首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
A novel and cost-effective method of sulfosulfuron extraction has been developed using distilled water as an extraction solvent. Using this method, the environmental fate of sulfosulfuron was investigated in soil under wheat crop. Studies were conducted under natural field conditions in randomized block design and herbicide (75% water dispersible granules (WG)) was applied after 24 days of sowing. The rates of applications were 25 and 50 g of active ingredient (a.i.) per hectare. Soil samples were collected at predetermined intervals and analyzed by high performance liquid chromatography (HPLC). The minimum detection limit was found to be 0.001 μ g g? 1. The dissipation of sulfosulfuron followed first-order rate kinetics and dissipated with a half-life of 5.4–6.3 days. After harvest, field soil was used for conducting a pot experiment with bottle gourd (Lagenaria siceraria) as test plants to study the carry over effect of sulfosulfuron. No phytotoxicity was observed to bottle gourd in pot experiment with harvest soil.  相似文献   

2.
Dissipation study of sulfosulfuron in natural water and its bioaccumulation in fish was conducted at 25+/-2 degrees C and at two different concentration levels 1mgl(-1) and 2mgl(-1). The dissipation data in water showed the DT50 and DT90 values 67-76 and 222-253 days and followed first order kinetics. Bioaccumulation of sulfosulfuron in fish was conducted under static conditions exposing the fish at one-tenth of sub-lethal concentration 9mgl(-1) and at double the concentration 18mgl(-1), for a period of 56 days. On different occasions fish samples were collected and analyzed. A HPLC-RF method was used for the quantification of sulfosulfuron and aminopyrimidine with the limit of quantification 0.001microg ml(-1). Results showed the accumulation of residues of sulfosulfuron in fish over the concentration range 0.009-0.496microg g(-1). Both in water and fish samples, identified the presence of metabolites aminopyrimidine, desmethyl sulfosulfuron, guanidine, sulfonamide, ethyl sulfone and rearranged amine. The formations of these metabolites are confirmed by LC-MS/MS analysis. An LC-MS/MS electro spray ionization technique was used for this purpose. One of the metabolite Aminopyrimidine was identified at higher concentration levels (0.01-0.1microg ml(-1)) when compared with other metabolites. Subsequently dissipation of aminopyrimidine in water and its bioaccumulation was also studied at the concentration level 1mgl(-1) and 2mgl(-1). The calculated DT50 and DT90 values are 66-68 days and 218-226 days, respectively. This followed first order kinetics. Three hundred days after the exposure complete demineralization was observed.  相似文献   

3.
A method was developed for sulfosulfuron [(1-(2-ethylsulfonylimidazo [1,2-a] pyridin-3-ylsulfonyl)-3-(4,6-dimethoxy pyrimidin-2yl)] and its three major metabolites by HPLC utilizing photodiode array detector. The method makes use of Lichrosphere RP-8 column and acetonitrile:water:orthophosphoric acid (80:20:0.1 v/v/v) as mobile phase at a flow rate of 1 ml min(-1). Using these condition sulfosulfuron, and compounds II, III and IV were resolved with distinct Rt of 2.088, 2.216, 2.302 and 2.476 minutes, respectively. Sulfosulfuron residues were analysed in soil, wheat grain and straw samples by extracting with a mixture of acetonitrile and 2 M ammonium carbonate (100 ml, 9:1, v/v) using horizontal shaker for soil and Soxhlet apparatus for wheat grain and straw samples. The extracts were cleaned up by partitioning with dichloromethane in case of soil and hexane followed by dichloromethane for plant samples. The percent recovery ranged between 71 to 75.2 for soil and 70.8 to 74.7 for plant samples. The limit of determination of sulfosulfuron was 0.25 microg g(-1).  相似文献   

