首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Radon control systems were Installed and evaluated In fourteen homes In the Spokane River Valley/Rathdrum Prairie and In one home In Vancouver, Washington. Because of local soil conditions, subsurface ventilation (SSV) by pressurlzatlon was always more effective In these houses than SSV by depressurlzatlon In reducing Indoor radon levels to below guidelines. Basement overpressurlzatlon was successfully applied In five houses with airtight basements where practical-sized fans could develop an overpressure of 1 to 3 Pascals. Crawlspace ventilation was more effective than crawlspace Isolation in reducing radon entry from the crawlspace, but had to be used In conjunction with other mitigation techniques, since the houses also had basements. Indoor radon concentrations In two houses with alr-toalr heat exchangers (AAHX) were reduced to levels Inversely dependent on the new total ventilation rates and were lowered even further In one house where the air distribution system was modified. Sealing penetrations In the below-grade surfaces of substructures was relatively Ineffective In controlling radon. Operation of the radon control systems (except for the AAHX’s) made no measureable change in ventilation rates or Indoor concentrations of other measured pollutants. Installation costs by treated floor area ranged from approximately $4/m2 for sealing to $28/m2 for the AAHX’s. Based on the low electric rates for the region, annual operating costs for the active systems were estimated to be approximately $60 to $170.  相似文献   

2.
Fourteen single-family detached houses In Spokane, Washington, and Coeur D’Alene, Idaho, were monitored for two years after high concentrations of indoor radon had been mitigated. Each house was monitored quarterly using mailed alpha-track radon detectors deployed in each zone of the structure. To assess performance of mitigation systems during the second heating season after mitigation, radon concentrations in seven houses were monitored continuously for several weeks, mitigation systems In all houses were inspected, and selected other measurements were taken. In addition, occupants were also interviewed regarding their maintenance, operation, and subjective evaluation of the radon mitigation systems. Quarterly alpha-track measurements showed that radon levels had increased In most of the homes during many follow-up measurement periods when compared with concentrations measured immediately after mitigation. Mitigation-system performance was adversely affected by (1) accumulated outdoor debris blocking the outlets of subsurface pressurization pipes; (2) fans being turned off (e.g., because of excessive noise or vibration); (3) air-to-air heat exchanger, basement pressurization, and subsurface ventilation fans being turned off and fan speeds reduced; and (4) crawlspace vents being closed or sealed.  相似文献   

3.
Movement of radon progeny inside houses is a complex process that depends both on atmospheric conditions and on building structure. The indoor working level (WL) monitored in four houses of differing structures shows regular diurnal fluctuations related to solar warming of the atmosphere. In the two houses with full basements, radon is removed by indoor/outdoor pressure-driven airflow, and basement WL varies inversely with outdoor temperature. In the two houses with half basements open to crawl spaces, radon is drawn into the basement faster than it is removed, so that basement WL varies directly with outside temperature. Average WL's in basements are about twice as high as first floor WL's and as much as 18 times as high as outdoor WL's. Each house shows an individual pattern of radon progeny movement throughout the building.  相似文献   

4.
In order to predict indoor radiation levels due to radon daughters at low building ventilation and air leakage rates, differential equations governing the decay and venting of radon (Rn-222) and its daughters were used. A computer program based on the equations was written to predict radon and daughter concentrations, total potential alpha energy concentration and equilibrium factor. The program can account for time dependence of ventilation and emanation rates and is readily used by building designers.

