首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cadmium tolerance in six poplar species   总被引:5,自引:1,他引:4  
Selection of poplar species with greater Cd tolerance and exploiting the physiological mechanisms involved in Cd tolerance are crucial for application of these species to phyto-remediation. The aim of this study is to investigate variation in Cd tolerance among the six poplar species and its underlying physiological mechanisms. Cuttings of six Populus species were cultivated for 10 weeks before exposure to either 0 or 200 μM CdSO4 for 20 days. Gas exchange in mature leaves was determined by a portable photosynthesis system. Cd concentrations in tissues were analyzed by a flame atomic absorbance spectrometry. Subsequently, Cd amount per plant, bio-concentration factor (BCF) and translocation factor (T f) were calculated. Nonenzymatic compounds and activities of antioxidative enzymes in tissues were analyzed spectrophotometrically. Cd exposure caused decline in photosynthesis in four poplar species including Populus cathayana (zhonghua 1). Among the six species, P. cathayana (zhonghua 1) displayed the highest Cd concentrations in tissues, the largest Cd amount in aerial parts, the highest BCF in aerial parts and T f under Cd exposure. Under Cd stress, increases in total soluble sugars in roots but decreases in starch in roots, wood, and leaves of P. cathayana (zhonghua 1) were found. Induced O 2 ?? and H2O2 production in roots and leaves, and increases in free proline, soluble phenolics, and activities of antioxidative enzymes were observed in P. cathayana (zhonghua 1). Based on results of this pot experiment, it is concluded that P. cathayana (zhonghua 1) is superior to other five species for Cd phyto-remediation, and its well-coordinated physiological changes under Cd exposure confer the great Cd tolerance of this species.  相似文献   

2.
Chronic exposure to arsenic (As) in rice has raised many health and environmental problems. As reported, great variation exists among different rice genotypes in As uptake, translocation, and accumulation. Under hydroponic culture, we find that the Chinese wild rice (Oryza rufipogon; acc. 104624) takes up the most arsenic among tested genotypes. Of the cultivated rice, the indica cv. 93-11 has the lowest arsenic translocation factor value but accumulates the maximum concentration of arsenic followed by Nipponbare, Minghui 86, and Zhonghua 11. Higher level of arsenite concentration (50 μM) can induce extensive photosynthesis and root growth inhibition, and cause severe oxidative stress. Interestingly, external silicate (Si) supplementation has significantly increased the net photosynthetic rate, and promoted root elongation, as well as strongly ameliorated the oxidative stress by increasing the activities of antioxidant enzymes superoxide dismutase, ascorbate peroxidase, and peroxidase in roots and/or leaves of 93-11 seedlings. Notably, 1.873 mM concentration of Si considerably decreases the total As uptake and As content in roots, but significantly increases the As translocation from roots to shoots. In contrast, Si supplementation with 1.0 mM concentration significantly increases the total As uptake and As concentrations in roots and shoots of 93-11 seedlings after 50 μM arsenite treatment for 6 days.  相似文献   

3.
The effects of increasing concentrations of lead (Pb) on Pb accumulation and its influence on nutrient elements, malondialdehyde (MDA) content, generation of superoxide anion (O2 ), hydrogen peroxide (H2O2) content, antioxidant enzymes activities, soluble protein, and photosynthetic pigment, as well as chloroplast ultrastructure in steriled seedlings of Nymphoides peltata (S. G. Gmel.) Kuntze were investigated in order to understand Pb-induced toxicity. The accumulation of Pb was found to increase in a concentration-dependent manner. Nutrient elements (Ca, K, Fe, Mn, and Mo) were also affected. MDA content and O2 generation rate increased progressively, while H2O2 content first boosted up at a low Pb concentration of 12.5 μM but then declined. Guaiacol peroxidase and catalase activities increased alternately, while superoxide dismutase activity gradually fell. Negative correlations were found between Pb and soluble protein and photosynthetic pigment. Moreover, Pb exposure resulted in a significant damage of chloroplasts. Taken together, these findings supported the hypothesis that Nymphoides peltatum underwent oxidative stress induced by Pb. In addition, both the disorder of nutrient elements and the damage to the ultrastructure of chloroplasts were indicative of general disarray in the cellular functions exerted by Pb.  相似文献   