4.
A simple and efficient residue analysis method for direct determination of ioxynil octanoate in maize and soil was developed and validated with High Performance Liquid Chromatography-Ultra Violet (HPLC-UV). The samples were extracted with mixtures of acetonitrile and deionized water followed by Solid Phase Extraction (SPE) to remove co-extractives prior to analysis by HPLC-UV. The recoveries of ioxynil octanoate extracted from maize and soil samples ranged from 86 %-104 % and 84 %-96 %, respectively, with relative standard deviation (RSD) less than 7.84% and sensitivity of 0.01 mg kg(-1). The method was applied to determine the residue of ioxynil octanoate in maize and soil samples from experimental field. Data had shown that the dissipation rate in soil was described as pseudo-first-order kinetics and the half-life (t(1/2)) was less than 1.78 days. No ioxynil octanoate residue (<0.01 mg kg(-1)) was detected in maize at harvest time withholding period of 60 days after treatments of the pesticide. Direct confirmation of the analytes in field trial samples was realized by Liquid Chromatography-Mass Spectrometry (LC-MS).  相似文献   

5.
Sorption of metsulfuron-methyl and sulfosulfuron were studied in five Indian soils using batch sorption method. Freundlich adsorption equation described the sorption of herbicides with K(f) (adsorption coefficient) values ranging between 0.21 and 1.88 (metsulfuron-methyl) and 0.37 and 1.17 (sulfosulfuron). Adsorption isotherms were L-type suggesting that the herbicides sorption decreased with increase in the initial concentration of the herbicide in the solution. The K(f) for metsulfuron-methyl showed good positive correlation with silt content (significant at p = 0.01) and strong negative correlation with the soil pH (significant at p = 0.05) while sorption of sulfosulfuron did not correlate with any of the soil parameter. Desorption of herbicides was concentration dependent and, in general, sulfosulfuron showed higher desorption than the metsulfuron-methyl. The study indicates that these herbicides are poorly sorbed in the Indian soil types and there may be a possibility of their leaching to lower soil profiles.  相似文献   

6.
A simple, very efficient method is presented for routine analysis of herbicide Krovar I (active components bromacil and diuron) in water and soil samples. Water samples were extracted by liquid-liquid extraction with dichloromethane (DCM) as extraction solvent. For soil samples two different extraction techniques were compared: microwave-assisted solvent extraction and a shaking technique using a platform shaker. Extracts were analyzed by high performance liquid chromatography using a water:methanol gradient. Liquid chromatography was coupled with atmospheric pressure chemical ionization mass spectrometry (LC-APCI-MS) for quantification of bromacil and diuron. Optimization of the APCI-MS was done by using standards in the flow injection analysis mode (FIA). Method detection limit for liquid samples for bromacil is 0.04 microg L(-1) and for diuron 0.03 microg L(-1). Method detection limit for soil samples is 0.01 microg g(-1) dry weight for both compounds. Results of analysis of field samples of water and soil are also presented.  相似文献   

7.
Sorption of metsulfuron-methyl and sulfosulfuron were studied in five Indian soils using batch sorption method. Freundlich adsorption equation described the sorption of herbicides with Kf (adsorption coefficient) values ranging between 0.21 and 1.88 (metsulfuron-methyl) and 0.37 and 1.17 (sulfosulfuron). Adsorption isotherms were L-type suggesting that the herbicides sorption decreased with increase in the initial concentration of the herbicide in the solution. The Kf for metsulfuron-methyl showed good positive correlation with silt content (significant at p = 0.01) and strong negative correlation with the soil pH (significant at p = 0.05) while sorption of sulfosulfuron did not correlate with any of the soil parameter. Desorption of herbicides was concentration dependent and, in general, sulfosulfuron showed higher desorption than the metsulfuron-methyl. The study indicates that these herbicides are poorly sorbed in the Indian soil types and there may be a possibility of their leaching to lower soil profiles.  相似文献   

8.
Metolachlor [2-chloro-N-(2-methoxy-1-methylethyl)-2'-ethyl-6'- methyl acetanilide] dissipation under both field and laboratory conditions were studied during summer season in an Indian soil. Metolachlor was found to have moderate persistence with a half-life of 27 days in field. The herbicide got leached down to 15-30 cm soil layer and residues were found up to harvest day of the sunflower crop in both 0-15 cm and 15-30 cm soil layers. Metolachlor was found to be more persistent in laboratory studies conducted for 190 days. The rate of degradation was faster in soil under flooded partial anaerobic conditions as compared to aerobic soil with a half-life of 44.3 days. In aerobic soil, metolachlor was very stable with only 49% dissipation in 130 days. Residues remained in both the soils up to the end of the experimental period of 190 days.  相似文献   