Sample calculations using the program showed that potential alpha energy levels in tightened buildings can commonly reach about 0.01 working level (WL), a level more than twice as high as concentrations currently found in most houses.  相似文献   

5.
Fourteen single-family detached houses in Spokane, Washington, and Coeur D'Alene, Idaho, were monitored for two years after high concentrations of indoor radon had been mitigated. Each house was monitored quarterly using mailed alpha-track radon detectors deployed in each zone of the structure. To assess performance of mitigation systems during the second heating season after mitigation, radon concentrations in seven houses were monitored continuously for several weeks, mitigation systems in all houses were inspected, and selected other measurements were taken. In addition, occupants were also interviewed regarding their maintenance, operation, and subjective evaluation of the radon mitigation systems. Quarterly alpha-track measurements showed that radon levels had increased in most of the homes during many follow-up measurement periods when compared with concentrations measured immediately after mitigation. Mitigation-system performance was adversely affected by (1) accumulated outdoor debris blocking the outlets of subsurface pressurization pipes; (2) fans being turned off (e.g., because of excessive noise or vibration); (3) air-to-air heat exchanger, basement pressurization, and subsurface ventilation fans being turned off and fan speeds reduced; and (4) crawl-space vents being closed or sealed.  相似文献   

6.
The concentrations of indoor radon in the basements of homes located in southern Maryland average about 1.3 times the first floor radon concentrations. Particular geological units tend to be associated with higher indoor radon. In the study area, homes underlain by phyllite were mostly above 4 pCi/liter (the US Environmental Protection Agency 'action level'). Comparative studies between indoor radon and total-gamma aeroradioactivity show that aeroradioactivity can be accurately used to estimate community radon hazards. When combined, geology and aero radioactivity can be used to identify problem homes.  相似文献   

7.
A compilation of data from earlier studies of 172 homes in the Pacific Northwest indicated that approximately 65 percent of the 46 homes tested in the Spokane River Valley/Rathdrum Prairie region of eastern Washington/northern Idaho had heating season indoor radon (222Rn) concentrations above the U. S. EPA guideline of 148 Bq m-3 (4 pCi L-1). A subset of 35 homes was selected for additional study. The primary source of indoor radon in the Spokane River Valley/Rathdrum Prairie was pressure-driven flow of soil gas containing moderate radon concentrations (geometric mean concentration of 16,000 Bq m-3) from the highly permeable soils (geometric mean permeability of 5 x 10(-11) m2) surrounding the house substructures. Estimated soil gas entry rates ranged from 0.4 to 39 m3h-1 and 1 percent to 21 percent of total building air infiltration. Radon from other sources, including domestic water supplies and building materials was negligible. In high radon homes, winter indoor levels averaged 13 times higher than summer concentrations, while in low radon homes winter levels averaged only 2.5 times higher. Short-term variations in indoor radon were observed to be dependent upon indoor-outdoor temperature differences, wind speed, and operation of forced-air furnace fans. Forced-air furnace operation, along with leaky return ducts and plenums, and openings between the substructure and upper floors enhanced mixing of radon-laden substructure air throughout the rest of the building.  相似文献   

8.
Indoor radon has been judged to be the most serious environmental carcinogen which the EPA must address for the general public. The optimal strategy for dealing with this problem depends on the magnitude of the risk, how the risk is distributed within the population, as well as the effectiveness and costs of mitigation measures. Based on current exposure and risk estimates, radon exposure in single-family houses may be a causal factor in roughly 20,000 lung cancer fatalities per year. Most of these projected fatalities are attributable to exposures in houses with average or moderately elevated radon levels (below 10 pCi/L). Hence to appreciably reduce radon-induced lung cancers, remediation efforts must include houses not highly elevated in radon. From either an individual risk or a cost-benefit standpoint, reduction of a few pCi/L per home appears to be justified. The optimal strategy for dealing with the indoor radon problem depends on the magnitude of the risk per unit exposure, the distribution of exposures in houses, and the effectiveness and costs of mitigation. EPA’s current views with respect to these factors and the associated uncertainties are discussed.  相似文献   