4.
This study assessed the oxidative stress status, antioxidant metabolism and polypeptide patterns in salt marsh macrophyte Juncus maritimus shoots exhibiting differential mercury burdens in Ria de Aveiro coastal lagoon at reference and the sites with highest, moderate and the lowest mercury contamination. In order to achieve these goals, shoot-mercury burden and the responses of representative oxidative stress indices, and the components of both non-glutathione- and glutathione-based H2O2-metabolizing systems were analyzed and cross-talked with shoot-polypeptide patterns. Compared to the reference site, significant elevations in J. maritimus shoot mercury and the oxidative stress indices such as H2O2, lipid peroxidation, electrolyte leakage and reactive carbonyls were maximum at the site with highest followed by moderate and the lowest mercury contamination. Significantly elevated activity of non-glutathione-based H2O2-metabolizing enzymes such as ascorbate peroxidase and catalase accompanied the studied damage-endpoint responses, whereas the activity of glutathione-based H2O2-scavenging enzymes glutathione peroxidase and glutathione sulfo-transferase was inhibited. Concomitantly, significantly enhanced glutathione reductase activity and the contents of both reduced and oxidized glutathione were perceptible in high mercury-exhibiting shoots. It is inferred that high mercury-accrued elevations in oxidative stress indices were obvious, where non-glutathione-based H2O2-decomposing enzyme system was dominant over the glutathione-based H2O2-scavenging enzyme system. In particular, the glutathione-based H2O2-scavenging system failed to coordinate with elevated glutathione reductase which in turn resulted into increased pool of oxidized glutathione and the ratio of oxidized glutathione-to-reduced glutathione. The substantiation of the studied oxidative stress indices and antioxidant metabolism with approximately 53-kDa polypeptide warrants further studies.  相似文献   

5.
Due to its prolific growth, oilseed rape (Brassica napus L.) can be grown successfully for phytoremediation of cadmium (Cd)-contaminated soils. Nowadays, use of plant growth regulators against heavy metals stress is one of the major objectives of researchers. The present study evaluates the ameliorate effects of 5-aminolevulinic acid (ALA, 0, 0.4, 2, and 10 mg/l) on the growth of oilseed rape (B. napus L. cv. ZS 758) seedlings under Cd stress (0, 100, and 500 μM). Results have shown that Cd stress hampered the seedling growth by decreasing the radical and hypocotyls length, shoot and root biomass, chlorophyll content, and antioxidants enzymes. On the other hand, Cd stress increased the level of malondialdehyde (MDA) and production of H2O2 and accumulation of Cd in the shoots. The microscopic study of leaf mesophyll cells showed that toxicity of Cd totally destroyed the whole cell structure, and accumulation of Cd also appeared in micrographs. Application of ALA at lower dosage (2 mg/l) enhanced the seedling growth and biomass. The results showed that 2 mg/l ALA significantly improved chlorophyll content under Cd stress and decreased the level of Cd contents in shoots. Application of ALA reduced the MDA and H2O2 levels in the cotyledons. The antioxidants enzymes (ascorbate peroxidase, peroxidase, catalase, glutathione reductase, and superoxide dismutase) enhanced their activities significantly with the application of 2 mg/l ALA under Cd stress. This study also indicated that higher dosage of ALA (10 mg/l) imposed the negative effect on the growth of oilseed rape. Microscopic study showed that application of ALA alleviated the toxic effects of Cd in the mesophyll cell and improved the cell structure. Use of 2 mg/l ALA under 500 μM Cd was found to be more effective, and under this dosage, cell structure was clear, with obvious cell wall and cell membrane as well as a big nucleus, which was found with well-developed two or more nucleoli. Chloroplast was almost round in shape and contained thylakoids membranes and grana, but starch grains were not found in chloroplast comparatively to other treatments. On the basis of our results, we can conclude that ALA has a promotive effect which could improve plant survival under Cd stress.  相似文献   

6.