9.
The environmental fate and distribution of fungicide epoxiconazole were studied by a rice paddy field model ecosystem. One week before the head-sprouting stage, rice plant was treated separately once with OPUS (tradename of epoxiconazole) 12% SC 2.1 kg ha(-1) and 1.4 kg ha(-1), respectively. Soil, water and rice plant were sampled seven days intervals nine times after application. The bioconcentration factor of epoxiconazole on mosquito fish in the ecosystem was also determined, based on the amounts of epoxiconazole content both in fish and water. This was initiated one day after the fungicide treatment, and continued for four days. In addition, the residue of epoxiconazole in rice grains was analyzed after harvest. After harvest, both planted water spinach (Ipomoea aquatica Forsk) and edible amaranth (Amaranthus mangostanüs L.) were analyzed. The results showed that epoxiconazole degraded in the local environment under the experimental conditions described. The degradation equations were in accordance with the first order kinetics. The DT50 of soil, field water and rice plant were 20-69 days, 11-20 days and 14-39 days, respectively. The bioconcentration factors of epoxiconazole on mosquito fish were 12.9 and 10.6 from 2.1 kg ha(-1) and 1.4 kg ha(-1) treatment, respectively. Residues of epoxiconazole in both rice and harvest vegetables were non-detectable. This indicates that epoxiconazole applied to rice at the recommended rates and application frequencies will not accumulate on rice grain and successive cropping vegetables.  相似文献   

10.
A laboratory pot experiment was conducted to study the effect of amending soil with four different sources of organic matter on the degradation rate of alpha and beta endosulfan isomers. Poultry by-product meal, poultry manure, dairy manure, and municipal solid waste compost were cured, dried, ground (<1 mm) and thoroughly mixed with a calcareous soil at a rate of 2% and placed in plastic pots. Endosulfan was added at the rate of 20 mg kg(-1). The moisture level was kept near field capacity and the pots were kept at room temperature. Soil sub-samples, 100 g each, were collected from every pot at days 1, 8, 15, 22, 29, 43, and 57 for the measurement of endosulfan isomers. Endosulfan residues were extracted from the soil samples with acetone. The supernatant was filtered through anhydrous sodium sulphate, 5 mL aliquot was diluted to 25 mL with hexane, mixed well, and then two sub-samples from the filtrates were analyzed for alpha and beta endosulfan isomers by gas chromatography. The results indicated that the half-life (T(1/2)) of alpha-endosulfan in the poultry by-product meal treatment was 15 days compared to about 22 days in the other treatments. The T(1/2) of beta-endosulfan was 22 days in the poultry by-product meal treatment and followed a bi-phasic pattern, 57 days in the municipal solid waste compost treatment and the extrapolated T(1/2) was about 115 days for the other three treatments.  相似文献   

11.
Degradation of trifluralin (alpha, alpha, alpha-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine) was investigated in soils taken from three different locations at Harran region of Turkey under laboratory conditions. Surface (0-10 cm) soils, which were taken from a pesticide untreated field Gürgelen, Harran-1 and Ikizce regions in the Harran Plain. were incubated in biometer flasks for 350 days at 25 degrees C. Ring-UL-14C-trifluralin was applied at the rate of 2 microg g(-1) with 78.7 kBq radioactivity per 100 g soil flask. Evolved (14)CO2 was monitored in KOH traps throughout the experiment. Periodically, soil sub-samples were removed and extracted by supercritical fluid extraction (SFE). Unextractable soil-bound 14C residues were determined by combustion. During the 350 days incubation period 6.6, 5.4, and 3.3/' of the applied radiocarbon was evolved as (14)CO2 from the Harran-1, Gürgelen, and Ikizce soil, respectively. At the end of 350 days the SFE-extractable and bound 14C-trifluralin residues were 39.0 and 29.2% of the initially applied herbicide in Gürgelen soil. The corresponding values for Harran-1 and Ikizce soils were 36.2, 28.4% and 41.6, 18.5% respectively.  相似文献   