9.
Forced-air heating and air conditioning (HAC) systems caused an average and maximum increase in air infiltration rates of 1.8- and 4.3-fold, respectively, during brief whole-house studies of tracer gas decay in 39 occupied houses. An average increase in air infiltration rate of 0.33 +/- 0.37 h-1 corresponded to an incremental air leak of 240 m3/h, based on approximate house volume. More detailed tracer gas decay studies were performed in basement, kitchen and bedroom locations of six homes with low air infiltration rates (i.e., less than 0.25 h-1). The HAC mixed the indoor air efficiently between measurement sites. HAC operation also caused 1.1- to 3.6-fold increases in air infiltration rates, corresponding to absolute increases of 0.02 to 0.1 h-1. In an unoccupied research house, three-fold increases in average air infiltration rate with HAC operation (i.e., from 0.13 to 0.36 h-1) were reduced to two-fold (i.e., from 0.10 to 0.18 h-1) by sealing the external HAC unit and crawlspace ductwork system. This sealing also resulted in a 30 percent reduction in crawlspace-to-indoor transport rates with the HAC turned on. Blower door tests indicated a less than 20 percent reduction in house leakage area.  相似文献   

10.
A compilation of data from earlier studies of 172 homes in the Pacific Northwest indicated that approximately 65 percent of the 46 homes tested in the Spokane River Valley/Rathdrum Prairie region of eastern Washington/northern Idaho had heating season indoor radon (222Rn) concentrations above the U. S. EPA guideline of 148 Bq m?3 (4 pCi L?1). A subset of 35 homes was selected for additional study. The primary source of indoor radon in the Spokane River Valley/Rathdrum Prairie was pressure-driven flow of soil gas containing moderate radon concentrations (geometric mean concentration of 16,000 Bq m?3) from the highly permeable soils (geometric mean permeability of 5 × 10?11 m2) surrounding the house substructures. Estimated soil gas entry rates ranged from 0.4 to 39 m3h?1 and 1 percent to 21 percent of total building air infiltration. Radon from other sources, including domestic water supplies and building materials was negligible. In high radon homes, winter indoor levels averaged 13 times higher than summer concentrations, while in low radon homes winter levels averaged only 2.5 times higher. Short-term variations in indoor radon were observed to be dependent upon indoor-outdoor temperature differences, wind speed, and operation of forced-air furnace fans. Forced-air furnace operation, along with leaky return ducts and plenums, and openings between the substructure and upper floors enhanced mixing of radon-laden substructure air throughout the rest of the building.  相似文献   

11.
Although many remedial measures have been proposed for excessive Indoor 222Rn concentrations, their general effectiveness in given situations is not well established, In part because of the number and complexity of the factors that influence Indoor 222Rn. The strategy considered here is the use of basement ventilation to control upstairs Indoor radioactivity. A simple two-compartment model is described and used to derive ventilation rates that are needed to lower radon concentrations to specified levels. Previously published indoor radon measurements are used to derive the parameters needed for the calculations. The results of the two compartment model differ typically by a factor of two from the simpler, more often used one-compartment approximation.  相似文献   

12.
The body of information presented in this paper is directed to policy makers and administrators involved in the evaluation and assessment of damages caused by oxidant air pollution on human health and welfare and of possible benefits of control.

To provide a comparison of some of the benefits that can be obtained by reducing photochemical oxidant levels, estimated health costs were derived from data relating adverse health effects to hourly oxidant concentrations. Hourly oxidant or ozone concentrations were measured at approximately 400 monitoring stations scattered throughout the U.S. Most of these sites were located in major urban areas or in other areas where high oxidant concentrations prevailed. Estimates of populations at risk and per capita health costs were generated for those areas where oxidant data was available.

