首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diplosoma virens is a colonial ascidian hosting prokaryotic algae Prochloron sp. in the common cloacal cavity of the colonies and is sometimes parasitized by notodelphyid copepods. In ascidian–Prochloron symbiosis, it is generally known that the host larvae acquire the algal symbionts from their mother colonies to maintain the symbiosis. A histological study of the sexually mature colonies of D. virens showed that the algal symbionts attach to pre-hatching larvae on the rastrum (plant rake) projected from the postero-dorsal part of the larval trunk, and then the rastrum is packed in the posterior half of the larval trunk that will become a cloacal cavity after metamorphosis. This process is the same as that of D. simile. Monthly sampling of D. virens colonies showed that they have embryos in summer in Ryukyus, situated near the northern-most limit of the coral reefs in the West Pacific. While the frequencies of copepod parasitism were variable among the populations, the colonies from a highly parasitized population had a significantly smaller number of eggs/embryos per zooid than the colonies from the less parasitized populations. The parasites probably have an inhibitory impact on the sexual reproduction of the host colonies.Communicated by T. Ikeda, Hakodate  相似文献   

2.
The prokaryotic green alga Prochloron sp. (Prochlorophyta) is found in symbiotic association with colonial didemnid ascidians that inhabit warm tropical waters in a broad range of light environments. We sought to determine the light-adaptation features of this alga in relation to the natural light environments in which the symbioses are found, and to characterize the temperature sensitivity of photosynthesis and respiration of Prochloron sp. in order to assess its physiological role in the productivity and distribution of the symbiosis. Colonies of the host ascidian Lissoclinum patella were collected from exposed and shaded habitats in a shallow lagoon in Palau, West Caroline Islands, during February and March, 1983. Some colonies from the two light habitats were maintained under conditions of high light (2 200 E m–2 s–1) and low light (400 E m–2 s–1) in running seawater tanks. The environments were characterized in terms of daily light quantum fluxes, daily periods of light-saturated photosynthesis (Hsat), and photon flux density levels. Prochloron sp. cells were isolated from the hosts and examined for their photosynthesis vs irradiance relationships, respiration, pigment content and photosynthetic unit features. In addition, daily P:R ratios, photosynthetic quotients, carbon balances and photosynthetic carbon release were also characterized. It was found that Prochloron sp. cells from low-light colonies possessed lower chlorophyll a/b ratios, larger photosynthetic units sizes based on both reaction I and reaction II, similar numbers of reaction center I and reaction center II per cell, lower respiration levels, and lower Pmax values than cells from high-light colonies. Cells isolated from low-light colonies showed photoinhibition of Pmax at photon flux densities above 800 E m–2 s–1. However, because the host tissue attenuates about 60 to 80% of the incident irradiance, it is unlikely that these cells are normally photoinhibited in hospite. Collectively, the light-adaptation features of Prochloron sp. were more similar to those of eukaryotic algae and vascular plant chloroplasts than to those of cyanobacteria, and the responses were more sensitive to the daily flux of photosynthetic quantum than to photon flux density per se. Calculation of daily minimum carbon balances indicated that, though high-light cells had daily P:R ratios of 1.0 compared to 4.6 for low-light cells, the cells from the two different light environments showed nearly identical daily carbon gains. Cells isolated from high-light colonies released between 15 and 20% of their photosynthetically-fixed carbon, levels sufficient to be important in the nutrition of the host. Q10 responses of photosynthesis and respiration in Prochloron sp. cells exposed briefly (15–45 min) to temperatures between 15° and 45°C revealed a discontinuity in the photosynthetic response at the ambient growth temperatures. The photosynthetic rates were found to be more than twice as sensitive to temperatures below ambient (Q10=3.47) than to temperatures above ambient (Q10=1.47). The Q10 for respiration was constant (Q10=1.66) over the temperature range examined. It appears that the photosynthetic temperature sensitivity of Prochloron sp. may restrict its distribution to warmer tropical waters. The ecological implications of these findings are discussed in relation to published data on other symbiotic systems and free-living algae.  相似文献   