12.
The persistence of fenoxaprop ethyl {Ethyl (RS)-2-[4-(6-chloro-1,3-benzoxazol-2-yloxy) phenoxy] propionate} herbicide and its active metabolite fenoxaprop acid was investigated in soil and wheat crop. Fenoxaprop acid was prepared by alkaline hydrolysis of fenoxaprop ethyl. A HPLC method was developed in which fenoxaprop ethyl herbicide and its acid metabolite showed sharp single peak at 6.44 and 2.61 min respectively. The sensitivity of the method for ester and acid was 2 and 1 ng respectively with limit of detection of 0.1 and 0.05 μg mL?1. The recovery of fenoxaprop ethyl and fenoxaprop acid from soil, wheat straw and grain ranged between 73.8–80.2%. In a field experiment fenoxaprop ethyl (Puma super® 10 EC) when applied to wheat crop at the rate of 120 g and 240 g a.i. ha-1 as post emergence spray, fenoxaprop ethyl converted to fenoxaprop acid. Residues of fenoxaprop ethyl and acid dissipated in soil with a half-life of 0.5 and 7.3 days, respectively. At harvest no detectable residues of fenoxaprop ethyl or acid were observed in soil, wheat grain and straw samples.  相似文献   

13.
A field experiment to determine the available bensulfuron-methyl (BSM) in the upper soil layer was conducted in an agricultural area in the South of Spain. To facilitate herbicide analysis, two application rates were employed, 200 g ha(-1) and 5 kg ha(-1). Samples of upper soil and soil solution were collected. Soil solution was sampled by means of metallic samplers, placed at a depth of 35 cm. In the plots receiving the lower dose ceramic suction, porous cups were also installed. Results from soil solution samples showed that the maximum BSM concentration was found after 8-10 days for the high irrigation supply (945 mm) and after 18-25 days for the lower irrigation regime (405 mm). The mathematical model FOCUSPELMO 1.1.1 was applied to interpret the data obtained in the field experiments. In general, there was a reasonable agreement between experimental and simulated data for soil samples, although the model did not acceptably predict herbicide concentrations in water soil samples. Ceramic cups sampled a higher soil water volume and more frequently than did the metallic samplers. However some variable results were attributed to preferential flow.  相似文献   

14.
Behaviour of forchlorfenuron residues in grape,soil and water   总被引:3,自引:0,他引:3  
Sharma D  Awasthi MD 《Chemosphere》2003,50(5):589-594
Persistence of forchlorfenuron residues in grape berries at harvest following its dip application as single or split doses to grape berry clusters and periodic dissipation of forchlorfenuron residues in grape berries following foliar spray application were studied. Periodic dissipation of forchlorfenuron residues following its fortification in soil and water were also studied. Splitting the dip application concentration of forchlorfenuron to grape berries reduced its residues in the berries at harvest, which persisted for more than 65 days from all treatments. In case of foliar application, however, the residues of forchlorfenuron in/on the grape berries persisted for 15-20 days only from three treatment concentrations of 2, 3 and 4 ml/l and dissipated with half-lives of 3.4-4.5 days. The residues of forchlorfenuron dissipated faster in soils maintained at field capacity moisture condition than in air dry soils. There was wide variation in its residue persistence in soil (DT50 = 15.1-121.3 days) depending on soil type and moisture condition. Forchlorfenuron residues persisted for more than 30 days in water and its dissipation was fastest at a water salinity level of 3.85 mmho/ cm although the rate of dissipation was not significantly affected by the change in salinity level from <0.04 to 5.90 mmho/cm.  相似文献   

