首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Adaptive two-stage one-per-stratum sampling   总被引:1,自引:0,他引:1  
We briefly describe adaptive cluster sampling designs in which the initial sample is taken according to a Markov chain one-per-stratum design (Breidt, 1995) and one or more secondary samples are taken within strata if units in the initial sample satisfy a given condition C. An empirical study of the behavior of the estimation procedure is conducted for three small artificial populations for which adaptive sampling is appropriate. The specific sampling strategy used in the empirical study was a single random-start systematic sample with predefined systematic samples within strata when the initially sampled unit in that stratum satisfies C. The bias of the Horvitz-Thompson estimator for this design is usually very small when adaptive sampling is conducted in a population for which it is suited. In addition, we compare the behavior of several alternative estimators of the standard error of the Horvitz-Thompson estimator of the population total. The best estimator of the standard error is population-dependent but it is not unreasonable to use the Horvitz-Thompson estimator of the variance. Unfortunately, the distribution of the estimator is highly skewed hence the usual approach of constructing confidence intervals assuming normality cannot be used here.  相似文献   

2.
Estimates of animal performance often use the maximum of a small number of laboratory trials, a method which has several statistical disadvantages. Sample maxima always underestimate the true maximum performance, and the degree of the bias depends on sample size. Here, we suggest an alternative approach that involves estimating a specific performance quantile (e.g., the 0.90 quantile). We use the information on within-individual variation in performance to obtain a sampling distribution for the residual performance measures; we use this distribution to estimate a desired performance quantile for each individual. We illustrate our approach using simulations and with data on sprint speed in lizards. The quantile method has several advantages over the sample maximum: it reduces or eliminates bias, it uses all of the data from each individual, and its accuracy is independent of sample size. Additionally, we address the estimation of correlations between two different performance measures, such as sample maxima, quantiles, or means. In particular, because of sampling variability, we propose that the correlation of sample means does a better job estimating the correlation of population maxima than the estimator which is the correlation of sample maxima.  相似文献   

3.
Shen TJ  He F 《Ecology》2008,89(7):2052-2060
Most richness estimators currently in use are derived from models that consider sampling with replacement or from the assumption of infinite populations. Neither of the assumptions is suitable for sampling sessile organisms such as plants where quadrats are often sampled without replacement and the area of study is always limited. In this paper, we propose an incidence-based parametric richness estimator that considers quadrat sampling without replacement in a fixed area. The estimator is derived from a zero-truncated binomial distribution for the number of quadrats containing a given species (e.g., species i) and a modified beta distribution for the probability of presence-absence of a species in a quadrat. The maximum likelihood estimate of richness is explicitly given and can be easily solved. The variance of the estimate is also obtained. The performance of the estimator is tested against nine other existing incidence-based estimators using two tree data sets where the true numbers of species are known. Results show that the new estimator is insensitive to sample size and outperforms the other methods as judged by the root mean squared errors. The superiority of the new method is particularly noticeable when large quadrat size is used, suggesting that a few large quadrats are preferred over many small ones when sampling diversity.  相似文献   

4.
Adaptive cluster sampling (ACS) is an efficient sampling design for estimating parameters of rare and clustered populations. It is widely used in ecological research. The modified Hansen-Hurwitz (HH) and Horvitz-Thompson (HT) estimators based on small samples under ACS have often highly skewed distributions. In such situations, confidence intervals based on traditional normal approximation can lead to unsatisfactory results, with poor coverage properties. Christman and Pontius (Biometrics 56:503–510, 2000) showed that bootstrap percentile methods are appropriate for constructing confidence intervals from the HH estimator. But Perez and Pontius (J Stat Comput Simul 76:755–764, 2006) showed that bootstrap confidence intervals from the HT estimator are even worse than the normal approximation confidence intervals. In this article, we consider two pseudo empirical likelihood functions under the ACS design. One leads to the HH estimator and the other leads to a HT type estimator known as the Hájek estimator. Based on these two empirical likelihood functions, we derive confidence intervals for the population mean. Using a simulation study, we show that the confidence intervals obtained from the first EL function perform as good as the bootstrap confidence intervals from the HH estimator but the confidence intervals obtained from the second EL function perform much better than the bootstrap confidence intervals from the HT estimator, in terms of coverage rate.  相似文献   

