首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 608 毫秒
1.
The ivory tree coral Oculina varicosa (Leseur, 1820) is an ahermatypic branching scleractinian that colonizes limestone ledges at depths of 6–100 m along the Atlantic coast of Florida. This paper describes the development of embryos and larvae from shallow-water O. varicosa, collected at 6–8 m depth in July 1999 off Fort Pierce, Florida (27°32.542 N; 79°58.732 W). The effect of temperature on embryogenesis, larval survival, and larval swimming speed were examined in the laboratory. Ontogenetic changes in geotaxis and phototaxis were also investigated. Embryos developed via spiral cleavage from small (100 µm), negatively buoyant eggs. Ciliated larvae developed after 6–9 h at 25°C. Embryogenesis ceased at 10°C, was inhibited at 17°C, and progressed normally at 25°C and 30°C. Larval survival, however, was high across the full range of experimental temperatures (11–31°C), although mortality increased in the warmest treatments (26°C and 31°C). Larval swimming speed was highest at 25°C, and lower at the temperature extremes (5°C and 35°C). An ontogenetic change in geotaxis was observed; newly ciliated larvae swam to the water surface and remained there for approximately 18 h, after which they swam briefly throughout the water column, then became demersal. Early larvae showed no response to light stimulation, but at 14 and 23 days larvae appeared to exhibit negatively phototactic behavior. Although low temperatures inhibited the development of O. varicosa embryos, the larvae survived temperature extremes for extended periods of time. Ontogenetic changes in larval behavior may ensure that competent larvae are close to the benthos to facilitate settlement. Previous experiments on survival, swimming speeds, and observations on behavior of O. varicosa larvae from deep-water adults indicate that there is no difference between larvae of the deep and shallow populations.Communicated by J.P. Grassle, New Brunswick  相似文献   

2.
The respiratory physiology of summer diapausing eggs of the neustonic copepodAnomalocera patersoni, maintained under constant temperature (13 °C) and light (12 h light:12 h dark) conditions, was characterized by a bell-shaped curve, with low O2 uptake levels at the beginning of dormancy. This was followed by a steady rise in O2 consumption with maximum levels of 0.002 l O2 embryo–1 h–1 70 d after spawning. A slow diminution in O2 uptake then occurred until Day 150 when minimum values of 0.0003 l O2 embryo–1 h–1 were recorded, coinciding with the hatching of the first embryos. Embryos continued to hatch asynchronously up to 360 d from the moment of egg laying. When eggs were subjected to 20 °C, the respiratory activity was almost three times higher than at 13 °C, even though both respiratory curves were similar. The elevated metabolism in eggs kept at 20 °C led to death of the embryos possibly due to a total depletion of metabolic reserves. ATP content also differed at the two temperatures. Diapause eggs kept at 20 °C showed no rapid rise in ATP content as opposed to those kept at 13 °C. The results of temperature shock experiments, in which eggs were first kept at winter temperatures for several weeks, after which the temperature was raised to 20 °C for another number of weeks prior to a second period of chilling at 13 °C, showed that as long as embryos were kept at 20 °C no hatching occurred. By contrast, hatching was observed after 10 d following the resumption of winter temperatures, suggesting that low environmental temperatures are an essential prerequisite for hatching of these eggs. The type of diapause inA. patersoni differs considerably from the one described in insects and in another neustonic copepod,Pontella mediterrana. In this case, there is a U-shaped respiratory curve with greatest O2 consumption prior to the onset or upon breaking of diapause. Differences in the two types of diapause seem to involve not only differences in O2 consumption levels but also in the sequence of metabolic changes with time and the metabolic requirements during sommer and winter dormancy.  相似文献   