15.
The fate of glyphosate and its degradation product aminomethylphosphonic acid (AMPA) was studied in soil. Labeled glyphosate was used to be able to distinguish the measured quantities of glyphosate and AMPA from the background values since the soil was sampled in a field where glyphosate had been used formerly. After addition of labeled glyphosate, the disappearance of glyphosate and the formation and disappearance of AMPA were monitored. The resulting curves were fitted according to a new EU guideline. The best fit of the glyphosate degradation data was obtained using a first-order multi compartment (FOMC) model. DT(50) values of 9 days (glyphosate) and 32 days (AMPA) indicated relatively rapid degradation. After an aging period of 6 months, the leaching risk of each residue was determined by treating the soil with pure water or a phosphate solution (pH 6), to simulate rain over a non-fertilized or fertilized field, respectively. Significantly larger (p < 0.05) amounts of aged glyphosate and AMPA were extracted from the soil when phosphate solution was used as an extraction agent, compared with pure water. This indicates that the risk of leaching of aged glyphosate and AMPA residues from soil is greater in fertilized soil. The blank soil, to which 252 g glyphosate/ha was applied 21 months before this study, contained 0.81 ng glyphosate/g dry soil and 10.46 ng AMPA/g dry soil at the start of the study. Blank soil samples were used as controls without glyphosate addition. After incubation of the blank soil samples for 6 months, a significantly larger amount of AMPA was extracted from the soil treated with phosphate solution than from that treated with pure water. To determine the degree of uptake of aged glyphosate residues by crops growing in the soil, (14)C-labeled glyphosate was applied to soil 6.5 months prior to sowing rape and barley seeds. After 41 days, 0.006 +/- 0.002% and 0.005 +/- 0.001% of the applied radioactivity was measured in rape and barley, respectively.  相似文献   

16.

Persistence of triasulfuron [3-(6-methoxy-4methyl-1,3,5-triazin-2-yl)-1-{2-(2-chloroethoxy)-phenylsulfonyl}-urea] in soil was studied under wheat crop and laboratory conditions. Field experiment was conducted in the farms of Agronomy Division, Indian Agricultural Research Institute (IARI), New Delhi. Randomized block design (RBD) was followed with four replicates and two rates of treatments along with control and weedy check. Triasulfuron was applied as post-emergent application to wheat crop at two rates of application viz., 15 g and 20 g a.i. ha?1. Soil samples at 0 (3 h), 1, 3, 5, 7, 10, 15, 20, and 30-day intervals after application were drawn, extracted, cleaned up, and analyzed for herbicide residues by high performance liquid chromatography (HPLC) using C18 column and methanol: water (8:2) as mobile phase at 242 nm wave length. Effect of microbial activity and soil pH was studied under laboratory conditions. Dissipation of triasulfuron followed a first-order-rate kinetics. Residues dissipated from field soil with half-life of 5.8 and 5.9 days at two rates of application. The study indicated biphasic degradation with faster rate initially (t 1/2 = 3.7 days), followed by a slower dissipation rate at the end (t 1/2 = 9.4 days). Similar trend was observed with non-sterile soil in laboratory with a longer half-life. Acidic pH and microbial activity contributed toward the degradation of triasulfuron in soil.  相似文献   

17.
Ramesh A  Maheswari ST 《Chemosphere》2004,54(5):647-652
Dissipation of alachlor in soil and plant in field condition (cotton cropping system), and in soil, water and fish in simulated model ecosystem was investigated. The acetanilide herbicide, alachlor (50% w/w EC) was applied as pre-emergence at 2.5 and 5.0 kg a.i.ha(-1) three days after sowing the cotton seeds in the field. Soil and plant samples were collected at intervals and analyzed for alachlor residues. To study the fate of alachlor in water and fish, a simulated model ecosystem was constructed and fish was introduced one day after herbicide application. The dissipation of alachlor in water and soil and bioaccumulation in fish was observed in model ecosystem. At harvest, cotton lint and seed samples were found to contain alachlor well below the detectable level. However, trace amounts of residues were found in cotton oil. After harvest of cotton, coriander (Coriandrum sativum) and edible amaranth (Amaranthus mangostanus L.) were raised for herbicide bioassay. The green leafy vegetable samples did not show any toxic symptoms of alachlor residues.  相似文献   