5.
A new species abundance estimator is proposed when point-to-plant sampling is adopted in a design-based framework. The method is based on the relationship between each species abundance and the probability density function of the relative squared point-to-plant distance. Using this result, a kernel estimator for species abundance is provided and the nearest neighbor method is suggested for bandwidth selection. The proposed estimator requires no assumptions about the species point patterns nor corrections for sampling near the edges of the study region. Moreover, the estimator shows suitable statistical properties as well as good practical performance as is shown in a simulation study.  相似文献   

6.
Bayesian methods incorporate prior knowledge into a statistical analysis. This prior knowledge is usually restricted to assumptions regarding the form of probability distributions of the parameters of interest, leaving their values to be determined mainly through the data. Here we show how a Bayesian approach can be applied to the problem of drawing inference regarding species abundance distributions and comparing diversity indices between sites. The classic log series and the lognormal models of relative- abundance distribution are apparently quite different in form. The first is a sampling distribution while the other is a model of abundance of the underlying population. Bayesian methods help unite these two models in a common framework. Markov chain Monte Carlo simulation can be used to fit both distributions as small hierarchical models with shared common assumptions. Sampling error can be assumed to follow a Poisson distribution. Species not found in a sample, but suspected to be present in the region or community of interest, can be given zero abundance. This not only simplifies the process of model fitting, but also provides a convenient way of calculating confidence intervals for diversity indices. The method is especially useful when a comparison of species diversity between sites with different sample sizes is the key motivation behind the research. We illustrate the potential of the approach using data on fruit-feeding butterflies in southern Mexico. We conclude that, once all assumptions have been made transparent, a single data set may provide support for the belief that diversity is negatively affected by anthropogenic forest disturbance. Bayesian methods help to apply theory regarding the distribution of abundance in ecological communities to applied conservation.  相似文献   

7.
A hierarchical model for spatial capture-recapture data   总被引:1,自引:0,他引:1  
Royle JA  Young KV 《Ecology》2008,89(8):2281-2289
Estimating density is a fundamental objective of many animal population studies. Application of methods for estimating population size from ostensibly closed populations is widespread, but ineffective for estimating absolute density because most populations are subject to short-term movements or so-called temporary emigration. This phenomenon invalidates the resulting estimates because the effective sample area is unknown. A number of methods involving the adjustment of estimates based on heuristic considerations are in widespread use. In this paper, a hierarchical model of spatially indexed capture-recapture data is proposed for sampling based on area searches of spatial sample units subject to uniform sampling intensity. The hierarchical model contains explicit models for the distribution of individuals and their movements, in addition to an observation model that is conditional on the location of individuals during sampling. Bayesian analysis of the hierarchical model is achieved by the use of data augmentation, which allows for a straightforward implementation in the freely available software WinBUGS. We present results of a simulation study that was carried out to evaluate the operating characteristics of the Bayesian estimator under variable densities and movement patterns of individuals. An application of the model is presented for survey data on the flat-tailed horned lizard (Phrynosoma mcallii) in Arizona, USA.  相似文献   

8.
A biological community usually has a large number of species with relatively small abundances. When a random sample of individuals is selected and each individual is classified according to species identity, some rare species may not be discovered. This paper is concerned with the estimation of Shannons index of diversity when the number of species and the species abundances are unknown. The traditional estimator that ignores the missing species underestimates when there is a non-negligible number of unseen species. We provide a different approach based on unequal probability sampling theory because species have different probabilities of being discovered in the sample. No parametric forms are assumed for the species abundances. The proposed estimation procedure combines the Horvitz–Thompson (1952) adjustment for missing species and the concept of sample coverage, which is used to properly estimate the relative abundances of species discovered in the sample. Simulation results show that the proposed estimator works well under various abundance models even when a relatively large fraction of the species is missing. Three real data sets, two from biology and the other one from numismatics, are given for illustration.  相似文献   