3.
In obligate symbioses between didemnid ascidians and prokaryotic algae (cyanobacteria), the larvae of the host ascidian usually possess Prochloron cells that are acquired from their mother colony. The process of vertical transmission of the photosymbionts has been histologically described in several species harboring Prochloron in the common cloacal cavity, where Prochloron cells are attached to the hairy surface of the tunic of the larvae during or just before larval spawning. Since the process has never been described in species harboring the photosymbionts in the tunic of the colony, here we describe the histological and ultrastructural process of vertical transmission in a photosymbiotic didemnid, Trididemnum miniatum. No photosymbionts were associated with gametes of the ascidian. Prochloron cells appeared in the epithelial pouch enclosing the embryo and were then incorporated in the tunic of embryos in late embryonic stages. Although Prochloron cells in the tunic of the colony were rarely associated with the host cells, some amoeboid-shaped tunic cells containing Prochloron cells were occasionally found around the epithelial pouch. Therefore, the host cell is thought to be a vehicle transporting the photosymbionts in the tunic of the colony to the tunic of the embryos. The photosymbiont cells were directly embedded in the tunic of the larval trunk. They were not contained in the host cells, as are those in the tunic of the colony. These observations revealed that the mechanism of vertical transmission in T. miniatum is very different from that in didemnids harboring Prochloron in the common cloacal cavity of the colonies, such as Trididemnum cyclops. The mechanisms of symbiont transmission are diverse even within the genus Trididemnum.  相似文献   

4.
H. W. Paerl 《Marine Biology》1984,81(3):251-254
Light-mediated nitrogenase activity (NA) consistently occurred in one of four species of tropical marine ascidians (sea squirts) hosting the symbiotic alga Prochloron (prochlorophyta) among reef habitats located in Palau, Micronesia. NA was limited to intact colonies of Lissoclinum patella exclusively colonized by cells of Prochloron. Neither isolated viable cells of Prochloron nor ascidians free of Prochloron revealed NA, indicating a strong dependence on the intact symbiosis for creating conditions conductive to N2 fixation. The confinement of NA to L. patella may be related to both the oligotrophic habitat and the large colony size of this protochordate species. This is the first report of NA attributable to symbiotic alga residing in either an aquatic or a terrestrial animal.  相似文献   

5.
Spermatozoa and some stages of spermatogenesis were studied for four species of aplousobranch ascidians. Spermatozoa of Clavelina lepadiformis (Müller) (family Clavelinidae) are plesiomorphous in that they have apical acrosomal vesicles and a moderately elongated, cylindrical nucleus. The elongated mitochondrion is twisted ea. 11/2 times around the nucleus. In their ultrastructural morphology, C. lepadiformis sperm conform in some respects to the least-derived ascidian sperm, those of the phlebobranch ascidian Ciona intestinalis L.; however, the sperm of Clavelina lepadiformis have two apomorphies not shared with those of Ciona sp.: (1) the mitochondrion of Clavelina lepadiformis is long and spiralled along the entire nucleus rather than being comparatively compact and not at all helical; (2) the mitochondrial cristae are elongated parallel to the long axis of the nucleus, whereas in Ciona sp. sperm the cristae are unmodified. In Distaplia sp., Aplidium sp. and Synoicum pulmonaria (Ellis and Solander) the spermatozoa are more derived and consist of a proximal cylindrical and a distal corkscrew-like part. The mitochondrion in Distaplia sp. and Aplidium sp. contains electron-dense material and extends in a long thread around the nucleus. In S. pulmonaria the mitochondrion surrounds the anterior part of the nucleus in mature spermatozoa, and an elongated, dense structure displaying fine striation is enclosed in the mitochondrion in late spermatids. The sperm ultrastructural morphology observed in this study is consistent with the majority view that clavelinids are closest to the ancestral ascidian but is also consistent with other conclusions, particularly that the Cionidae are closest to the stem ascidian.  相似文献   