18.
Spiromesifen (Oberon) is a new insecticide and miticide of chemical class ketoenol active against white flies (Bemisia spp., Trialeuroides spp.) and spider mites (Tetranychus and Panonychus spp.). Due to its potential significance in insect resistance management, it is important to establish its behaviour on crop and environment. In the present study, the degradation/dissipation of spiromesifen on tea crop under tropical environmental conditions was studied and its DT(50) (t(1/2)), and DT(90) (time to reduce to 90% of the initial value) were estimated. Spiromesifen was sprayed on tea crop after first rain flush at four different locations @ 96 and 192ga.i.ha(-1). Samples of tea leaves were drawn at 0, 1, 3, 5, 7, 10, 15, 21 and 30 days after treatment and that of soil at 10 days after treatment and at harvest from 0 to 15 and 15 to 30cm layers. After crude extraction of tea leaves for spiromesifen residues with acetone:water, the contents were partitioned with cyclohexane:ethyl acetate and cleaned up on Florosil column. Soil residues were also extracted similarly. Quantification of residues was done on GC-MS in Selected Ion Monitoring (SIM) mode in mass range 271-274m/z. The LOQ of this method was found to be 0.05microgg(-1) while LOD being 0.015microgg(-1). The DT(50) of spiromesifen when applied at recommended doses in tea leaves was found to be 5.0-8.5 days. Ninety-nine percent degradation was found to occur within 33-57 days after application. In soil, no residues of spiromesifen were detectable 10 days after treatment.  相似文献   

19.
Chemical methods and phytoremediation of soil contaminated with heavy metals   总被引:43,自引:0,他引:43  
Chen HM  Zheng CR  Tu C  Shen ZG 《Chemosphere》2000,41(1-2):229-234
The effects of chemical amendments (calcium carbonate (CC), steel sludge (SS) and furnace slag (FS)) on the growth and uptake of cadmium (Cd) by wetland rice, Chinese cabbage and wheat grown in a red soil contaminated with Cd were investigated using a pot experiment. The phytoremediation of heavy metal contaminated soil with vetiver grass was also studied in a field plot experiment. Results showed that treatments with CC, SS and FS decreased Cd uptake by wetland rice, Chinese cabbage and wheat by 23-95% compared with the unamended control. Among the three amendments, FS was the most efficient at suppressing Cd uptake by the plants, probably due to its higher content of available silicon (Si). The concentrations of zinc (Zn), lead (Pb) and Cd in the shoots of vetiver grass were 42-67%, 500-1200% and 120-260% higher in contaminated plots than in control, respectively. Cadmium accumulation by vetiver shoots was 218 g Cd/ha at a soil Cd concentration of 0.33 mg Cd/kg. It is suggested that heavy metal-contaminated soil could be remediated with a combination of chemical treatments and plants.  相似文献   

20.
Gupta S  Gajbhiye VT 《Chemosphere》2002,47(9):901-906
Effect of concentration, moisture and soil type on dissipation of flufenacet from soil has been studied under laboratory condition. The treated soil samples (1 and 10 microg/g levels) were incubated at 25+/-1 degrees C. The effect of moisture was studied by maintaining the treated soil samples (10 microg/g level) at field capacity and submerged condition. In general, flufenacet persisted for 60-90 days at lower and beyond 90 days at high rate. The dissipation of flufenacet from soil followed first order kinetics with half-life (DT50) values ranging from 10 to 31 days. The dissipation of flufenacet was faster at low rate than high rate of application. The slow dissipation at high rate could be attributed to inhibition of microbial activity at high rate. There was little overall difference in rate of dissipation in Ranchi and Nagpur soil maintained at field capacity and submerged condition moisture regimes. In Delhi soil net dissipation was faster under field capacity moisture than submerged condition. Soil types greatly influenced the dissipation of flufenacet. Dissipation was fastest in Delhi soil (DT50 10.1-22.3 days) followed by Ranchi soil (DT50 10.5-24.1 days) and least in Nagpur soil (DT50 29.2-31.0 days). The difference in dissipation could be attributed to the magnitude of adsorption and desorption of flufenacet in these soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号