首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Green oysters caused by copper pollution on the Taiwan coast   总被引:1,自引:0,他引:1  
The first case of green oysters (Crassostrea gigas) broke out along the Charting mariculture area of south-western Taiwan in January 1986. The green color was found to be due to high copper content in the oyster tissue. Since then, a long-term survey around this area shows that total dissolved copper ranges from 4.99 to 23.6 microg/liter and particulate copper ranges from 1.09 to 5.51 microg/liter in sea-water. The green oysters collected from the Erhjin Chi estuary on 26 January, 1989 gave the highest copper content, 4401+/-79 ppm dry wt. Other green oyster cases were occasionally observed in the Hsiangsan and Anpin mariculture areas. Meanwhile, an experiment of copper accumulation in oysters was conducted at three stations (south-western Taiwan) for up to 90 days. Multiple regression analysis indicates that the food pathway may predominate in copper accumulation by green oysters. This bioaccumulation experiment shows that the total uptake of copper per oyster is an exponential function of exposure time for the first 2 weeks with an accumulation rate of 214 ppm Cu/day and then levels off. The average values of concentration factors for oysters (about 5 x 10(5)) were very close to steady-state values under the natural conditions at each station.  相似文献   

2.
Uptake and depuration of toxic chlorinated compounds such as planar polychlorinated biphenyls (PCBs 77, 126, 169), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and 2,3,7,8-tetrachlorodibenzofuran (TCDF) were monitored during a 50-day field study where American oysters (Crassostrea virginica) were transplanted back and forth between a heavily polluted area (Houston Ship Channel, SC) and a relatively unimpacted area (Hanna's Reef, HR) within Galveston Bay, TX. In general, low molecular weight, less lipophilic compounds accumulated in the oysters to a larger extent than high molecular weight ones. Estimated half-lives for planar PCB congeners 77 and 126 were 28 and 51 days, respectively for depuration of newly contaminated oysters (HR-SC-HR) while longer half-lives (42 and 60 days, respectively) were observed for the same compounds as they were eliminated from chronically contaminated individuals (SC-HR). Estimated half-lives for 2,3,7,8-TCDD and 2,3,7,8-TCDF were 35 and 36 days, respectively and were similar to the tetrachlorinated biphenyls (PCBs 77 and 81). Compared with ortho-substituted PCB congeners of the same chlorination level, the more toxic PCBs take longer to depurate from the oysters. With few exceptions, elimination of all toxic compounds investigated proceeded at a slower rate from the chronically exposed population that from the newly contaminated one.  相似文献   

3.
This paper evaluates the relationships between copper species in sediments and accumulation by the purple clam (Hiatula diphos) and venus clam (Gomphina aeguilatera) collected from the field and culture (aquaculture) ponds in the polluted coastal area of Lukang, Taiwan. Sediment was sampled along with the molluscs, including oysters (Crassostrea gigas), purple clams (Hiatula diphos), rock-shells (Thais clavigera), venus clams (Gomphina aeguilatera), and hard clams (Meretrix lusoria), from two unique environments of Lukang during the period from August 1993 to July 1994. The data indicate that the total copper concentrations in sediments from culture ponds (185 microg g(-1)) was higher than those of the field (44.0 microg g(-1)). Copper species in sediments were analyzed by a sequential leaching technique. Results show that concentrations of various copper species in the sediments are in the range of 1.14 +/- 0.59 to 13.2 +/- 22.4 microg g(-1) and 0.36 +/- 0.24 to 133 +/- 36.7 microg g(-1) for the two environments, respectively. Also the exchangeable copper in sediment from culture ponds was 15 times higher than that from the field. In addition, the sum of exchangeable and copper carbonates had the highest percentages of copper in both the pond sediment (86.6 %) and the field sediment (50.7 %). Maximum copper concentrations (309 +/- 35.1 microg g(-1)) in oysters were much higher than those in the other benthic organisms by about 4-127 times. Similarly, the data also showed that copper concentrations in Thais clavigera were 12-32 times higher than those in other benthic organisms. Copper concentrations in various benthic organisms differed significantly (p < 0.05) from that in Thais clavigera. This capacity makes Thais clavigera a potential candidate for monitoring copper in marine sediments. In terms of copper species, the best correlation was generally obtained between copper carbonates in sediments and copper concentrations in Hiatula diphos (r = 0.886*). A strong multiple regression correlation (p < 0.05, r2 = 0.7894) also indicates that the copper carbonates may dominate as the available form of copper to Hiatula diphos from various environments in the Lukang coastal area under natural physicochemical conditions.  相似文献   