Introduction

The aims of the present study are to investigate the effects of Ce3+ on the growth and some antioxidant metabolisms in rice seedlings (Oryza sativa L. cv Shengdao 16).

Materials and methods

The rice was treated with 0, 0.05, 0.1, 0.5, 1.0, and 1.5?mM Ce3+, respectively. The growth index of rice was measured. The chlorophyll content; catalase, superoxide dismutase, and peroxidase activities; and the level of hydrogen peroxide (H2O2), superoxide anion (O 2 ·? ), and malondialdehyde were assayed. The accumulation of Ce3+ and the uptake of mineral nutrition elements were analyzed with ICP-SF-MS.

Results and discussion

Hormetic effects of Ce3+ on the growth and some antioxidant metabolisms were found in the roots and shoots of rice. The roots can accumulate a much higher content of Ce3+ than shoots and Ce3+ mainly located in the cell wall of roots. Moreover, the uptake of K, Mg, Ca, Na, Fe, Mn, Zn, Cu, and Mo in the roots and shoots was affected with the exposure of different Ce3+ treatments, which indicated that Ce3+ affected the nutritional status of roots and shoots and further affected the growth of rice.

Conclusion

The appropriate amount of Ce3+ improved the defense system and growth of rice. The roots can accumulate a much higher content of Ce3+ than shoots. Moreover, the uptake of K, Mg, Ca, Na, Fe, Mn, Zn, Cu, and Mo in the roots and shoots was affected with the exposure of different Ce3+ treatments.  相似文献   

7.
The role of exogenous spermine (0.25 mM Spm, a type of polyamine (PA) in reducing Cd uptake and alleviating Cd toxicity (containing 1 and 1.5 mM CdCl2 in the growing media) effects was studied in the mung bean (Vigna radiata L. cv. BARI Mung-2) plant. Exogenously applied Spm reduced Cd content, accumulation, and translocation in different plant parts. Increasing phytochelatin content, exogenous Spm reduced Cd accumulation and translocation. Spm application reduced the Cd-induced oxidative damage which was reflected from the reduction of H2O2 content, O2 ?– generation rate, lipoxygenase (LOX) activity, and lipid peroxidation level and also reflected from the reduction of spots of H2O2 and O2 ?– from mung bean leaves (compared to control treatment). Spm pretreatment increased non-enzymatic antioxidant contents (ascorbate, AsA, and glutathione, GSH) and activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and glutathione reductase (GR) which reduced oxidative stress. The cytotoxicity of methylglyoxal (MG) is also reduced by exogenous Spm because it enhanced glyoxalase system enzymes and components. Through osmoregulation, Spm maintained a better water status of Cd-affected mung bean seedlings. Spm prevented the chl damage and increased its content. Exogenous Spm also modulated the endogenous free PAs level which might have the roles in improving physiological processes including antioxidant capacity, osmoregulation, and Cd and MG detoxification capacity. The overall Spm-induced tolerance of mung bean seedlings to Cd toxicity was reflected through improved growth of mung bean seedlings.  相似文献   

8.
Phthalic acid esters (PAEs) are one kind of persistent organic pollutants. This study was conducted to investigate the effects of diethylphthalate (DEP) and di(2-ethyl)hexylphthalate (DEHP) with different concentrations (0, 30, 50, 100, and 200 mg L?1) on early seedling growth of Cucumis sativus L. Physiological, biochemical, and ultrastructure of seedling leaves were examined for 7-day exposure. The three antioxidant enzymes’ activities was stimulated at low-DEP treatments and decreased under higher levels (>200 mg L?1) compared to the controls. Furthermore, MDA and H2O2 gradually enhanced with the elevation of DEP and DEHP concentration. Significant impact on the chloroplast and mitochondrion was visible, possibly as a consequence of free radical generation. DEP induced bigger and more starch grains in chloroplasts than DEHP. This study concluded that the effects of DEP and DEHP on cucumber seedlings represented the adverse impacts of DEP and DEHP on the ecosystem and agricultural production. The environmental harm caused by DEP was severer than DEHP.  相似文献   