6.
Non-indigenous ascidians are known to significantly alter the structure and composition of benthic communities and adversely affect shellfish aquaculture by fouling both the cultured species and the infrastructure. The ability of these species to persist in new locations and their current and potential distributions are dependent upon physiological tolerances to environmental factors and biotic resistance to competition and predation. Despite significant data on global invasion patterns, potential biotic resistance to non-indigenous ascidians is poorly understood. We identified potential predators of four non-indigenous ascidians (Styela clava, Botryllus schlosseri, Botrylloides violaceus, and Didemnum vexillum) in British Columbia (BC), Canada in order to: (1) assess the potential for biotic interference to limit the establishment and/or spread of these ascidian species in BC, and (2) identify candidate species to be used as ascidian biofouling control agents in shellfish aquaculture. Using a series of single- and multiple-choice laboratory experiments, potential benthic predators (including various species of molluscs, echinoderms, and arthropods) were offered non-indigenous ascidians as prey. The sea urchins Strongylocentrotus droebachiensis and Strongylocentrotus franciscanus, the sea stars Dermasterias imbricata and Evasterias troschelii, the nudibranch Hermissenda crassicornis, and the crabs Cancer productus and Carcinus maenas were found to consume one or more species of non-indigenous ascidians in single-choice experiments. However, when provided a choice, all predators chose their respective preferred food over ascidians. Thus, predation alone is unlikely to prevent large-scale establishment and spread of non-indigenous ascidians in BC, but it may have the potential to significantly reduce localized populations of ascidians. Green sea urchins, S. droebachiensis, were found to be efficient grazers of all four ascidian species, consuming 12.7 ± 5.14 cm2 (mean ± SD) of adult B. violaceus over a 3-day period, 15 ± 3.7 juvenile colonies of B. violaceus over a 2-day period, and 63 ± 28.8 juvenile colonies of B. schlosseri over a 2-day period. Using sea urchins as biological control organisms may significantly reduce ascidian fouling in shellfish aquaculture.  相似文献   

7.
A study was made of the ultrastructure and pigment composition of filamentous cyanophytes living in symbiosis with several sponges and a colonial didemnid ascidian collected from the southern end of the Great Barrier Reef, Australia, between 1983 and 1986. The sponges were Dysidea herbacea Keller and several other encrusting sponges which have not been identified; the ascidian was Trididemnum miniatum Kott (1977). The cyanophyte Oscillatoria spongeliae (Shultz) Hauck was identified as the symbiont of several of the sponges, including D. herbacea. Two other unidentified Oscillatoria species were found in a bristly papillate sponge and in T. miniatum. Chlorophyll a, alone, was present in all the symbionts with the exception of T. miniatum, which contained the cosymbiont Prochloron and where chlorophyll b was also present. Two phycoerythrins were isolated by chromatography and chromatofocusing. Both resembled C-phycoerythrin, but one of the two carried the chromophore phycourobilin as well as phycoerythrobilin possibly on both the and subunits, which had apparent molecular masses of 18 and 20 kdaltons. No subunit was present. Ultrastructurally, the three Oscillatoria species were distinguished by an unusual type of parallel, longitudinal, thylakoid organisation; the arrangement was different in detail in each species.  相似文献   

8.
The contamination of soils by toxic and/or hazardous organic pollutants, especially with crude oil, is a widespread problem. This study was conducted in a petroleum-contaminated area in a Tehran oil refinery to find petroleum-resistant plants and their rhizospheral fungal strains with bioremediation potency. The plants growing in the oil-polluted area were collected and determined taxonomically. Root samples of the plant species were collected from a polluted area and fungal strains determined by laboratory methods and taxonomical keys. The growth ability of the isolated fungal strains was studied in media containing 1%–15% crude oil. Results showed that seven plant species were of the highest density in the contaminated area: Alhagi persarum, Hordeum marinum, Peganum harmala, Phragmites australis, Prosopis farcta, Salsola kali, and Senecio glaucus. The root-associated fungi were isolated and showed that the fungal variation in the oil-polluted area is higher than that in a non-polluted area. The growth assay of isolated fungal strains showed that all studied fungal strains were able to form colonies at the applied concentrations but Alternaria sp. and Rhizopus sp. were the most resistant ones. Some plants were resistant to oil pollution, which also had positive effects on the fungal strains.  相似文献   