9.
A recent trend is to estimate landscape metrics using sample data and cost-efficiency is one important reason for this development. In this study, line intersect sampling (LIS) was used as an alternative to wall-to-wall mapping for estimating Shannon’s diversity index and edge length and density. Monte Carlo simulation was applied to study the statistical performance of the estimators. All combinations of two sampling designs (random and systematic distribution of transects), four sample sizes, five transect configurations (straight line, L, Y, triangle, and quadrat), two transect orientations (fixed and random), and three configuration lengths were tested, each with a large number of simulations. Reference was 50 photos of size 1 km2, already manually delineated in vector format by photo interpreters using GIS environment. The performance was compared by root mean square error (RMSE) and bias. The best combination for all three metrics was found to be the systematic design and as response design the straight line configuration with random orientation of transects, with little difference between the fixed and random orientation of transects. The rate of decrease of RMSE for increasing sample size and line length was studied with a mixed linear model. It was found that the RMSE decreased to a larger degree with the systematic design than the random one, especially with increasing sample size. Due to the nonlinearity in the definition of Shannon diversity estimator its estimator has a small and negative bias, decreasing with sample size and line length. Finally, a time study was conducted, measuring the time for registration of line intersections and their lengths on non-delineated aerial photos. The time study showed that long sampling lines were more cost-efficient than short ones for photo-interpretation.  相似文献   

10.
Wildlife sampling for habitat selection often combines a random background sample with a random sample of used sites, because the background sample could contain too few used sites to be informative for rare species. This approach is referred to as use-availability sampling. Two variants are considered where there is: (1) a random background sample including used and unused sites augmented with a sample of used sites, and (2) a sample of used sites augmented with a contaminated background sample, i.e. use is not recorded. A weighted estimator first proposed by Manski and Lerman (Econometrica 45(8):1977?C1988, 1977) forms the basis for our suggested approach. The weighted estimator has been shown to perform better than the usual unweighted approach with uncontaminated data and mis-specified logit models (Xie and Manski in Sociol Methods Res 17(3):283?C302, 1989). A weighted EM algorithm is developed for use with contaminated background data. We show that the weighted estimator continues to perform well with contaminated data and maintains its robustness to model mis-specification. The weighted estimator has not been previously used for use-availability sampling due to reliance on the assumption that only the intercept is biased, which is valid for a correct logit model. We show that adjusting the intercept may not eliminate the bias with an incorrect logit model. In this case, the weighted estimator is a relatively simple and effective alternative.  相似文献   

11.
The theory of conventional line transect surveys is based on an essential assumption that 100% detection of animals right on the transect lines can be achieved. When this assumption fails, independent observer line transect surveys are used. This paper proposes a general approach, based on a conditional likelihood, which can be carried out either parametrically or nonparametrically, to estimate the abundance of non-clustered biological populations using data collected from independent observer line transect surveys. A nonparametric estimator is specifically proposed which combines the conditional likelihood and the kernel smoothing method. It has the advantage that it allows the data themselves to dictate the form of the detection function, free of any subjective choice. The bias and the variance of the nonparametric estimator are given. Its asymptotic normality is established which enables construction of confidence intervals. A simulation study shows that the proposed estimator has good empirical performance, and the confidence intervals have good coverage accuracy.  相似文献   

12.
Although not design-unbiased, the ratio estimator is recognized as more efficient when a certain degree of correlation exists between the variable of primary interest and the auxiliary variable. Meanwhile, the Rao–Blackwell method is another commonly used procedure to improve estimation efficiency. Various improved ratio estimators under adaptive cluster sampling (ACS) that make use of the auxiliary information together with the Rao–Blackwellized univariate estimators have been proposed in past research studies. In this article, the variances and the associated variance estimators of these improved ratio estimators are proposed for a thorough framework of statistical inference under ACS. Performance of the proposed variance estimators is evaluated in terms of the absolute relative percentage bias and the empirical mean-squared error. As expected, results show that both the absolute relative percentage bias and the empirical mean-squared error decrease as the initial sample size increases for all the variance estimators. To evaluate the confidence intervals based on these variance estimators and the finite-population Central Limit Theorem, the coverage rate and the interval width are used. These confidence intervals suffer a disadvantage similar to that of the conventional ratio estimator. Hence, alternative confidence intervals based on a certain type of adjusted variance estimators are constructed and assessed in this article.  相似文献   