9.
Indiscriminate release of metal oxide nanoparticles (NPs) into the environment due to anthropogenic activities has become a serious threat to the ecological system including plants. The present study assesses the toxicity of nano-CuO on rice (Oryza sativa cv. Swarna) seedlings. Three different levels of stress (0.5 mM, 1.0 mM and 1.5 mM suspensions of copper II oxide, <50 nm particle size) were imposed and seedling growth performance was studied along control at 7 and 14 d of experiment. Modulation of ascorbate–glutathione cycle, membrane damage, in vivo ROS detection, foliar H2O2 and proline accumulation under nano-CuO stress were investigated in detail to get an overview of nano-stress response of rice. Seed germination percentage was significantly reduced under stress. Higher uptake of Evans blue by nano-CuO stressed roots over control indicates loss of root cells viability. Presence of dark blue and deep brown spots on leaves evident after histochemical staining with NBT and DAB respectively indicate severe oxidative burst under nano-copper stress. APX activity was found to be significantly increased in 1.0 and 1.5 mM CuO treatments. Nevertheless, elevated APX activity might be insufficient to scavenge all H2O2 produced in excess under nano-CuO stress. That may be the reason why stressed leaves accumulated significantly higher H2O2 instead of having enhanced APX activity. In addition, increased GR activity coupled with isolated increase in GSH/GSSG ratio does not seem to prevent cells from oxidative damages, as evident from higher MDA level in leaves of nano-CuO stressed seedlings over control. Enhanced proline accumulation also does not give much protection against nano-CuO stress. Decline in carotenoids level might be another determining factor of meager performance of rice seedlings in combating nano-CuO stress induced oxidative damages.  相似文献   

10.
Heavy metals have long-term adverse impacts on the health of soil ecosystems and even exhibit hazardous influences on human health. Literatures have shown that heavy metals could result in the reduction of crops growth and development and finally result in crops production decline. To determine whether or not ultrasonic vibration alleviate damage induced by cadmium and lead in crops, the wheat seeds, which is one of the most important agriculture crops in China and other countries in the world, were exposed to 10 min ultrasonic vibration and then the toxicological effects were investigated. Wheat seeds were soaked for 3 h with water and then the seeds were placed in clean beaker with some water, the beaker were placed in ultrasonic apparatus to vibrate (model, KQ-200VDV; frequency, 45 KHz; power, 160 W). Pretreatment seeds of 80 were sown in dishes (Ø 15 cm). After seeds emergence, the seedlings were thinned to 60 per dish. The dishes with seedlings were placed in a growth chamber maintained at 25 °C, 70 % relative humidity and 380 μmol?mol?1 CO2 under dark condition. A 400 μmol?m?2?s?1 photosynthetically active radiation was provided for 8 h (dark for 16 h) after the seed germination. When the seedlings were 2 days old, the seedlings were subjected to cadmium and lead for 4 days and then some selective biochemical and physiological parameters were measured. (1) Although each doses of ultrasonic vibration could improve seed germination, enhance biosynthesis of protein and chlorophyll and seedlings growth, the optimum dosage of ultrasonic vibration was 10 min. (2) Compared with the controls, cadmium and lead stress led to significant increase in the concentrations of malondialdehyde (MDA) and O?2 and in the conductivity of electrolyte leakage, but the activities of catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), the glutathione concentration, and the shoot weight were decreased by Cd and Pb stress. In the case of the seeds exposed to ultrasonic vibration and the seedlings followed by cadmium lead stress, the concentrations of MDA and O?2, and the conductivity of electrolyte leakage were significantly lower than those in cadmium and lead stress; the activities of CAT, SOD, and GR and the shoot weight were significantly higher (except for glutathione (GSH) concentration) than those in cadmium and lead stress seedlings. The membrane is responsible for the selective inflow and outflow of molecules, ions, and water, and is a dynamic structure that performs a variety of functions. Cellular membrane systems play an important role in the compartmentalization of cells and maintaining intercellular homeostasis. Abiotic and biotic stress can induce functional impairments to the cellular membrane systems through triggering an increased formation of reactive oxygen species (ROS), such as superoxide (O2 ?), hydrogen peroxide (H2O2), and hydroxyl radicals. There are several pathways that can be utilized to eliminate ROS in plants, e.g., CAT, SOD, and GR and GSH, etc. compared with controls, cadmium, and lead enhanced the concentrations of ROS; decreased the SOD, CAT, and GR activities; the GSH concentration, and the seedling growth. In the case of ultrasonic pretreatment followed by cadmium and lead stresses, the activities of CAT, SOD, and GR were significant higher, and the conductivity of electrolyte leakage and the concentrations of MDA and O2 ? were significant lower than that of those subjected by cadmium and lead stress. This phenomenon demonstrated ultrasonic pretreatment can help plant eliminate the ROS by enhance the activities of antioxidant enzymes. These results suggested that ultrasonic vibration can alleviate the toxicological effect induced by heavy mental.  相似文献   

