concentrations were significantly reduced and varied among treatments. The addition of Fe0 alone decreased metolachlor concentration from 1789 to 504 mg kg(-1) within 90 d, whereas adding Fe0 with Al2(SO4)3 and CH3COOH decreased the concentration from 1402 to 13 mg kg(-1). These results provide evidence that zerovalent iron can be used for on-site, field-scale treatment of pesticide-contaminated soil.  相似文献   

4.
Effect of biosolids processing on lead bioavailability in an urban soil   总被引:3,自引:0,他引:3  
The potential for biosolids products to reduce Pb availability in soil was tested on a high Pb urban soil with biosolids from a treatment plant that used different processing technologies. High Fe biosolids compost and high Fe + lime biosolids compost from other treatment plants were also tested. Amendments were added to a Pb-contaminated soil (2000 mg kg(-1) Pb) at 100 g kg(-1) soil and incubated for 30 d. Reductions in Pb bioavailability were evaluated with both in vivo and in vitro procedures. The in vivo study entailed feeding a mixture of the Pb-contaminated soil and AIN93G Basal Mix to weanling rats. Three variations of an in vitro procedure were performed as well as conventional soil extracts [diethylenetriaminepentaacetic acid (DTPA) and Ca(NO3)2] and sequential extraction. Addition of the high Fe compost reduced the bioavailability of soil Pb (in both in vivo and in vitro studies) by 37 and 43%, respectively. Three of the four compost materials tested reduced Pb bioavailability more than 20%. The rapid in vitro (pH 2.3) data had the best correlation with the in vivo bone results (R = 0.9). In the sequential extract, changes in partitioning of Pb to Fe and Mn oxide fractions appeared to reflect the changes in in vivo Pb bioavailability. Conventional extracts showed no changes in metal availability. These results indicate that addition of 100 g kg(-1) of high Fe and Mn biosolids composts effectively reduced Pb availability in a high Pb urban soil.  相似文献   

5.
In wetlands, translocation of Fe and Mn from reducing to oxidizing zones creates localized enrichments and depletions of oxide minerals. In zones of enrichment, oxides cement matrix particles together into aggregates. In this paper, we describe the various Fe- and Mn-cemented features present in the 1 to 2-mm size fraction of mine-waste contaminated wetland soils of the Coeur d'Alene (CDA) River Basin in northern Idaho. These aggregates are categorized based on color and morphology. Total Fe and Mn concentrations are also reported. Distribution of the aggregates in soil profiles along an elevation transect with varying water table heights was investigated. Six distinct categories of aggregates were characterized in the 1 to 2-mm size fraction. The two most predominant categories were aggregates cemented by only Fe oxides and aggregates cemented by a mixture of Fe and Mn oxides. Iron-depleted aggregates, Fe and Mn-cemented sand aggregates, and root channel linings were also identified. The remaining aggregates were categorized into a catch-all category that consisted of primarily charcoal particles. The highest Fe content was in the root channel linings, and the highest Mn content was in the Fe/Mn cemented particles. Iron-cemented aggregates were most common in surface horizons at all sites, and root channels were most common in the 30 to 45-cm core at the lowland point, reflecting the presence of deep rooting vegetation at this site. Spatial distributions of other aggregates at the site were not significant.  相似文献   

6.
ABSTRACT: Land application of organic soil amendments can increase runoff concentrations of metals such as Fe and Zn, metalbids such as B and As, and non-metals such as P and S that have the potential for causing adverse environmental impacts. Aluminum sulfate, or alum (Al2(SO4)3*(14H2O), can reduce concentrations of some materials in runoff from sites treated with organic amendments. The objectives of this study were to (a) quantify concentrations of selected constituents (Al, As, B, Ca, Cd, Co, Fe, K, Mg, Mn, Mo, Na, P, Pb, 5, Se, Ti, and Zn) in runoff from plots treated with horse manure (mixed with stall bedding) and municipal sludge, (b) assess runoff quality effects of alum addition to those treatments, and (c) determine time variations in concentrations of the constituents. Horse manure and municipal sludge were applied to twelve 2.4 by 6.1 m fescue plots (six each for the manure and sludge). Alum was added to three of the manure-treated and three of the sludge-treated plots. Simulated rainfall (64 mm/h) was applied to the 12 treated plots and to three control (no treatment) plots. The first 0.5 h runoff was sampled and analyzed for the constituents described above. Addition of manure or sludge had no effect on runoff concentrations of the majority of constituents. In some cases (e.g., Al, As, Fe, Zn), however, concentrations were near or in excess of threshold values recommended for marine wildlife protection. Alum addition increased runoff of Al, Ca, K, and 5, due likely to its composition and by the addition of lime to counteract the acidity of alum. Concentration decreases of more than 50 percent were noted for P for the horse manure treatment. No alum effect was detected for P in runoff from the sludge-treated plots, possibly due to relatively stable P forms in the sludge. Runoff concentrations of Al, As, Fe, K, Mn, and P followed an approximately first-order decline with respect to time. Runoff concentrations of Ca and 5, however, peaked during the second runoff sample (four minutes following initiation of runoff), suggesting that differences in mobility and/or transport mechanisms exist among the materials investigated.  相似文献   