9.
Ascidian specimens were collected from the Indian River Lagoon, Florida, USA, in November 1987. Eudistoma olivaceum (Van Name) was fouled by only two species of epifaunal invertebrates and the percent cover of epibionts was negligible. Colonies of E. capsulatum (Van Name) were fouled by up to 17 species of epifaunal invertebrates, epibionts covered an average of 12.5% of the surface area of these colonies. Extracts of E. olivaceum exhibited potent cytotoxic, antimicrobial and antiviral activity in laboratory bioassays, while the activity of extracts of E. capsulatum was insignificant. The toxicity of extracts of each ascidian was negatively related to the percent cover of fouling organisms. Surface acidity of each ascidian was positively related to the percent cover of epibionts: E. olivaceum was nearly neutral (pH=6), while E. capsulatum was highly acidic (pH=1 to 2). Larval settlement and growth of ancestrulae of the cheilostome bryozoan Bugula neritina (Linnaeus) were inhibited at very low concentrations of crude extract of E. olivaceum. Crude extracts of E. capsulatum inhibited settlement and growth of B. neritina only at concentrations of approximately an order of magnitude greater than those of E. olivaceum. Differences in the degree to which these congeneric ascidians are fouled is related to differences in the chemical defenses they possess. Acidity is not an effective inhibitor of settlement by epifaunal invertebrates.  相似文献   

10.
The morphology of the gorgonian corals Paragorgia arborea and Primnoa resedaeformis was studied from video records and colonies collected from different locations in Atlantic Canada, at depths between 200 and 600 m. Growth was studied by relating colony height to age (number of growth rings) in P. resedaeformis, and from a photographic time-series of a P. arborea colony in a Norwegian fjord. The highest P. resedaeformis and P. arborea colonies were 86 and 180 cm, respectively. The height of P. arborea seemed to be restricted by the size of the boulder it was attached to. When the coral exceeds a critical height (approximately twice the stone size), the drag of strong currents can turn the coral and its substrate over. No limiting factors for the height of P. resedaeformis colonies were identified. P. arborea occurred in three colour varieties: red, salmon red, and white. The red and white contributed 41% to the population each, while 18% of the colonies were salmon red. On average the salmon red P. arborea were taller than the red and white. P. arborea colonies >50 cm were mainly concave fan shaped. The orientation of these indicated a near-bottom current pattern similar to what is known from previous current measurements in the area. P. resedaeformis occurred mainly on the up-current side of boulders, but its bushy morphology does not indicate influence by unidirectional current to the same degree as P. arborea. The different height, morphology, and position on boulders of the two species indicate that they utilize different food sources. P. resedaeformis seems to be adapted to a near-bottom environment with turbulent currents, whereas P. arborea utilize uni- or bidirectional currents higher above bottom by developing planar colonies perpendicular to the current. The oldest P. resedaeformis colony was 61 years. The relationship between height and age indicated an average growth of 1.7 cm year–1 for P. resedaeformis. X-ray images of skeletal sections of P. arborea showed clear growth bands with a maximum band width of 1.3 cm. It is not clear what time scales these bands represent, and they could therefore not be used for indicating age. The limited previously reported data on age and growth of P. arborea indicate an average growth rate of 1 cm year–1. This gives an age of about 180 years for the largest colony in this study. The time-series photographs, however, indicated a much higher growth rate (varying between 2 and 6 cm year–1 within the colony), which may be more representative for colonies of an intermediate size.Communicated by R.J. Thompson, St. Johns  相似文献   

11.
Conversion factors for calculating carbon biomass ofPhaeocystis sp. colonies and free-living cells were determined from microscopic observations and chemical analysis conducted on cultured and naturalPhaeocystis sp. populations originating from the Southern Bight of the North Sea in 1986 and 1987. They allow calculation, in terms of carbon biomass, of the different forms ofPhaeocystis sp. that succeed each other when the population is growing, on the basis of microscopic observations. The latter include enumerations of free-living cells (flagellated and non-motile) and colonies, as well as colonial biovolume measurement. Specific application to natural populations from Dutch coastal waters during spring 1986 shows that more than 90% ofPhaeocystis sp. carbon biomass is under colonial form, most of it exceeding the grazing characteristics of current zooplankton at this period of the year. Detailed analysis of seasonal changes shows in addition that the size of the colonies greatly increases during the course ofPhaeocystis sp. flowering, reaching sizes as high as 1 mm diameter at the top of the bloom when nutrients are depleted. Physiologically this corresponds to an enhanced synthesis of mucilaginous substances, with the decrease of available nutrients leading to an increasing contribution of the matrix to the total colonial carbon during the course of the bloom. Carbon content ofPhaeocystis sp. colonies therefore greatly varies with their size, ranging from 0.3 to 1430 ngC colony–1.  相似文献   