13.
We present a novel, non-parametric, frequentist approach for capture-recapture data based on a ratio estimator, which offers several advantages. First, as a non-parametric model, it does not require a known underlying distribution for parameters nor the associated assumptions, eliminating the need for post-hoc corrections or additional modeling to account for heterogeneity and other violated assumptions. Second, the model explicitly deals with dependence of trials by considering trials to be dependent; therefore, cluster sampling is handled naturally and additional adjustments are not necessary. Third, it accounts for ordering, utilizing the fact that a system with a small population will have a greater frequency of recaptures “early” in the survey work compared to an identical system with a larger population. We provide mathematical proof that our estimator attains asymptotic minimum variance under open systems. We apply the model to a data set of bottlenose dolphins (Tursiops truncatus) and compare results to those from classic closed models. We show that the model has an impressive rate of convergence and demonstrate that there’s an inverse relationship between population size and the proportion of the population that need to be sampled, while achieving the same degree of accuracy for abundance estimates. The model is flexible and can apply to ecological situations as well as other situations that lend themselves to capture recapture sampling.  相似文献   

14.
Wetland use by waterbirds is highly dependent on water depth, and depth requirements generally vary among species. Furthermore, water depth within wetlands often varies greatly over time due to unpredictable hydrological events, making comparisons of waterbird abundance among wetlands difficult as effects of habitat variables and water depth are confounded. Species-specific relationships between bird abundance and water depth necessarily are non-linear; thus, we developed a methodology to correct waterbird abundance for variation in water depth, based on the non-parametric regression of these two variables. Accordingly, we used the difference between observed and predicted abundances from non-parametric regression (analogous to parametric residuals) as an estimate of bird abundance at equivalent water depths. We scaled this difference to levels of observed and predicted abundances using the formula: ((observed − predicted abundance)/(observed + predicted abundance)) × 100. This estimate also corresponds to the observed:predicted abundance ratio, which allows easy interpretation of results. We illustrated this methodology using two hypothetical species that differed in water depth and wetland preferences. Comparisons of wetlands, using both observed and relative corrected abundances, indicated that relative corrected abundance adequately separates the effect of water depth from the effect of wetlands.  相似文献   

15.
Practical considerations often motivate employing variable probability sampling designs when estimating characteristics of forest populations. Three distribution function estimators, the Horvitz-Thompson estimator, a difference estimator, and a ratio estimator, are compared following variable probability sampling in which the inclusion probabilities are proportional to an auxiliary variable, X. Relative performance of the estimators is affected by several factors, including the distribution of the inclusion probabilities, the correlation () between X and the response Y, and the position along the distribution function being estimated. Both the ratio and difference estimators are superior to the Horvitz-Thompson estimator. The difference estimator gains better precision than the ratio estimator toward the upper portion of the distribution function, but the ratio estimator is superior toward the lower end of the distribution function. The point along the distribution function at which the difference estimator becomes more precise than the ratio estimator depends on the sampling design, as well as the coefficient of variation of X and . A simple confidence interval procedure provides close to nominal coverage for intervals constructed from both the difference and ratio estimators, with the exception that coverage may be poor for the lower tail of the distribution function when using the ratio estimator.  相似文献   

16.
In environmental assessment and monitoring, a primary objective of the investigator is to describe the changes occurring in the environmentally important variables over time. Propagation functions have been proposed to describe the distributional changes occurring in the variable of interest at two different times. McDonald et al. (1992, 1995) proposed an estimator of propagation function under the assumption of normality. We conduct a detailed sensitivity analysis of inference based on the normal model. It turns out that this model is appropriate only for small departures from normality whereas, for moderate to large departures, both estimation and testing of hypothesis break down. Non-parametric estimation of the propagation function based on kernel density estimation is also considered and the robustness of the choice of bandwidth for kernel density estimation is investigated. Bootstrapping is employed to obtain confidence intervals for the propagation function and also to determine the critical regions for testing the significance of distributional changes between two sampling epochs. Also studied briefly is the mathematical form and graphical shape of the propagation function for some parametric bivariate families of distributions. Finally, the proposed estimation techniques are illustrated on a data set of tree ring widths.  相似文献   