7.
Carbon-rich biochar derived from the pyrolysis of biomass can sequester atmospheric CO, mitigate climate change, and potentially increase crop productivity. However, research is needed to confirm the suitability and sustainability of biochar application to different soils. To an irrigated calcareous soil, we applied stockpiled dairy manure (42 Mg ha dry wt) and hardwood-derived biochar (22.4 Mg ha), singly and in combination with manure, along with a control, yielding four treatments. Nitrogen fertilizer was applied when needed (based on preseason soil test N and crop requirements) in all plots and years, with N mineralized from added manure included in this determination. Available soil nutrients (NH-N; NO-N; Olsen P; and diethylenetriaminepentaacetic acid-extractable K, Mg, Na, Cu, Mn, Zn, and Fe), total C (TC), total N (TN), total organic C (TOC), and pH were evaluated annually, and silage corn nutrient concentration, yield, and uptake were measured over two growing seasons. Biochar treatment resulted in a 1.5-fold increase in available soil Mn and a 1.4-fold increase in TC and TOC, whereas manure produced a 1.2- to 1.7-fold increase in available nutrients (except Fe), compared with controls. In 2009 biochar increased corn silage B concentration but produced no yield increase; in 2010 biochar decreased corn silage TN (33%), S (7%) concentrations, and yield (36%) relative to controls. Manure produced a 1.3-fold increase in corn silage Cu, Mn, S, Mg, K, and TN concentrations and yield compared with the control in 2010. The combined biochar-manure effects were not synergistic except in the case of available soil Mn. In these calcareous soils, biochar did not alter pH or availability of P and cations, as is typically observed for acidic soils. If the second year results are representative, they suggest that biochar applications to calcareous soils may lead to reduced N availability, requiring additional soil N inputs to maintain yield targets.  相似文献   

8.
Non-amended soils affected by pyritic sludge residues were monitored for 7 years to assess the long-term natural attenuation ability of these soils. The decrease in both the total concentration of elements (particularly As) and (NH(4))(2)SO(4)-extractable fractions of Mn, and Zn, below the maximum permissible levels indicate a successful natural ability to attenuate soil pollution. Soil acidification by pyrite oxidation and rainfall-enhanced leaching were the largest contributors to the reduction of metals of high (Mn, Cu, Zn and Cd) and low (Fe, Al, and As) availability. Periodic use of correlation and spatial distribution analysis was useful in monitoring elemental dispersion and soil property/element relationships.  相似文献   

9.
Elevated atmospheric CO2 treatments stimulated biomass production in Fe-sufficient and Fe-deficient barley plants, both in hydroponics and in soil culture. Root/shoot biomass ratio was increased in severely Fe-deficient plants grown in hydroponics but not under moderate Fe limitation in soil culture. Significantly increased biomass production in high CO2 treatments, even under severe Fe deficiency in hydroponic culture, indicates an improved internal Fe utilization. Iron deficiency-induced secretion of PS in 0.5 to 2.5 cm sub-apical root zones was increased by 74% in response to elevated CO2 treatments of barley plants in hydroponics but no PS were detectable in root exudates collected from soil-grown plants. This may be attributed to suppression of PS release by internal Fe concentrations above the critical level for Fe deficiency, determined at final harvest for soil-grown barley plants, even without additional Fe supply. However, extremely low concentrations of easily plant-available Fe in the investigated soil and low Fe seed reserves suggest a contribution of PS-mediated Fe mobilization from sparingly soluble Fe sources to Fe acquisition of the soil-grown barley plants during the preceding culture period. Higher Fe contents in shoots (+52%) of plants grown in soil culture without Fe supply under elevated atmospheric CO2 concentrations may indicate an increased efficiency for Fe acquisition. No significant influence on diversity and function of rhizosphere-bacterial communities was detectable in the outer rhizosphere soil (0-3 mm distance from the root surface) by DGGE of 16S rRNA gene fragments and analysis of marker enzyme activities for C-, N-, and P-cycles.  相似文献   