During the period 1971-1973, nearly two-thirds of the U.S. population resided in areas where the hourly primary standard for oxidants of 160 µg/m3 was exceeded. The total annual health cost attributable to oxidants was estimated to range from $120 to over $240 million in the U.S.  相似文献   

13.
Combining a computational fluid dynamics (CFD) model and a multi-zonal model, a study was carried out on radon entry through the complex substructure of a house with a cellar. The uniqueness of the radon entry problem in this type of house was due to the involvement of two radon entry routes to two chambers: the cellar and the living area of the house. Soil gas carrying radon was driven through the two routes by two coupled disturbance pressures in the chambers. The effects of temperature differences were considered as another driving force for the radon entry. Examined in this study were the effects of the geometry of the substructure, air permeability of the soil, air-tightness of the cellar shell, and cellar ventilation on radon entry to both the cellar and the living area. The ground floor covering on top of the soil outside a cellar wall increased radon entry through this wall by about 68%, as radon built up to a very high level under the covering. The effect of cellar ventilation was found as follows: the cellar ventilation created a layer of airflow in the soil under the ground floor; the flow passed over a crack in the ground floor, the entry route to the living area, diluting the radon in the area. Hence, the soil gas entering the living area carried less radon. Cellar ventilation seems more effective in reducing radon entry to the living area in a more permeable soil and leaky cellar shell; a moderate cellar ventilation condition achieved 77% reduction in radon entry to the area. When permeability of these two materials was lower and soil radon content remained the same, the chances of radon entry was also lower; hence, the indoor radon level was lower and no radon control was needed. When such soil contains high radon concentration, other mitigation measures must be sought.  相似文献   

14.
The relationship between indoor and outdoor airborne particles was investigated for 16 residential houses located in a suburban area of Brisbane, Australia. The submicrometer particle numbers were measured using the Scanning Mobility Particle Sizer, the larger particle numbers using the Aerodynamic Particle Sizer and an approximation of PM2.5 was also measured using a DustTrak. The measurements were conducted for normal and minimum ventilation conditions using simultaneous and non-simultaneous measurement methods designed for the purpose of the study. Comparison of the ratios of indoor to outdoor particle concentrations revealed that while temporary values of the ratio vary in a broad range from 0.2 to 2.5 for both lower and higher ventilation conditions, average values of the ratios were very close to one regardless of ventilation conditions and of particle size range. The ratios were in the range from 0.78 to 1.07 for submicrometer particles, from 0.95 to 1.0 for supermicrometer particles and from 1.01 to 1.08 for PM2.5 fraction. Comparison of the time series of indoor to outdoor particle concentrations shows a clear positive relationship existing for many houses under normal ventilation conditions (estimated to be about and above 2 h−1), but not under minimum ventilation conditions (estimated to be about and below 1 h−1). These results suggest that for normal ventilation conditions, outdoor particle concentrations could be used to predict instantaneous indoor particle concentrations but not for minimum ventilation, unless air exchange rate is known, thus allowing for estimation of the “delay constant”.  相似文献   

15.
Bushfires, prescribed burns, and residential wood burning are significant sources of fine particles (aerodynamic diameter <2.5 μm; PM2.5) affecting the health and well-being of many communities. Despite the lack of evidence, a common public health recommendation is to remain indoors, assuming that the home provides a protective barrier against ambient PM2.5. The study aimed to assess to what extent houses provide protection against peak concentrations of outdoor PM2.5 and whether remaining indoors is an effective way of reducing exposure to PM2.5. The effectiveness of this strategy was evaluated by conducting simultaneous week-long indoor and outdoor measurements of PM2.5 at 21 residences in regional areas of Victoria, Australia. During smoke plume events, remaining indoors protected residents from peak outdoor PM2.5 concentrations, but the level of protection was highly variable, ranging from 12% to 76%. Housing stock (e.g., age of the house) and ventilation (e.g., having windows/doors open or closed) played a significant role in the infiltration of outdoor PM2.5 indoors. The results also showed that leaving windows and doors closed once the smoke plume abates trapped PM2.5 indoors and increased indoor exposure to PM2.5. Furthermore, for approximately 50% of households, indoor sources such as cooking activities, smoking, and burning candles or incense contributed significantly to indoor PM2.5.