17.
We develop a novel statistical approach for classifying generalists and specialists in two distinct habitats. Using a multinomial model based on estimated species relative abundance in two habitats, our method minimizes bias due to differences in sampling intensities between two habitat types as well as bias due to insufficient sampling within each habitat. The method permits a robust statistical classification of habitat specialists and generalists, without excluding rare species a priori. Based on a user-defined specialization threshold, the model classifies species into one of four groups: (1) generalist; (2) habitat A specialist; (3) habitat B specialist; and (4) too rare to classify with confidence. We illustrate our multinomial classification method using two contrasting data sets: (1) bird abundance in woodland and heath habitats in southeastern Australia and (2) tree abundance in second-growth (SG) and old-growth (OG) rain forests in the Caribbean lowlands of northeastern Costa Rica. We evaluate the multinomial model in detail for the tree data set. Our results for birds were highly concordant with a previous nonstatistical classification, but our method classified a higher fraction (57.7%) of bird species with statistical confidence. Based on a conservative specialization threshold and adjustment for multiple comparisons, 64.4% of tree species in the full sample were too rare to classify with confidence. Among the species classified, OG specialists constituted the largest class (40.6%), followed by generalist tree species (36.7%) and SG specialists (22.7%). The multinomial model was more sensitive than indicator value analysis or abundance-based phi coefficient indices in detecting habitat specialists and also detects generalists statistically. Classification of specialists and generalists based on rarefied subsamples was highly consistent with classification based on the full sample, even for sampling percentages as low as 20%. Major advantages of the new method are (1) its ability to distinguish habitat generalists (species with no significant habitat affinity) from species that are simply too rare to classify and (2) applicability to a single representative sample or a single pooled set of representative samples from each of two habitat types. The method as currently developed can be applied to no more than two habitats at a time.  相似文献   

18.
Abstract:  The use of local ecological knowledge (LEK) has been advocated for biodiversity monitoring and management. To date, however, it has been underused in studying wild populations of animals and, particularly, in obtaining quantitative abundance estimates. We evaluated LEK as a tool for collecting extensive data on local animal abundance and population trends. We interviewed shepherds in southeastern Spain, asking them to estimate the local abundance of the terrestrial tortoise Testudo graeca . We quantified reliability of abundance estimates derived from interviews by comparing them with those obtained from standard field-sampling protocols (distance sampling). We also explored the complementarity of these 2 approaches. LEK provided high-quality and low-cost information about both distribution and abundance of T. graeca . Interviews with shepherds yielded abundance estimates in a much wider range than linear transects, which only detected the species in the upper two-thirds of its abundance range. Abundance estimates from both methodologies showed a close relationship. Analysis of confidence intervals indicated local knowledge could be used to estimate mean local abundances and to detect mean population trends. A cost analysis determined that the information derived from LEK was 100 times cheaper than that obtained through linear-transect surveys. Our results should further the use of LEK as a standard tool for sampling the quantitative abundance of a great variety of taxa, particularly when population densities are low and traditional sampling methods are expensive or difficult to implement.  相似文献   

19.
20.
Estimating Population Size with Noninvasive Capture-Mark-Recapture Data   总被引:1,自引:0,他引:1  
Abstract:  Estimating population size of elusive and rare species is challenging. The difficulties in catching such species has triggered the use of samples collected noninvasively, such as feces or hair, from which genetic analysis yields data similar to capture-mark-recapture (CMR) data. There are, however, two differences between classical CMR and noninvasive CMR. First, capture and recapture data are gathered over multiple sampling sessions in classical CMR, whereas in noninvasive CMR they can be obtained from a single sampling session. Second, because of genotyping errors and unlike classical CMR, there is no simple relationship between (genetic) marks and individuals in noninvasive CMR. We evaluated, through simulations, the reliability of population size estimates based on noninvasive CMR. For equal sampling efforts, we compared estimates of population size N obtained from accumulation curves, a maximum likelihood, and a Bayesian estimator. For a closed population and without sampling heterogeneity, estimates obtained from noninvasive CMR were as reliable as estimates from classical CMR. The sampling structure (single or multiple session) did not alter the results, the Bayesian estimator in the case of a single sampling session presented the best compromise between low mean squared error and a 95% confidence interval encompassing the parametric value of N in most simulations. Finally, when suitable field and lab protocols were used, genotyping errors did not substantially bias population size estimates (bias < 3.5% in all simulations). The ability to reliably estimate population size from noninvasive samples taken during a single session offers a new and useful technique for the management and conservation of elusive and rare species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号