3.
Several species of Antarctic mesopelagic fishes that have different minimal depths of occurrence but the same environmental temperature were collected in November–December 1983 and in March 1986 between 0 and 1 000 m in the open water near the marginal ice zone in the vicinity of 60°S 40°W (1983) and 65°S 46°W (1986), and oxygen consumption rate (V O 2) and the activity of two metabolic enzymes, lactate dehydrogenase (LDH, an indicator of the anaerobic potential of locomotory muscle) and citrate synthase (CS, an indicator of citric acid cycle activity or aerobic potential), were determined. In four dominant species, whole-individual oxygen-consumption rate (y, ml O2 individual–1 h–1) varied with weight (X, g) according to the equation y=aX b, with b values falling between 0.889 and 1.029. The relation of weight-specific LDH activity (y, U g–1 wet wt) with weight (x, g) was also described by the equation y=aX b, with b values varying between 0.229 and 1.025. Weight-specific CS activity declined with weight, with b values from-0.031 to-0.369. V 2 O, LDH activity and CS activity all declined markedly with increased species' minimum depth of occurrence (the depth below which 90% of a species' population lives). Comparisons with previous studies on ecologically equivalent species of the California Borderland indicate that depth-related decreases in metabolism are the result of adapted traits of deeper-living species, not declining temperature within the water column. The metabolic rate of Antarctic mesopelagic fishes is approximately twice that of California species at equivalent temperatures; similar rates were found at the normal habitat temperatures of the two groups. Thus, a well-developed compensation for temperature is present in the Antarctic fishes: cold adaptation. Differences in enzymic activity among species, and among different sized individuals of a species are related to differences in metabolic rate and locomotory capacity. Enzymic indices can be used to estimate metabolic rates and evaluate ecological parameters such as predatory strategies and niche separation.  相似文献   

4.
Rates of oxygen consumption were measured for embryos, larvae and juveniles of the seastar Mediaster aequalis for 76 days post-fertilization. The rate increased from 0.65 nmol O2 ind–1 h–1 at 6 h after fertilization to 2.8 nmol O2 ind–1 h–1 at day 35. Larvae became competent to metamorphose around day 35 post-fertilization and began to decrease their metabolic rate after this time. Metamorphosed juveniles consumed 0.74 nmol O2 ind–1 h–1. Eggs contained 138.6 µg lipid ind–1 and 12.1 µg protein ind–1. Lipid levels decreased in concentration throughout development while protein levels increased slightly. The lipid levels decreased by 88.5 µg from eggs to day 76 larvae, accounting for 3.5 J of energy. Total oxygen consumption to this point was 3.74 µmol O2 ind–1, accounting for 1.84 J. The energetic demand up to day 76 was met completely through the use of lipid reserves. Metamorphosed juveniles expended 0.5 J more than larvae at the same age. Tubes of the polychaete Phyllochaetopterus prolifica were able to induce metamorphosis in M. aequalis larvae and a non-polar extract of these tubes also triggered metamorphosis. Larvae that are delayed to metamorphose can sustain their metabolic rate with lipid reserves for a limited, yet undetermined, period.Communicated by P.W. Sammarco, Chauvin  相似文献   