10.
Phosphorus removal in a wetland constructed on former arable land   总被引:1,自引:0,他引:1  
Phosphorus in surface runoff water may cause eutrophication of recipient water. This study clarifies the mechanisms of P removal in the wetland of Hovi, Finland, constructed on arable land in 1998. Before the construction, the surface soil (removed in the construction) and subsoil (the current wetland bottom) were analyzed for Al and Fe oxides (Al(ox) and Fe(ox)) reactive in P sorption, and for the distribution of P between various pools as well as for P exchange properties. Retention of P from runoff water within the wetland was studied from 1999 to 2001 in situ and factors affecting the P removal (O2 availability and P concentration in water) were investigated in a laboratory microcosm. The processes taking place in the wetland diminished by 68% the total P load and by 49% the dissolved reactive P load. Desorption-sorption tests indicated that without removal of the surface soil, there would have been a risk of the wetland being a source of P, since the equilibrium P concentration of the soil removed was high compared with the mean P concentration of the inflowing water. The subsoil contained less P and high amounts of reactive oxides, which could bind P. Evidently, the P sorption by Al(ox) played an important role in a first phase removal of P, since the wetland retained P efficiently even under anoxic conditions, where Fe tends to be reduced. Fine-textured, mineral soil on the bottom of the wetland (subsoil of the former arable land) seemed to be very efficient in retaining P from agricultural runoff.  相似文献   

11.
Major and trace elements of selected pedons in the USA   总被引:6,自引:0,他引:6  
Few studies of soil geochemistry over large geographic areas exist, especially studies encompassing data from major pedogenic horizons that evaluate both native concentrations of elements and anthropogenically contaminated soils. In this study, pedons (n = 486) were analyzed for trace (Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Zn) and major (Al, Ca, Fe, K, Mg, Na, P, Si, Ti, Zr) elements, as well as other soil properties. The objectives were to (i) determine the concentration range of selected elements in a variety of U.S. soils with and without known anthropogenic additions, (ii) illustrate the association of elemental source and content by assessing trace elemental content for several selected pedons, and (iii) evaluate relationships among and between elements and other soil properties. Trace element concentrations in the non-anthropogenic dataset (NAD) were in the order Mn > (Zn, Cr, Ni, Cu) > (Pb, Co) > (Cd, Hg), with greatest mean total concentrations for the Andisol order. Geometric means by horizon indicate that trace elements are concentrated in surface and/or B horizons over C horizons. Median values for trace elements are significantly higher in surface horizons of the anthropogenic dataset (AD) over the NAD. Total Al, Fe, cation exchange capacity (CEC), organic C, pH, and clay exhibit significant correlations (0.56, 0.74, 0.50, 0.31, 0.16, and 0.30, respectively) with total trace element concentrations of all horizons of the NAD. Manganese shows the best inter-element correlation (0.33) with these associated total concentrations. Total Fe has one of the strongest relationships, explaining 55 and 30% of the variation in total trace element concentrations for all horizons in the NAD and AD, respectively.  相似文献   