Implications: Smoke from biomass burning sources can significantly impact on communities. Remaining indoors with windows and doors closed is a common recommendation by health authorities to minimize exposures to peak concentrations of fine particles during smoke plume events. Findings from this study have shown that the protection from fine particles in biomass burning smoke is highly variable among houses, with information on housing age and ventilation status providing an approximate assessment on the protection of a house. Leaving windows closed once a smoke plume abates traps particles indoors and increases exposures.  相似文献   


16.
Radon gas concentrations have been monitored as part of the operation of a tunnel (the Exploratory Studies Facility-ESF) at Yucca Mountain to ensure worker safety. The objective of this study was to examine the potential use of the radon data to estimate large-scale formation properties of fractured tuffs. This objective was examined by developing a numerical model, based upon the characteristics of the ESF and the Topopah Spring welded (TSw) tuff unit, capable of predicting radon concentrations for prescribed ventilation conditions. The model was used to address two specific issues. First, it was used to estimate the permeability and porosity of the fractures in the TSw at the length scale of the ESF and extending tens of meters into the TSw, which surrounds the ESF. Second, the model was used to understand the mechanism leading to radon concentrations exceeding a specified level within the ESF. The mechanism controlling radon concentrations in the ESF is a function of atmospheric barometric fluctuations being propagated down the ESF along with ventilated air flow and the slight suction induced by the ventilation exhaust fans at the South Portal of the ESF. These pressure fluctuations are dampened in the TSw fracture continuum according to its permeability and porosity. Consequently, as the barometric pressure in the ESF drops rapidly, formation gases from the TSw are pulled into the ESF, resulting in an increase in radon concentrations. Model calibration to both radon concentrations measured in the ESF and gas-phase pressure fluctuations in the TSw yielded concurrent estimates of TSw fracture permeability and porosity of 1 x 10(-11) m2 and 0.00034, respectively. The calibrated model was then used as a design tool to predict the effect of adjusting the current ventilation-system operation strategy for reducing the probability of radon gas concentrations exceeding a specified level.  相似文献   

17.
The design and the construction of an actual 8.7-m3 pilot/full-scale biotrickling filter for waste air treatment is described and compared with a previous conceptual scale-up of a laboratory reactor. The reactor construction costs are detailed and show that about one-half of the total reactor costs ($97,000 out of $178,000) was for personnel and engineering time, whereas approximately 20% was for monitoring and control equipment. A detailed treatment cost analysis demonstrated that, for an empty bed contact time of 90 sec, the overall treatment costs (including capital charges) were as low as $8.7/1000 m3air in the case where a nonchlorinated volatile organic compound (VOC) was treated, and $14/1000 m3air for chlorinated compounds such as CH2Cl2. Comparison of these costs with conventional air pollution control techniques demonstrates excellent perspectives for more field applications of biotrickling filters. As the specific costs of building and operating biotrickling filter reactors decrease with increasing size of the reactor, the cost benefit of biotrickling filtration is expected to increase for full technical-scale bioreactors.  相似文献   