5.
We examined the daily deposition of otolith increments of marbled sole (Pseudopleuronectes yokohamae) larvae and juveniles by rearing experiments, and estimated the growth pattern of wild larvae and juveniles in Hakodate Bay (Hokkaido Island, Japan). At 16°C, prominent checks (inner checks; ca. 19.8 µm in diameter) were observed on the centers of sagittae and lapilli extracted from 5-day-old larvae. On both otoliths, distinctive and regular increments were observed outside of the inner checks, and the slopes of regression lines between age and the number of increments (ni) (for sagittae: ni=0.98×Day–5.90; for lapillus: ni=0.96×Day–5.70) did not significantly differ from 1. Inner check formations were delayed at lower temperature, and the inner checks formed 13 days after hatching at 8°C. Over 80% of larvae, just after their yolk-sac has been absorbed completely (stage C), had inner checks on both their otoliths. On the lapilli, other checks (outer check) formed at the beginning of eye migration (stage G). To validate the daily deposition of increments during the juvenile stage, wild captured P. yokohamae juveniles were immersed in alizarin complexone (ALC)-seawater solutions and reared in cages set in their natural habitat. After 6 days, the mean number of rings deposited after the ALC mark was 5.7. The age–body length relationship of wild P. yokohamae larvae and juveniles caught in Hakodate Bay was divided into three phases. In the larval period, the relationship was represented by a quadratic equation (notochord length=–0.010×Age2+0.682×Age–2.480, r2=0.82, P<0.001), and the estimated instantaneous growth was 0.38 mm day–1 at 15 days, 0 mm day–1 at 34 days and –0.12 mm day–1 at 40 days. The age–body length relationship in the early juvenile stage (<50 days) and the late juvenile stage (>50 days) were represented by linear equations (standard length=0.055×Age+5.722 and standard length=0.345×Age–9.908, respectively). These results showed that the growth rates in the late larval periods and the early juvenile stage were lower than those in the early larval stage and late juvenile stage; during the slow growth period, energy appears to be directed towards metamorphosis rather than body growth. This study provided the information needed to use otolith microstructure analysis for wild marbled sole larvae and juveniles.Communicated by T. Ikeda, Hakodate  相似文献   

6.
The vertical distribution, diel gut pigment content and oxygen consumption of Calanus euxinus were studied in April and September 1995 in the Black Sea. Gut pigment content of C. euxinus females was associated with diel vertical migration of the individuals, and it varied with depth and time. Highest gut pigment content was observed during the nighttime, when females were in the chlorophyll a (chl a) rich surface waters, but significant feeding also occurred in the deep layer. Gut pigment content throughout the water column varied from 0.8 to 22.0 ng pigment female–1 in April and from 0.2 to 21 ng pigment female–1 in September 1995. From the diel vertical migration pattern, it was estimated that female C. euxinus spend 7.5 h day–1 in April and 10.5 h day–1 in September in the chl a rich surface waters. Daily consumption by female C. euxinus in chl a rich surface waters was estimated by taking into account the feeding duration and gut pigment concentrations. Daily carbon rations of female C. euxinus, derived from herbivorous feeding in the euphotic zone, ranged from 6% to 11% of their body carbon weight in April and from 15% to 35% in September. Oxygen consumption rates of female and copepodite stage V (CV) C. euxinus were measured at different temperatures and at different oxygen concentrations. Oxygen consumption rates at oxygen-saturated concentration ranged from an average of 0.67 g O2 mg–1 dry weight (DW) h–1 at 5°C to 2.1 g O2 mg–1 DW h–1 at 23°C for females, and ranged from 0.48 g O2 mg–1 DW h–1 at 5°C to 1.5 g O2 mg–1 DW h–1 at 23°C for CVs. The rate of oxygen consumption at 16°C varied from 0.62 g O2 mg–1 DW h–1 at 0.65 mg O2 l–1 to 1.57 g O2 mg–1 DW h–1 at 4.35 mg O2 l–1 for CVs, and from 0.74 g O2 mg–1 DW h–1 at 0.57 mg O2 l–1 to 2.24 g O2 mg–1 DW h–1 at 4.37 mg O2 l–1 for females. From the oxygen consumption rates, daily requirements for the routine metabolism of females were estimated, and our results indicate that the herbivorous daily ration was sufficient to meet the routine metabolic requirements of female C. euxinus in April and September in the Black Sea.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