11.
Hexavalant chromium [Cr(VI)] tolerance and accumulation in in vitro grown Nopalea cochenillifera Salm. Dyck. plants was investigated. A micropropagation protocol was establish for a rapid multiplication of N. cochenillifera and [Cr(VI)] tolerance and accumulation was studied in in vitro grown cultures. Cr concentration was estimated by atomic absorption spectroscopy in roots and shoots to confirm plant’s hyperaccumulation capacity. Plants showed tolerance up to 100 μM K2Cr2O7 without any significant changes in root growth after 16 days treatment; whereas, chlorophyll content in plants treated with 1 and 10 μM K2Cr2O7 were not so different than the control plant. The levels of lipid peroxidation and protein oxidation increased significantly (p?<?0.01) with increasing concentration of chromium. Exposures of N. cochenillifera to lower concentrations of K2Cr2O7 (≤10 μM) induced catalase (CAT) and superoxide dismutase (SOD) significantly (p?<?0.001) but higher concentrations of K2Cr2O7 (>100 μM) inhibited the activities of CAT and SOD. Roots accumulated a maximum of 25,263.396?±?1,722.672 mg?Cr?Kg?1 dry weight (DW); while the highest concentration of Cr in N. cochenillifera shoots was 705.714?±?32.324 mg?Cr?Kg?1?DW. N. cochenillifera could be a prospective hyperaccumulator plant of Cr(VI) and a promising candidate for phytoremediation purposes.  相似文献   

12.
Activated carbons (ACs) were developed from bio-waste materials like rice husk and peanut shell (PS) by various physicochemical activation methods. PS char digested in nitric acid followed by treatment at 673 K resulted in high surface area up to ~585 m2/g. The novelty of the present study is the identification of oxygen functional groups formed on the surface of activated carbons by infrared and X-ray photoelectron spectroscopy and quantification by using temperature programmed decomposition (TPD). Typical TPD data indicated that each activation method may lead to varying amounts of acidic and basic functional groups on the surface of the adsorbent, which may be a crucial factor in determining the adsorption capacity. It was shown that ACs developed during the present study are good adsorbents, especially for the removal of a model textile dye methylene blue (MB) from aqueous solution. As MB is a basic dye, H2O2-treated rice husk showed the best adsorption capacity, which is in agreement with the acidic groups present on the surface. Removal of the dye followed Langmuir isotherm model, whereas MB adsorption on ACs followed pseudo-second-order kinetics.  相似文献   