18.
Prior to this study, indoor air constituent levels and ventilation rates of hospitality environments had not been measured simultaneously. This investigation measured indoor Environmental Tobacco Smoke-related (ETS-related) constituent levels in two restaurants, a billiard hall and a casino. The objective of this study was to characterize ETS-related constituent levels inside hospitality environments when the ventilation rates satisfy the requirements of the ASHRAE 62-1989 Ventilation Standard. The ventilation rate of each selected hospitality environment was measured and adjusted. The study advanced only if the requirements of the ASHRAE 62-1989 Ventilation Standard – the pertinent standard of the American Society of Heating, Refrigeration and Air Conditioning Engineers – were satisfied. The supply rates of outdoor air and occupant density were measured intermittently to assure that the ventilation rate of each facility satisfied the standard under occupied conditions. Six ETS-related constituents were measured: respirable suspended particulate (RSP) matter, fluorescent particulate matter (FPM, an estimate of the ETS particle concentrations), ultraviolet particulate matter (UVPM, a second estimate of the ETS particle concentrations), solanesol, nicotine and 3-ethenylpyridine (3-EP). ETS-related constituent levels in smoking sections, non-smoking sections and outdoors were sampled daily for eight consecutive days at each hospitality environment. This study found that the difference between the concentrations of ETS-related constituents in indoor smoking and non-smoking sections was statistically significant. Differences between indoor non-smoking sections and outdoor ETS-related constituent levels were identified but were not statistically significant. Similarly, differences between weekday and weekend evenings were identified but were not statistically significant. The difference between indoor smoking sections and outdoors was statistically significant. Most importantly, ETS-related constituent concentrations measured indoors did not exceed existing occupational standards. It was concluded that if the measured ventilation rates of the sampled facilities satisfied the ASHRAE 62-1989 Ventilation Standard requirements, the corresponding ETS-related constituents were measured at concentrations below known harmful levels as specified by the American Conference of Governmental Industrial Hygiene (ACGIH).  相似文献   

19.
In 1997, Homeswest in western Australia and Murdoch University developed a project to construct low-allergen houses (LAHs) in a newly developed suburb. Before the construction of LAHs, all potential volatile organic compound (VOC) emission materials used in LAHs are required to be measured to ensure that they are low total VOC (TVOC) emission materials. This program was developed based on this purpose. In recent times, the number of complaints about indoor air pollution caused by VOCs has increased. A number of surveys of indoor VOCs have indicated that many indoor materials contribute to indoor air pollution. Although some studies have been conducted on the characteristics of VOC emissions from adhesives, most of them were focused on VOC emissions from floor adhesives. Few measurements of VOC emissions from adhesives used for wood, fabrics, and leather are available. Furthermore, most research on VOC emissions from adhesives has been done in countries with cool climates, where ventilation rates in the indoor environment are lower than those in Mediterranean climates, due to energy conservation. VOCs emitted from adhesives have not been sufficiently researched to prepare an emission inventory to predict indoor air quality and to determine both exposure levels for the Australian population and the most appropriate strategies to reduce exposure. An environmental test chamber with controlled temperature, relative humidity, and airflow rate was used to evaluate emissions of TVOCs from three adhesives used frequently in Australia. The quantity of TVOC emissions was measured by a gas chromatography/flame ionization detector. The primary VOCs emitted from each adhesive were detected by gas chromatography/mass spectrometry. The temporal change of TVOC concentrations emitted from each adhesive was tested. A double-exponential equation was then developed to evaluate the characteristics of TVOC emissions from these three adhesives. With this double-exponential model, the physical processes of TVOC emissions can be explained, and a variety of emission parameters can be calculated. These emission parameters could be used to estimate real indoor TVOC concentrations in Mediterranean climates.  相似文献   

20.
Yu D  Kim JK 《Chemosphere》2004,54(5):639-645
Most of the indoor radon comes directly from the soil beneath the foundation of a basement. Recently, radon from groundwater was found to make some contribution to the total inhalation risk associated with radon in indoor air. This study presents a realistic exposure assessment of a human to indoor radon released from groundwater. First, the prediction of indoor radon concentration released from groundwater was based on a three-compartment model that was developed to describe the transfer and distribution of the radon released from groundwater in a house through showers, washing clothes, and flushing toilets. Second, a physiologically based pharmacokinetic (PBPK) model for inhaled radon was developed and used to estimate tissue group concentrations in a human body. The PBPK model provides reasonable predictions of uptake, excretion, and distribution of retained radon among tissue groups in the body. Hence, the approach using the PBPK model combined with realistic indoor exposure scenarios predicts the radon concentrations in tissue groups in the body associated with the indoor radon pollution. The results obtained from the study will help increase the quantitative understanding of the risk assessment issues associated with the indoor radon released from the groundwater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号