7.
Rates of development, growth and yolk conversion efficiency were determined in larvae of the summer flounder Paralichtys dentatus at constant temperatures of 21°, 16°, 12° and 5°C and in temperature cycles of 21°–16°, 16°–11°, and 11°–5°C. In constant incubation temperatures, development rate increased with increasing temperature. Larvae reared in the cyclic temperature regimes exhibited development rates intermediate to those at the temperature extremes of the cycle. All larvae reared at 5°C and in the 11°–5°C cycle regime died prior to total yolk-sac absorption. Although development rates were temperature dependent, no significant differences in notochord length ash-free dry weight or yolk utilization efficiency were found at the time of total yolk-sac absorption. The similarity in growth and yolk utilization efficiency for larvae reared under these various temperature regimes suggests that the physiological mechanisms involved are able to compensate for temperature changes encountered in nature.Contribution No. 195 from EPA, Environmental Research Laboratory, Narragansett, Rhode Island 02882, USA  相似文献   

8.
Sand shrimp, Crangon septemspinosa Say, are important to the trophic dynamics of coastal systems in the northwestern Atlantic. To evaluate predatory impacts of sand shrimp, daily energy requirements (J ind.–1 day–1) were calculated for this species from laboratory estimates of energy losses due to routine (RR), active (RA), and feeding (RSDA) oxygen consumption rates (J ind.–1 h–1), coupled with measurements of diel motile activity. Shrimp used in this study were collected biweekly from the Niantic River, Connecticut (41°33N; 72°19W) during late spring and summer of 2000 and 2001. The rates of shrimp energy loss due to RR and RA increased exponentially with increasing temperature, with the magnitude of increase greater between 6°C and 10°C (Q10=3.01) than between 10°C and 14°C (Q10=2.85). Rates of RR doubled with a twofold increase in shrimp mass, and RSDA was 0.130 J h–1+RR, irrespective of shrimp body size. Shrimp motile activity was significantly greater during dark periods relative to light periods, indicating nocturnal behavior. Nocturnal activity also increased significantly at higher temperatures, and at 20°C shifted from a unimodal to a bimodal pattern. Laboratory estimates of daily metabolic expenditures (1.7–307.4 J ind.–1 day–1 for 0.05 and 1.5 g wet weight shrimp, respectively, between 0°C and 20°C) were combined with results from previous investigations to construct a bioenergetic model and make inferences regarding the trophic positioning of C. septemspinosa. Bioenergetic model estimates indicated that juvenile and adult shrimp could meet daily energy demands via opportunistic omnivory, selectively preying upon items of high energy content (e.g. invertebrate and fish tissue) and compensating for limited prey availability by ingesting readily accessible lower energy food (e.g. detritus and plant material).Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by J.P. Grassle, New Brunswick  相似文献   

9.
The energetic cost of metamorphosis in cyprids of the barnacle Balanus amphitrite Darwin was estimated by quantification of lipid, carbohydrate and protein contents. About 38–58% (4–5 mJ individual–1) of cypris energy reserves were used during metamorphosis. Lipids accounted for 55–65%, proteins for 34–44% and carbohydrates for <2% of the energy used. Juveniles obtained from larvae fed 106 cells ml–1 of Chaetoceros gracilis were bigger (carapace length: 560–616 µm) and contained more energy (5.56±0.10 mJ juvenile–1) than their counterparts (carapace length: 420–462 µm; energy content: 2.49±0.20 mJ juvenile–1) obtained from larvae fed 104 cells ml–1. At water temperatures of 30°C and 24°C and food concentrations of 104 and 102 cells ml–1 (3:1 mixture of C. gracilis and Isochrysis galbana) as well as under field conditions (26.9±3.1°C and 2.2±0.8 µg chlorophyll a l–1), juveniles obtained from larvae fed the high food concentration grew faster than juveniles obtained from larvae fed low food concentration until 5 days post-metamorphosis. Laboratory experiments revealed a combined effect of early juvenile energy content, temperature and food concentration on growth until 5 days post-metamorphosis. After 10 days post-metamorphosis, the influence of the early juvenile energy content on growth became negligible. Overall, our results indicate that the energy content at metamorphosis is of critical importance for initial growth of juvenile barnacles and emphasize the dependency of the physiological performance of early juvenile barnacles on the larval exposure to food.Communicated by O. Kinne, Oldendorf/LuheAn erratum to this article can be found at  相似文献   