12.
Gravimetric analyses of cellulose (Solka Floc) utilization by representative marine Ascomycetes, including Lulworthia floridana, Lindra sp., Torpedospora sp. and Halosphaeria mediosetigera, have shown noteworthy activity based on loss of weight of cellulose by the various fungi. Particularly striking activity is evidenced by L. floridana and Torpedospora sp., with >50% cellulose degradation after 3 weeks of fungal growth. Comparable studies with the deuteromycete, Dendryphiella salina, showed >50% loss within 6 days. Dissimilar responses by various L. floridana isolates are noted. Intensive degradative activity at pH's of 6 to 8 is common along with negligible amounts of cellulase (Cx units). Adsorption of the enzyme to the mycelia or to the cellulose particles in the medium is suggested. Earlier laboratory analyses of fungal degradation of Manila cordage compare favorably with present gravimetric studies and support field observations on the significance of fungal infestation of wood, particularly that incited by the Lulworthia floridana group.This work was supported by Grant GM 12482 from the National Institute of Health and Office of Naval Research Contract No. 137-792 to the Institute of Marine Sciences, University of Miami. Contribution No. 950 from the Institute of Marine Sciences, University of Miami.  相似文献   

13.
A psychrotrophic bacterial strain, Pseudoaltermonas sp. SM9913, was isolated from deep-sea sediment collected at 1,855 m depth. Two proteases produced by Pseudoaltermonas sp. SM9913 were purified, MPC-01 and MCP-02. MCP-01 is a serine protease with a molecular weight of 60.7 kDa. It is cold-adapted with an optimum temperature of 30–35°C. Its Km and Ea for the hydrolysis of casein were 0.18% and 39.1 kJ mol–1, respectively. It had low thermostability, and its activity was reduced by 73% after incubation at 40°C for 10 min. MCP-02 is a mesophilic metalloprotease with a molecular weight of 36 kDa. Its optimum temperature for the hydrolysis of casein was 50–55°C. The Km and Ea of MCP-02 for the hydrolysis of casein were 0.36% and 59.3 kJ mol–1, respectively. MCP-02 had high thermostability, and its activity was reduced by only 30.5% after incubation at 60°C for 10 min. At low temperatures, Pseudoaltermonas sp. SM9913 mainly produced the psychrophilic protease MCP-01.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

14.
J. Vidal 《Marine Biology》1980,56(2):111-134
Changes in dry weight and in weight-specific growth rates were measured for copepodite stages of Calanus pacificus Brodsky and Pseudocalanus sp. cultured under various combinations of phytoplankton concentration and temperature. Mean dry weight of early copepodites was relatively unaffected by either food concentration or temperature, but mean dry weight of late stages increased hyperbolically with food concentration and was inversely related to temperature. The food concentration at which maximum body weight was attained increased with increasing temperature and body size, and it was considerably higher for C. pacificus than for Pseudocalanus sp. This suggests that final body size of small species of copepods may be determined primarily by temperature, whereas final body size of large species may be more dependent on food concentration than on temperature. Individual body weight increased sigmoidally with age. The weight-specific growth rate increased hyperbolically with food concentration. The maximum growth rate decreased logarithmically with a linear increase in body weight, and the slope of the lines was proportional to temperature. The critical food concentration for growth increased with body size proportionally more at high than at low temperature, and it was considerably higher for C. pacificus than for Pseudocalanus sp. Because of these interactions, early copepodites optimized growth at high temperature, even at low food concentrations, but under similar food conditions late stages attained higher growth at low temperature. The same growth patterns were found for both species, but the rates were significantly higher for the larger species, C. pacificus, than for the smaller one, Pseudocalanus sp. On the basis of findings in this study and of analyses of relationships between the maximum growth rate, body size, and temperature from other studies it is postulated (1) that the extrapolation of growth rates from one species to another on the basis of similarity in body size is not justified, even for taxonomically related species; (2) that the allometric model is inadequate for describing the relationship between the maximum weight-specific growth rate and body size at the intraspecific level; (3) that the body-size dependence of this rate is strongly influenced by temperature; and (4) that species of zooplankton seem to be geographically and vertically distributed, in relation to body size and food availability, to optimize growth rates at various stages of their life cycles.Contribution No. 1127 from the Department of Oceanography, University of Washington, Seattle, Washington 98195, USA  相似文献   