12.
Soil ingestion by children is an important pathway in assessing public health risks associated with exposure to arsenic-contaminated soils. Soil chemical methods are available to extract various pools of soil arsenic, but their ability to measure bioavailable arsenic from soil ingestion is unknown. Arsenic extracted by five commonly used soil extractants was compared with bioavailable arsenic measured in vivo by immature swine (Sus scrofa) dosing trials. Fifteen contaminated soils that contained 233 to 17 500 mg kg(-1) arsenic were studied. Soil extractants were selected to dissolve surficially adsorbed and/or readily soluble arsenic (water, 1 M sodium acetate, 0.1 M Na2HPO4/0.1 M NaH2PO4) and arsenic in Fe and Mn oxide minerals (hydroxylamine hydrochloride, ammonium oxalate). The mean percent of total arsenic extracted was: ammonium oxalate (53.6%) > or = hydroxylamine hydrochloride (51.7%) > phosphate (10.5%), acetate (7.16%) > water (0.15%). The strongest relationship between arsenic determined by soil chemical extraction and in vivo bioavailable arsenic was found for hydroxylamine hydrochloride extractant (r = 0.88, significant at the 0.01 probability level). Comparison of the amount of arsenic extracted by soil methods with bioavailable arsenic showed the following trend: ammonium oxalate, hydroxylamine hydrochloride > in vivo > phosphate, acetate > water. The amount of arsenic dissolved in the stomach (potentially bioavailable) is between surficially adsorbed (extracted by phosphate or acetate) and surficially adsorbed + nonsurficial forms in Fe and Mn oxides (extracted by hydroxylamine hydrochloride or ammonium oxalate). Soil extraction methods that dissolve some of the amorphous Fe, such as hydroxylamine hydrochloride, can be designed to provide closer estimates of bioavailable arsenic.  相似文献   

13.
Eragrostis tef (Zucc.), Cenchrus ciliaris L., and Digitaria eriantha Steud. were grown in a soil (Psammentic Haplustalf) and spoil material from a coalmine both treated with a lime water treatment residue (WTR) at rates of 0, 50, 100, 200, and 400 g kg(-1). The yield of the grasses, from the sum of the three harvests, and concentrations of B, Ca, Cu, K, Fe, Mg, Mn, N, Na, P, and Zn in foliage from the second harvest were determined. The yield of grasses grown in the soil decreased exponentially as WTR application increased. The yields of C. ciliaris, D. eriantha, and E. tef (in the 400 g kg(-1) WTR treated soil) decreased by 74.4, 78.7, and 59.8%, respectively, when compared with the control treatments. In the spoil, the yield of E. tef and D. eriantha decreased by 13.6% and and D. eriantha by 23.9%, while an increase was observed for C. ciliaris (45.4%), at the highest WTR application rate. No relationship existed between yield of E. tef and WTR application rate when grown in the spoil, while a weak negative linear relationship (p < 0.05) was found for D. eriantha and a positive linear relationship existed for C. ciliaris. Magnesium concentrations of the grasses were positively correlated to WTR application rate. Grasses grown in the soil had higher Na concentrations, while those grown in the spoil typically had higher B, N, and Zn concentrations. The decreases in yield were attributed to nutrient deficiencies (notably Zn), induced by high WTR application rates that led to high substrate pH. Disposal of high rates of WTR on the mine materials was not recommended.  相似文献   

14.
Biostimulation has been used at various contaminated sites to promote the reductive dechlorination of trichloroethylene (TCE), but the addition of carbon and energy donor also stimulates bacteria that use Fe(III) as the terminal electron acceptor (TEA) in potential competition with dechlorination processes. Microcosm studies were conducted to determine the influence of various carbon donors on the extent of reductive dissolution of aquifer solids containing Fe(III) and arsenic. Glucose, a fermentable and respirable carbon donor, led to the production of 1500 mg Fe(II) kg(-1), or 24% of the total Fe in the aquifer sediment being reduced to Fe(II), whereas the same concentration of carbon as acetate resulted in only 300 mg Fe(II) kg(-1) being produced. The biogenic Fe(II) produced with acetate was exclusively associated with the solid phase whereas with fermentable carbon donors as whey and glucose, 22 and 54% of the Fe(II) was in solution. With fermentation, some of the metabolites appear to be electron shuttling chemicals and chelating agents that facilitate the reductive dissolution of even crystalline Fe(III) oxides. Without the presence of electron shuttling chemicals, only surficial Fe in direct contact with the bacteria was bioavailable, as illustrated when acetate was used. Regardless of carbon donor type and concentration, As concentrations in the water exceeded drinking water standards. The As dissolution appears to have been the result of the direct use of As as an electron acceptor by dissimilatory arsenic reducing bacteria. Our findings indicate that selection of the carbon and energy donor for biostimulation for remediation of chlorinated solvent impacted aquifers may greatly influence the extent of the reductive dissolution of iron minerals in direct competition with dechlorination processes. Biostimulation may also result in a significant release of As to the solution phase, contributing to further contamination of the aquifer.  相似文献   