10.
Herring (Clupea harengus L.) larvae from spring and autumn spawning stocks were reared at different constant temperatures from 5° to 17 °C. At equivalent developmental stages, the spring larvae were longer than the autumn larvae and the larvae reared at low temperatures were longer than those reared at high temperatures. At hatching and at the end of the yolk-sac stage, the larvae were induced, by a probe, to make C-start escape responses, which were recorded and analysed using a high-speed video recording at 400 frames s-1. The response was rapid and of short duration. The tailbeat frequency and swimming speed were measured during the burst of swimming following the C-start at different test temperatures and in larvae with different temperature histories. The tail-beat frequency was strongly temperature-dependent, rising from 19 Hz at 5 °C to 37 Hz at 17 °C with no effect of temperature history, season or developmental stage. The burst-swimming speed ranged at hatching from 75 to 90 mm s-1 at 5 °C to 110 to 160 mm s-1 at 17 °C and at yolk resorption from 90–115 mm s-1 at 5 °C to 175–190 mm s-1 at 17 °C. The longer, spring-spawned larvae swam faster than the shorter autumn-spawned larvae. When the swimming speeds were expressed as body lengths (L) s-1, these differences disappeared. Larvae swam from 7–9 L s-1 at 5 °C to 15–20 L s-1 at 17 °C at hatching, and from 8–9 L s-1 at 5 °C to 15–17 L s-1 at 17 °C at yolk resorption. There was, however, a significantly faster specific swimming speed by the larvae reared at 12 °C in spring 1991.Honorary Research Fellow of the Scottish Association for Marine ScienceUnfortunately, Karen Fretwell was drowned in an accident on 9 January 1993  相似文献   

11.
Metabolic rates provide a valuable means to assess the condition of early life stages of scleractinians, but their small biomass creates a signal-to-noise problem in a confined respirometer. To avoid this problem, measurements of the oxygen diffusion boundary layer (DBL) and Ficks first law were used to calculate the respiration rate of coenosarc tissue on recruits (i.e., colonies 5–14 mm diameter) of Porites lutea (Edwards and Haime, 1860) exposed to two temperatures at a flow speed of 0.6 cm s–1. All experiments were completed in Moorea, French Polynesia, between November and December 2003. At 26.8°C, the DBL was 565±55 µm thick, the oxygen saturation adjacent to the tissue was 80±3%, and the mean respiration of the coenosarc was 1.2±0.1 µl O2 cm–2 h–1 (all values mean ± SE, n=10). Exposure to 29.7°C for 24–48 h did not affect the DBL thickness but significantly reduced the oxygen saturation adjacent to the tissue (to 74%) and increased the mean respiration rate by 35%. As the small corals differed slightly in size, in a uniform flow speed they experienced dissimilar flow environments as characterized by the Reynolds number (Re), thereby creating the opportunity to test the flow dependency of respiration. At 26.8°C, respiration and Re were unrelated, but at 29.7°C, the relationship was positive and statistically significant. Thus, respiration of small corals may not be mass transfer limited at low temperature, but relatively small increases in temperature may result in an increased metabolic rate leading to mass transfer limitation and flow-dependent rates of respiration.Communicated by J.P. Grassle, New Brunswick  相似文献   