13.
In the present study, selected advanced oxidation processes (AOPs)—namely, photo-Fenton (with Fe2+, Fe3+, and potassium ferrioxalate—FeOx—as iron sources), solar photo-Fenton, Fenton, and UV/H2O2—were investigated for degradation of the antineoplastic drug mitoxantrone (MTX), frequently used to treat metastatic breast cancer, skin cancer, and acute leukemia. The results showed that photo-Fenton processes employing Fe(III) and FeOx and the UV/H2O2 process were most efficient for mineralizing MTX, with 77, 82, and 90 % of total organic carbon removal, respectively. MTX probably forms a complex with Fe(III), as demonstrated by voltammetric and spectrophotometric measurements. Spectrophotometric titrations suggested that the complex has a 2:1 Fe3+:MTX stoichiometric ratio and a complexation constant (K) of 1.47 × 104 M–1, indicating high MTX affinity for Fe3+. Complexation partially inhibits the involvement of iron ions and hence the degradation of MTX during photo-Fenton. The UV/H2O2 process is usually slower than the photo-Fenton process, but, in this study, the UV/H2O2 process proved to be more efficient due to complexing of MTX with Fe(III). The drug exhibited no cytotoxicity against NIH/3T3 mouse embryonic fibroblast cells when oxidized by UV/H2O2 or by UV/H2O2/FeOx at the concentrations tested.  相似文献   

14.
This study was conducted to investigate the effect of external iron status and arsenic species on chelant-enhanced iron bioavailability and arsenic uptake. Rice seedlings (Oryza sativa L.) were used as model plant, and were grown in artificially contaminated sandy soils irrigated with Murashige and Skoog (MS) culture solution. Arsenate uptake in roots and shoots of rice seedlings were affected significantly (> 0.05) while dimethylarsinic acid (DMAA) was not by the additional iron and chelating ligand treatments. Regardless of iron concentrations in the soil solution, HIDS increased arsenic uptake for roots more than EDTA and EDDS. Chelating ligands and arsenic species also influenced iron uptake in rice roots. Irrespective of arsenic species, HIDS was found to be more effective in the increase of iron bioavailability and uptake in rice roots compared to other chelants. There was a significant positive correlation (= 0.78, < 0.05) between arsenate and iron concentrations in the roots of rice seedlings grown with or without additional iron indicating that arsenate inhibit iron uptake. In contrast, there was no correlation between iron and DMAA uptake in roots. Poor correlation between iron and arsenic in shoots indicated that iron uptake in shoots was neither affected by additional iron nor by arsenic species. Compared to the control, chelating ligands increased iron uptake in shoots of rice seedlings significantly (< 0.05). Regardless of additional iron and arsenic species, iron uptake in rice shoots did not differed among EDTA, EDDS, and HIDS treatments.  相似文献   

15.
In vitro experiments were conducted to investigate the effects of abscisic acid (ABA) and Cd on antioxidative defense systems and indole-3-acetic acid (IAA) oxidase during adventitious rooting in mung bean [Vigna radiata (L.) Wilczek] seedlings. The exogenous ABA significantly enhanced the number and fresh weight of the adventitious roots. CdCl2 strongly inhibited adventitious rooting. Pretreatment with 10 μM ABA clearly alleviated the inhibitory effect of Cd on rooting. ABA significantly reduced superoxide dismutase (SOD), ascorbate peroxidase (APX), peroxidase (POD), and catalase (CAT) activities, as well as the levels of glutathione (GSH) and ascorbic acid (ASA) during adventitious rooting. ABA strongly increased IAA-oxidase activity during the induction (0–12 h) and expression (after 48 h) phases and increased the phenols levels. Cd treatment significantly reduced the activities of SOD, APX, POD, and IAA oxidase, as well as GSH level. Cd strongly increased ASA levels. ABA pretreatment counteracted Cd-induced alterations of certain antioxidants and antioxidative enzymes, e.g., remarkably rescued APX and POD activities, reduced the elevated SOD and CAT activities and ASA levels, and recovered the reduced GSH levels, caused by Cd stress. Thus, the physiological effects of the combination of ABA and Cd treatments were opposite of those obtained with Cd treatment alone, suggesting that ABA involved in the regulation of antioxidative defense systems and the alleviation of wounding- and Cd-induced oxidative stress.  相似文献   