15.
Soil amendments can immobilize metals in soils, reducing the risks of metal exposure and associated impacts to flora, fauna and human health. In this study, soil amendments were compared, based on "closed system" water extracts, for reducing metal mobility in metal-contaminated soil from the Broken Hill mining center, Australia. Phosphatefertilizer (bovine bone meal, superphosphate, triple superphosphate, potassium orthophosphate) and pine bark (Pinus radiata) were applied to two soils (BH1, BH2) contaminated with mining waste. Both soils had near neutral to alkaline pH values, were sulfide- or sulfate-rich, and contained metal and metalloid at concentrations that pose high environmental risks (e.g., Pb = 1.25 wt% and 0.55 wt%, Zn = 0.71 wt% and 0.47 wt% for BH1 and BH2, respectively). The addition of fertilizers and/or pine bark to both soil types increased water extractable metals and metalloids concentrations (As, Cd, Cu, Fe, Mn, Pb, Sb, Zn) compared with nonamended soils. One or more of the elements As, Cd, Cu, Mn, Pb, and Zn increased significantly in extracts of a range of different soil+pine bark and soil+fertilizer+piner+pine bark tests in response to increased pine bark doses. By contrast, Fe and Sb concentrations in extracts did not change significantly with pine bark addition. Solution pH was decreased by phosphate fertilizers (except for bovine bone meal) and pine bark, and pine bark enhanced dissolved organic carbon. At least in the short-term, the application of phosphate fertilizers and pine bark proved to be an ineffective method for controlling metal and metalloid mobility in soils that contain admixtures of polymetallic, polymineralic mine wastes.  相似文献   

16.
The speciation and distribution of Co in soils is poorly understood. This study was conducted using x-ray absorption spectroscopy (XAS) techniques to examine the influence of soluble cobalt in the +2 oxidation state (Co[II]) aging, submergence-dried cycling, and the presence of in vivo rice roots on the speciation and distribution of added Co(II) in soils. In the aging and submerged-dried cycling studies, Co was found to be associated with Mn oxide fraction (23 to 100% of total Co) and Fe oxide fractions (0 to 77% of total Co) of the soils as either Co(II) species or a mixed Co(II), and Co in the +3 oxidation state (Co[III]) species. The surface speciation of Co in the Mn oxide fraction suggests an innersphere complex was present and the speciation of Co in the Fe oxide fraction was an innersphere surface complex. The in vivo root box experiments showed similar Co speciation in the Mn oxide fraction (13 to 76% of total Co) as the aging and submerged-dried cycling studies. However, the Fe oxide fraction of the soil was unimportant in Co retention. A significant amount (24 to 87% of total Co) of the Co in root box treatments was identified as a Co precipitate. The importance of this finding is that in the presence of rice roots, the Co is redistributed to a Co precipitate. This work confirmed earlier macroscopic work that Mn oxides are important in the sequestration of Co in soils and the influence of roots needs to be taken into account when addressing Co speciation. The information gained from this study will be used to improve models to predict the lability and hence the availability of Co in terrestrial environments.  相似文献   

17.
This paper provides quantitative information on the transfer of TBT (tributyltin) and TPhT (triphenyltin) from sludged soil to cultivated lettuce. The effect of their initial concentrations in the soil (varying from 20 to 50 microg(Sn)kg(-1) for each triorganotin), sludge amount (between 1% and 9%), and cultivation duration (32-54 days) was evaluated by means of experimental designs. The impact of the cultivation temperature at 13 degrees C and 19 degrees C on organotin fate in the soil/plant system was also considered. The final concentration of a given organotin in the plant roots was found to depend directly on its initial concentration in the soil. A total of (85+/-15)% of initial TBT in the soil was still present at the end of the experiments, regardless of the cultivation duration. Consequently, TBT appeared to be taken up by lettuce continually. A total of (75+/-5)% of TPhT was found to be degraded in the soil at 54 days. So, this compound could have been taken up by the plant at the beginning of the cultivation. Sludge amount seemed to have a negative effect on TPhT concentration in a plant at 32 days. This could be due to the quantitative TPhT sorption onto the sludge, observed just after spiking. Organotin plant uptake appeared to be more important at 19 degrees C than at 13 degrees C. TBT and TPhT were mainly accumulated in the roots, and up to 2% and 10% of TPhT and TBT, respectively, were translocated to the shoots. Despite TPhT degradation, products in large amounts were present in the soil and were not significantly taken up by the plant. They possibly remained immobilized on solid phases of the sludged soil.  相似文献   