12.
Metabolic rates of the ctenophore Beroe ovata within the length range from 0.4 mm (newly hatched larvae) to 60 mm were investigated. At 20° the respiration rates (Q, µg O2 ind.–1 h–1) of individuals with wet weights (W, mg) less than or greater than 100 mg changed according to the equations Q=0.093W0.62 and Q=0.016W0.99, respectively. The weight-specific respiration rate of the juvenile ctenophores with wet body weights of 0.021–100 mg diminished approximately 20-fold (from 0.35 to 0.017 µg O2 mg–1 h–1, respectively), but did not change within the range from 100 to 30,000 mg. The difference in the slope of the regression lines seems to be attributable to the ontogenetic changes in B. ovata metabolism. For the tested temperature range of 10–28°, the mean Q10 coefficient was equal to 2.17±0.5. The basal metabolism of B. ovata narcotised by chloral hydrate was 4.5±0.9 times lower than total metabolism. Such a metabolic range is considered to be characteristic of aquatic invertebrates with high levels of locomotory activity.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

13.
A study of otolith aging and growth-rate variation in the flyingfish Hirundichthys affinis (Günther) was conducted in the eastern Caribbean (10–16°N; 58–62°W) in 1987–1989. Daily otolith-increment formation was validated in laboratory-reared larvae, confirming the usefulness of otolith-increment counts for age determination of H. affinis juveniles (<150 mm fork length, FL). A mark-recapture programme to validate increment formation in wild adults was unsuccessful due to tetracycline-linked mortality and insufficient tetracycline uptake in slow-growing adult otoliths. A von Bertalanffy growth curve fitted to juvenile size-at-age data gave preliminary growth-curve parameters of t 0=2.85 d and k=0.00854 on a daily basis, with an asymptotic length, L, of 245 mm FL, for eastern Caribbean flyingfish. Juvenile growth rate in H. affinis is sensitive to spatial and temporal variation in temperature. Growth rates were higher where sea-surface temperatures were higher, and were higher for juveniles hatched in warmer months (April–July) than in colder months (November–March). Growth rates were also higher near islands than at more oceanic locations. Variation in juvenile growth rates may influence the spatial and temporal variation in spawning frequency observed in H. affinis.  相似文献   

14.
Intertidal organisms exposed to thermal stress normally experience other stresses simultaneously, but how these combined stresses modify tolerance to heat, especially for embryos, is poorly understood. Tolerance of fucoid algal embryos to heat, with and without acclimation to a sublethal temperature and with simultaneous exposure to hypersaline media, was examined. Embryos of Fucus vesiculosus L. (mid-intertidal zone) were less tolerant than embryos of Fucus spiralis L. (upper intertidal zone); without acclimation and with a growth temperature of 14°C, about half of the embryos survived 3 h exposure to 33°C in F. vesiculosus and of 35°C in F. spiralis. Conditions experienced by parental thalli (4°C versus 14°C storage) significantly affected the heat tolerance of embryos grown for 24 h post-fertilization at 14°C in F. vesiculosus, a result that is important for biologists using fucoid algae as model systems. Acclimation to a sublethal temperature (29°C) or exposure to the LT50 (33°C, F. vesiculosus; 35°C, F. spiralis) in 100 psu seawater (2850 mmol kg–1 osmolality) resulted in 30–50% higher levels of embryonic survival. Higher levels of HSP60s were found in embryos exposed to 29–33°C than to 14°C; lower levels of HSP60s were present in embryos exposed to the LT50 under hypersaline conditions than in normal seawater. Contemporaneous studies in 1995–1996 of substratum temperature and desiccation levels were made at Schoodic Point, Maine (USA) underneath F. spiralis and F. vesiculosus canopies and in Semibalanus balanoides patches. This study extends the bioindicator utility of heat-shock proteins in studies of intertidal organisms and demonstrates the importance of integrated stress responses in survival of a single stress factor (e.g. temperature).Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   