16.
This study, based on a greenhouse pot culture experiment conducted with 15-day-old rapeseed (Brassica campestris L. cv. Pusa Gold; family Brassicaceae) and moong bean (Vigna radiata L. Wilczek cv. Pusa Ratna; family Fabaceae) plants treated with cadmium (Cd) concentrations (0, 50, and 100 mg kg?1 soil), investigates their potential for Cd accumulation and tolerance, and dissects the underlying basic physiological/biochemical mechanisms. In both species, plant dry mass decreased, while Cd concentration of both root and shoot increased with increase in soil Cd. Roots harbored a higher amount of Cd (vs. shoot) in B. campestris, while the reverse applied to V. radiata. By comparison, root Cd concentration was higher in B. campestris than in V. radiata. The high Cd concentrations in B. campestris roots and V. radiata shoots led to significant elevation in oxidative indices, as measured in terms of electrolyte leakage, H2O2 content, and lipid peroxidation. Both plants displayed differential adaptation strategies to counteract the Cd burden-caused anomalies in their roots and shoots. In B. campestris, increasing Cd burden led to a significantly decreased reduced glutathione (GSH) content but a significant increase in activities of GSH reductase (GR), GSH peroxidase (GPX), and GSH sulfotransferase (GST). However, in V. radiata, increasing Cd burden caused significant increase in GSH content and GR activity, but a significant decline in activities of GPX and GST. Cross talks on Cd burden of tissues and the adapted Cd tolerance strategies against Cd burden-accrued toxicity indicated that B. campestris and V. radiata are good Cd stabilizer and Cd extractor, respectively, wherein a fine tuning among the major components (GR, GPX, GST, GSH) of the GSH redox system helped the plants to counteract differentially the Cd load-induced anomalies in tissues. On the whole, the physiological/biochemical characterization of the B. campestris and V. radiata responses to varying Cd concentrations can be of great help in elaborating the innovative plant-based remediation technologies for metal/metalloid-contaminated sites.  相似文献   

17.
In this study, a three-factor, three-level Box-Behnken design with response surface methodology were used to maximize the TOC removal and minimize the H2O2 residual in the effluent of the combined UV-C/H2O2-VUV system for the treatment of an actual slaughterhouse wastewater (SWW) collected from one of the meat processing plants in Ontario, Canada. The irradiation time and the initial concentrations of total organic carbon (TOCo) and hydrogen peroxide (H2O2o) were the three predictors, as independent variables, studied in the design of experiments. The multiple response approach was used to obtain desirability response surfaces at the optimum factor settings. Subsequently, the optimum conditions to achieve the maximum percentage TOC removal of 46.19% and minimum H2O2 residual of 1.05% were TOCo of 213 mg L?1, H2O2o of 450 mg L?1, and irradiation time of 9 min. The attained optimal operating conditions were validated with a complementary test. Consequently, the TOC removal of 45.68% and H2O2 residual of 1.03% were achieved experimentally, confirming the statistical model reliability. Three individual processes, VUV alone, VUV/H2O2, and UV-C/H2O2, were also evaluated to compare their performance for the treatment of the actual SWW using the optimum parameters obtained in combined UV-C/H2O2-VUV processes. Results confirmed that an adequate combination of the UV-C/H2O2-VUV processes is essential for an optimized TOC removal and H2O2 residual. Finally, respirometry analyses were also performed to evaluate the biodegradability of the SWW and the BOD removal efficiency of the combined UV-C/H2O2-VUV processes.  相似文献   