18.
This study investigated the ability of a 10-yr-old constructed wetland to treat metal-contaminated leachate emanating from a coal ash pile at the Widows Creek electric utility, Alabama (USA). The two vegetated cells, which were dominated by cattail (Typha latifolia L.) and soft rush (Juncus effusus L.), were very effective at removing Fe and Cd from the wastewater, but less efficient for Zn, S, B, and Mn. The concentrations were decreased by up to 99% for Fe, 91% for Cd, 63% for Zn, 61% for S, 58% for Mn, and 50% for B. Higher pH levels (>6) in standing water substantially improved the removing efficiency of the wetland for Mn only. The belowground tissues of both cattail and soft rush had high concentrations of all elements; only for Mn, however, did the concentration in the shoots exceed those in the belowground tissues. The concentrations of trace elements in fallen litter were higher than in the living shoots, but lower than in the belowground tissues. The trace element accumulation in the plants accounted for less than 2.5% of the annual loading of each trace element into the wetland. The sediments were the primary sinks for the elements removed from the wastewater. Except for Mn, the concentrations of trace elements in the upper layer (0-5 cm) of the sediment profile tended to be higher than the lower layers (5-10 and 10-15 cm). We conclude that constructed wetlands are still able to efficiently remove metals in the long term (i.e.,>10 yr after construction).  相似文献   

19.
In the carbonate soils contaminated by a toxic spill from a pyrite mine (Aznalcóllar, southern Spain), a study was made of a thin layer (thickness = 4 mm) of polluted soil located between the pyrite tailings and the underlying soil. This layer, reddish-yellow in color due to a high Fe content, formed when sulfates (from the oxidation of sulfides) infiltrated the soil, causing acidification (to pH 5.6 as opposed to 8.0 of unaffected soil) and pollution (in Zn, Cu, As, Pb, Co, Cd, Sb, Bi, Tl, and In). The less mobile elements (As, Bi, In, Pb, Sb, and Tl) concentrated in the uppermost part of the reddish-yellow layer, with concentration decreasing downward. The more mobile elements (Co, Cd, Zn, and Cu) tended to precipitate where the pH was basic, toward the bottom of the layer or in the upper part of the underlying soil. The greatest accumulations occurred within the first 6 mm in overall soil depth, and were negligible below 15 mm. In addition, the acidity of the solution from the tailings degraded the minerals of the clay fraction of the soils, both the phyllosilicates as well as the carbonates. Also, within the reddish-yellow layer, gypsum formed autigenically, together with complex salts of sulfates of Fe, Al, Zn, Ca, and Mn, jarosite, and oxihydroxides of Fe.  相似文献   

20.
Manganese solubility has become a primary concern in the soils and water supplies in the Alamosa River basin, Colorado due to both crop toxicity problems and concentrations that exceed water quality standards. Some of the land in this region has received inputs of acid and trace metals as a result of irrigation with water affected by acid mine drainage and naturally occurring acid mineral seeps. The release of Mn, Zn, Ni, and Cu following saturation with water was studied in four soils from the Alamosa River basin. Redox potentials decreased to values adequate for dissolution of Mn oxides within 24 h following saturation. Soluble Mn concentrations were increased to levels exceeding water quality standards within 84 h. Soluble concentrations of Zn and Ni correlated positively with Mn following reduction for all four soils studied. The correlation between Cu and Mn was significant for only one of the soils studied. The soluble concentrations of Zn and Ni were greater than predicted based on the content of each of these metals in the Mn oxide fraction only. Increases in total electrolyte concentration during reduction indicate that this may be the result of displacement of exchangeable metals by Mn following reductive dissolution of Mn oxides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号