15.
Acute toxicity of ammonia was determined for cultured larval, postlarval, and wild adult lobsters (Homarus americanus) in 1988. Ammonia tolerance was found to increase with ontogenetic development. Based on 96-h LC50 values of 58 mg l–1 NH4 + + NH3 l–1 seawater (0.72 mg NH3 l–1) for Stage I larvae, 87 mg NH4 + + NH3 l–1 (1.7 mg NH3 l–1) for Stage II larvae, 125 mg NH4 + + NH3 l–1 (2.13 mg NH3) for Stage III larvae, 144 mg NH4 + + NH3 l–1 (2.36 mg NH3 l–1) for Stage IV postlarvae, 377 mg NH4 + + NH3 l–1 (5.12 mg NH3 l–1) for adult lobsters at 5°C and 219 mg NH4 + + NH3 l–1 (3.25 mg NH3 l–1) for adult lobsters at 20°C, recommendations for safe levels of total ammonia and un-ionized ammonia were calculated using an application factor of 0.1. Effects of ammonia on osmoregulatory capacity were studied on postlarvae and adults. Ability of postlarvae and adults to hyper-regulate in low-salinity media decreased after exposure to ammonia. In postlarval lobsters, osmoregulatory capacity was significantly affected in ammonia concentrations exceeding 32 mg l–1. Osmoregulatory capacity in adult lobsters (5 and 20°C) was affected at 150 mg l–1. In postlarval lobsters, a minimum exposure time of 12 h was required to impair osmoregulatory capacity. The decrease in hemolymph osmotic pressure was caused by lower hemolymph sodium concentrations. The presence of ammonia in the external medium could markedly affect the Na+/NH4 + transport mechanism by permanently, temporarily, or partially impairing the transport sites for sodium.  相似文献   

16.
Laboratory experiments on ovigerous females of northern shrimp (Pandalus borealis) were used to assess the effects of temperature and food ration on female condition during incubation and examine how combined effects of temperature and female condition influenced egg survival, embryonic development, and larval characteristics. Ovigerous females were maintained at 2°C, 5°C, and 8°C and fed on a low (three times/week; 2–2.7% W/W) or high ration (five times/week at satiation). The increase in temperature accelerated the developmental time of the eggs but their survival at 8°C was reduced. Conversion efficiency of yolk reserves in developing embryos was significantly reduced at elevated temperatures and larvae hatching at 2°C and 5°C were significantly larger and heavier than those hatching at 8°C. The experimental design did not result in any effect of food ration on the energetic condition of females or on egg characteristics and their biochemical composition. However, lower energy reserves were observed for females held at 8°C.  相似文献   

17.
Constructing realistic energy budgets for Antarctic krill, Euphausia superba, is hampered by the lack of data on the metabolic costs associated with swimming. In this study respiration rates and pleopod beating rates were measured at six current speeds. Pleopod beating rates increased linearly with current speed, reaching a maximum of 6 beats s–1 at 17 cm s–1. There was a concomitant linear increase in respiration rate, from 1.8 mg O2 gD–1 h–1 at 3 cm s–1 to 8.0 mg O2 gD–1 h–1 at 17 cm s–1. The size of the group tested (50, 100 and 300 krill) did not have a significant effect on pleopod beating rates or oxygen consumption (ANCOVA, F=0.264; P>0.05). The cost of transport reached a maximum of 75 J g–1 km–1 at 5 cm s–1, and then decreased with increasing current speed to 29 J g–1 km–1. When considered in light of energy budgets for E. superba, these data indicate that the cost of swimming could account for up to 73% of total daily metabolic expenditure during early summer.Communicated by G.F. Humphrey, Sydney  相似文献   

18.
Metabolic-temperature responses of the developmental stages of the sublittoral crab Cancer irroratus cultured at 10° to 20°C daily cyclic and 15°C constant temperatures were determined. Generally, the metabolic rate increased with temperature in the lower range with Q10's (temperature coefficients) above 2, compensated in the midrange with Q10's between 1 and 2, and declined at the higher temperatures with Q10 values less than 1. For the larvae cultured at a constant temperature of 15°C, the compensatory response range narrowed with development from first zoeae to the later zoeal stages. In contrast, the compensatory response of the first zoeae, megalops, and crab stages within the range 10° to 25°C was interrupted by a zone of thermal sensitivity between 15° and 20°C for those individuals cultured in the 10° to 20°C cyclic regime. The compensatory response range is narrower for the third stage zoeae and broader for the second, fourth, and fifth stage zoeae. Metabolic rate-temperature (M-T) patterns of C. irroratus developmental stages cultured under the cyclic regime varied from those held at constant temperature by increased respiration and metabolic rate compensation between 20° and 25°C, and by an extension of the metabolically active range towards higher temperatures.  相似文献   