18.
The paper presents results of the studies photodegradation, photooxidation, and oxidation of phenylarsonic acid (PAA) in aquatic solution. The water solutions, which consist of 2.7 g dm?3 phenylarsonic acid, were subjected to advance oxidation process (AOP) in UV, UV/H2O2, UV/O3, H2O2, and O3 systems under two pH conditions. Kinetic rate constants and half-life of phenylarsonic acid decomposition reaction are presented. The results from the study indicate that at pH 2 and 7, PAA degradation processes takes place in accordance with the pseudo first order kinetic reaction. The highest rate constants (10.45?×?10?3 and 20.12?×?10?3) and degradation efficiencies at pH 2 and 7 were obtained at UV/O3 processes. In solution, after processes, benzene, phenol, acetophenone, o-hydroxybiphenyl, p-hydroxybiphenyl, benzoic acid, benzaldehyde, and biphenyl were identified.  相似文献   

19.
Plutonium associated with higher molecular weight molecules is presumed to be poorly mobile and hardly plant available. In our present study, we investigate the uptake and effects of Pu treatments on Solanum tuberosum plants in amended Hoagland medium at concentrations of [242Pu] = 100 and 500 nm, respectively. We found a direct proof of oxidative stress in the plants caused by these rather low concentrations. For the confirmation of oxidative stress, we explored the production of nitric oxide (NO) and hydrogen peroxide (H2O2) by epifluorescence microscopy. Oxidative stress markers like lipid peroxidation and superoxide radicals (O2 ??) are monitored through histochemical analysis. The biochemical parameters i.e. chlorophyll and carotenoids are measured as an indicator of cellular damage in the tested plants including the enzymatic parameters such as catalase and glutathione reductase. From our work, we conclude that Pu in low concentration has no significant effects on the uptake of many trace and macroelements. In contrast, the content of O2 ?? , malondialdehyde (MDA), and H2O2 increases with increasing Pu concentration in the solution, while the opposite effects was found for NO, catalase, and glutathione reductase. These findings prove that even low concentration of Pu regulates ROS production and generate oxidative stress in S. tuberosum L.  相似文献   

20.
In this study, we evaluated the phylogenetic diversity of culturable bacterial endophytes of Zea mays plants growing in an agricultural soil contaminated with Zn and Cd. Endophytic bacterial counts were determined in roots and shoots, and isolates were grouped by random amplified polymorphic DNA and identified by 16S ribosomal RNA (rRNA) gene sequencing. Endophytes were further characterized for the production of plant growth-promoting (PGP) substances, such as NH3, siderophores, indol-3-acetic acid (IAA), hydrogen cyanide and extracellular enzymes, and for the capacity to solubilize phosphate. The endophytes producing higher amounts of IAA were screened for their tolerance to Zn and Cd and used as bioinoculants for maize seedlings grown in the Zn/Cd-contaminated soil. The counts of endophytes varied between plant tissues, being higher in roots (6.48 log10 g?1 fresh weight) when compared to shoots (5.77 log10 g?1 fresh weight). Phylogenetic analysis showed that endophytes belong to three major groups: α-Proteobacteria (31 %), γ-Proteobacteria (26 %) and Actinobacteria (26 %). Pseudomonas, Agrobacterium, Variovorax and Curtobacterium were among the most represented genera. Endophytes were well-adapted to high Zn/Cd concentrations (up to 300 mg Cd l?1 and 1,000 mg Zn l?1) and showed ability to produce several PGP traits. Strains Ochrobactrum haematophilum ZR 3-5, Acidovorax oryzae ZS 1-7, Frigoribacterium faeni ZS 3-5 and Pantoea allii ZS 3-6 increased root elongation and biomass of maize seedlings grown in soil contaminated with Cd and Zn. The endophytes isolated in this study have potential to be used in bioremediation/phytoremediation strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号