15.
The aim of this study was to identify potential environmental controls of the asexual phases of reproduction by measuring the rates of asexual reproduction (budding and strobilation) and mortality in naturally occurring populations of Aurelia sp. scyphistomae at different spatial and temporal scales. The percentage cover, density of colonies of Aurelia sp. scyphistomae, and density of the population of two naturally occurring colonies of Aurelia sp. scyphistomae were examined over 2 years in southern Tasmania. Artificial substrates were also deployed to investigate colony dynamics when density dependent effects were reduced. Clear spatial and temporal differences in the population dynamics of the colonies were observed. Density dependent effects controlled budding and recruitment of new scyphistomae to the substrate when populations were dense and space limiting. In contrast, environmental controls of budding and strobilation were more apparent in a colony with significantly greater area of bare substrate and hence room for expansion. Water temperature and rainfall (as a proxy for salinity) were linked to changes in population size. Annual and seasonal differences in population dynamics were not observed in a colony limited by space but were apparent in a colony where space was not limited. When space was removed as a limiting factor by deploying artificial substrates, a seasonal environmental effect on the rate of growth of the colony was observed. These studies suggest that the growth, survival and reproduction of the sessile colonial phase of Aurelia sp. is regulated by a combination of density dependent factors and environmental conditions, which are consequently important to the formation of jellyfish blooms.  相似文献   

16.
Summary The emigration and raiding behavior of the SE Asian ponerine ant Leptogenys sp. 1, which resembles L. mutabilis, were observed in the field (Ulu Gombak, Malaysia). The ants formed monogynous colonies that consisted of up to 52 100 workers. The bivouac sites of this species were found in leaf litter, rotten logs, ground cavities, etc., and were rarely modified by the ants. The colonies stayed in these temporary nests for several hours to 10 days; afterwards, they moved to a new nest site. The emigration distances ranged from 5–58 m. Since nest changing takes place at irregular intervals, and pupae and larvae are always present in the nest relocations of Leptogenys sp. 1, the emigration behavior is not linked to a synchronized brood development. Leptogenys sp. 1 is a nocturnal forager; in our study, up to 42 600 workers participated in each raid. The ants move forward on a broad front; behind the swarm a fan-shaped network of foraging columns converges to form a main trunk trail. A new system of foraging trails is developed in each raid. The workers search for their prey collectively; they attack and retrieve the booty together. The diet of Leptogenys sp. 1 consists mainly of arthropods. Army ant behavior is characterized by (1) formation of large monogynous colonies, (2) frequent emigrations, and (3) mass raids in which all foraging activities are carried out collectively. Since Leptogenys sp. 1 performs these typical army ant behavior patterns, this species represents the army ant ecotype. However, this species differs considerably from army ant species that have synchronized broods and huge colonies with dichthadiiform queens.Dedicated to Professor Dr. M. Lindauer on the occasion of his 70th birthday  相似文献   

17.
Little is known concerning the fine-scale diversity, population structure, and biogeography for Symbiodinium spp. populations inhabiting particular invertebrate species, including the gorgonian corals, which are prevalent members of reef communities in the Gulf of Mexico, the Caribbean, and the western Atlantic. This study examined the Symbiodinium sp. clade B symbionts hosted by the Caribbean gorgonian Pseudopterogorgia elisabethae (Bayer). A total of 575 colonies of P. elisabethae were sampled in 1995 and 1998–2000 from 12 populations lying along an ~450 km transect in the Bahamas and their Symbiodinium sp. clade B symbionts genotyped at two polymorphic dinucleotide microsatellite loci. Twenty-three unique, two-locus genotypes were identified in association with these P. elisabethae colonies. Most colonies hosted only a single Symbiodinium sp. clade B genotype; however, in some instances ( n=25), two genotypes were harbored simultaneously. For 10 of the 12 populations, 66–100% of the P. elisabethae colonies hosted the same symbiont genotype. Added to this, in 9 of the 12 populations, a Symbiodinium sp. clade B genotype was either unique to a population or found infrequently in other populations. This distribution of Symbiodinium sp. clade B genotypes resulted in statistically significant ( P<0.05 or <0.001) differentiation in 62 of 66 pairwise comparisons of P. elisabethae populations. Tests of linkage disequilibrium suggested that a combination of clonal propagation of the haploid phase and recombination is responsible for maintaining these distinct Symbiodinium sp. clade B populations.  相似文献   