19.
Summary Thermal preferences of well-fed and food-limited fire ant colonies (Solenopsis invicta) were studied in relation to colony growth and metabolic costs. The growth curve for well-fed colonies was strongly skewed toward warmer temperatures with maximal growth occurring near 32° C (Fig. 2A). The growth curve for food-limited colonies was skewed toward cooler temperatures with maximal colony size occurring around 25° C (Fig. 2B). Food-limited colonies apparently grew larger at cooler temperatures because metabolic costs of workers were reduced. A series of binary choice tests confirmed three predictions concerning fire ant thermal preferences (Figs. 3–4). First, well-fed colonies preferred brood temperatures very near the optimum for colony growth (31° C versus 32° C). Colonies were also able to select appropriate suboptimal growth temperatures when the optimal range was unavailable. Secondly, as predicted, a large percentage of colony workers ( 30% in well-fed colonies) consistently chose cooler temperatures than those selected for the brood. This strategy probably increases longevity of workers not directly associated with brood care. Thirdly, food-limited colonies preferred cooler temperatures than well-fed colonies. Metabolic costs of food-limited colonies were reduced by approximately 7% because of (1) slightly cooler brood temperatures (30° C versus 31° C) and because (2) an additional 20–30% of the workers selected cooler temperatures. The addition of excess food reversed food-limited thermal preferences within 12 h for the brood (Fig. 5) and several days for the workers. Contrary to expectations, thermal preferences for brood in food-limited colonies did not match the food-limited growth curve, perhaps because fire ant colonies can choose to rear brood at warm temperatures while maintaining accumulated colony biomass at cooler temperatures. Correspondence to: S.D. Porter  相似文献   

20.
This paper provides basic early life-history information on milkfish (Chanos chanos), seabass (Lates calcarifer) and rabbitfish (Siganus guttatus) which may explain in part the observed differences in their survival performance in the hatchery. Egg size, larval size, amount of yolk and oil reserves and mouth size are all greater in milkfish than in seabass, and greater in the latter than in rabbitfish. During the first 24 h after hatching, rabbitfish larvae grow much faster than milkfish and seabass larvae at similar ambient temperatures (range 26°–30°C, mean about 28°C). The eyes become fully pigmented and the mouths open earlier in seabass and rabbitfish (32–36 h from hatching) than in milkfish (54 h). Seabass larvae learn to feed the earliest. Yolk is completely resorbed at 120 h from hatching in milkfish, and yolk plus oil at 120 h in seabass and 72 h in rabbitfish at 26° to 30°C. Milkfish and seabass larvae have more time than rabbitfish to initiate external feeding before the endogenous reserves are completely resorbed. Delayed feeding experiments showed that 50% of unfed milkfish larvae die at 78 h and all die at 150 h from hatching. Milkfish larvae fed within 54 to 78 h after hatching had improved survival times: 50% mortality occurred at 96 to 120 h, and 10 to 13% survived beyond 150 h. Unfed seabass larvae all died at 144 h, while 6 to 13% of those fed within 32 to 56 h after hatching survived beyond 144 h and well into the subsequent weeks. Unfed rabbitfish larvae all died at 88 h, while 7 to 12% of those fed within 32 to 56 h after hatching survived beyond 88 h. A delay in initial feeding of more than 24 h after eye pigmentation and opening of the mouth may be fatal for all three species.Contribution No. 167 from the SEAFDEC Aquaculture Department  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号