18.
Bleaching of corals results from the loss of their symbiotic algae (zooxanthellae) and/or pigments. The supply of photoassimilates provided by the zooxanthellae to the coral declines during bleaching and reduces the ability to activate energy-costly processes such as maintenance, growth and reproduction. In the present study we compared the competitive outcomes, expressed as overgrowth and changes in colony sizes of Oculina patagonica (an encrusting Mediterranean stony coral) and the bryozoan Watersipora sp., growing in contact with each other, during and between bleaching events. Year-round observations of tagged colonies showed alternating competitive outcomes: O. patagonica wins over Watersipora sp. between bleaching events, but loses during bleaching events. Using the 14C-point-labeling technique on coral tissue, we examined intra-colonial translocation of photosynthetic products from the point-tissue labeling towards interaction zones. In non-bleached O. patagonica, competition resulted in preferentially oriented translocation of 14C products to the interaction zone located up to 8 cm away from the tissue-labeling site. Sites opposite the interaction zone received significantly less labeled photoassimilates compared to the interaction zone. In bleached colonies (40-85% bleached surface area), such translocation did not occur, probably explaining the failure to compete with the encrusting neighbor Watersipora sp. Our findings demonstrate the importance of colonial integration and resource orientation for the competitive superiority of O. patagonica.  相似文献   

19.
Colonial photosynthetic marine organisms often exhibit morphological phenotypic plasticity. Where such plasticity leads to an improved balance between rates of photosynthesis and maintenance costs, it is likely to have adaptive significance. To explore whether such phenotypic plasticity leads to more favourable within-colony irradiance for reef-building branching corals, this relationship was investigated for two coral species Acropora humilis and Stylophora pistillata, along a depth gradient representing light habitats ranging from 500 to 25 μmol photons m−2 s−1, during 2006 at Heron Island, Great Barrier Reef (23.44°S, 151.91°E). In the present study changes in flow-modulated mass transfer co-varied with light as a function of depth. In low-light (deep) habitats, branch spacing (colony openness) in A. humilis and S. pistillata was 40–50% greater than for conspecifics in high-light environments. Also, branches of A. humilis in deep water were 40–60% shorter than in shallow water. Phenotypic changes in these two variables lead to steeper within-colony light attenuation resulting in 38% higher mean internal irradiance (at the tissue surface) in deep colonies compared to shallow colonies. The pattern of branch spacing was similar for S. pistillata, but this species displayed an alternate strategy with respect to branch length: shade adapted deep and cave colonies developed longer and thinner branches, allowing access to higher mass transfer and irradiance. Corals in cave habitats allowed 20% more irradiance compared to colonies found in the deep, and had a 47% greater proportion of irradiance compared to colonies in the shallow high-light environment. Such phenotypic regulation of internal light levels on branch surfaces partly explains the broad light niches of many branching coral species. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Morula cells (MCs), ubiquitous ascidian cells which participate in alloimmune reactions, were studied in allogeneic and xenogeneic assays performed with Botryllus schlosseri (Pallas, 1766) colonies from the Mediterranean and the Pacific coast, USA. Experiments were performed on the morphological level, on blood cells sampled or vitally labeled in situ and on histological sections. In non-interacting B. schlosseri during blastogenic cycles A to C, MCs congregate in tentacles of the zooids' siphons. During the takeover phase of blastogenesis they disappear, appearing again in the siphons of the newly developed generation of zooids. In both compatible and incompatible allogeneic reactions their numbers in interacting ampullae increased fourfold within 2 h after first contacts, reaching up to 50% of the total blood-borne cells in ampulla lumens. In rejection processes most of these cells died, while in autologous or allogeneic fusions they disappeared from interacting ampullae within days of the reaction. During allogeneic rejections, we followed cases (up to 1 week) in which MCs crossed all morphological/physiological barriers between noncompatible colonies and entered the tunic matrices and blood systems of the interacting partners, forming successful microchimerism. In xenogeneic assays with Botrylloides sp., MCs concentrated at the xenogeneic boundary, but they never crossed into the other species. One week after fusion or rejection interactions, large numbers of macrophages clearing dead cells were found in contact areas. This is the first evidence for compartmentalization of specific cellular defense reactions in the tunicate circulatory system. Received: 23 October 1997 / Accepted: 17 February 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号