4.
This study aimed to evaluate (1) the capacity of the green alga Pseudokirchneriella subcapitata and the waterflea Daphnia magna to regulate copper when exposed to environmentally realistic copper concentrations and (2) the influence of multi-generation acclimation to these copper concentrations on copper bioaccumulation and homeostasis. Based on bioconcentration factors, active copper regulation was observed in algae up to 5 microg Cu L(-1) and in daphnids up to 35 mug Cu L(-1). Constant body copper concentrations (13+/-4 microg Cu g DW(-1)) were observed in algae exposed to 1 through 5 microg Cu L(-1) and in daphnids exposed to 1 through 12 microg Cu L(-1). At higher exposure concentrations, there was an increase in internal body copper concentration, while no increase was observed in bioconcentration factors, suggesting the presence of a storage mechanism. At copper concentrations of 100 microg Cu L(-1) (P. subcapitata) and 150 microg Cu L(-1) (D. magna), the significant increases observed in body copper concentrations and in bioconcentration factors may be related to a failure of this regulation mechanism. For both organisms, internal body copper concentrations lower than 13 microg Cu g DW(-1) may result in copper deficiency. For P. subcapitata acclimated to 0.5 and 100 microg Cu L(-1), body copper concentrations ranged (mean+/-standard deviation) between 5+/-2 microg Cu g DW(-1) and 1300+/-197 microg Cu g DW(-1), respectively. For D. magna, this value ranged between 9+/-2 microg Cu g DW(-1) and 175+/-17 microg Cu g DW(-1) for daphnids acclimated to 0.5 and 150 microg Cu L(-1). Multi-generation acclimation to copper concentrations >or =12 microg Cu L(-1) resulted in a decrease (up to 40%) in body copper concentrations for both organisms compared to the body copper concentration of the first generation. It can be concluded that there is an indication that P. subcapitata and D. magna can regulate their whole body copper concentration to maintain copper homeostasis within their optimal copper range and acclimation enhances these mechanisms.  相似文献   

5.
Green-lipped mussels, Perna viridis, were collected from Kat O, Yim Tin Tsai, Ma Liu Shui and Tap Mun around Tolo Harbour and six local markets in Hong Kong (Aberdeen, Shau Kei Wan, Kowloon City, Mongkok, Yuen Long) and Shenzhen (Dongmun) between July 1994 and February 1995 and analysed for cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn). The metal concentrations of mussels collected from the study sites were Cd (0.45-1.44 microg/g), Cr (0.82-4.89 microg/g), Cu (6.02-23.99 microg/g), Ni (3.25-6.87 microg/g), Pb (2.02-4.36 microg/g) and Zn (90-135 microg/g), while those from the markets were Cd (0.27-1.44 microg/g), Cr (1.09-3.30 microg/g), Cu (9.05-17.8 microg/g), Ni (2.44-5.25 microg/g), Pb (1.17-5 microg/g) and Zn (51-103 microg/g). The metal concentrations were below the maximum permissible levels set by the Hong Kong Government. In addition, seasonal variation of metal accumulation in mussels was investigated in Yim Tin Tsai and Ma Liu Shui and a reduction in the total heavy metal concentrations during winter was noted. The non-carcinogenic hazard index of mussels collected from Tolo Harbour and from Hong Kong markets was between 0.46 and 1.36 compared with those from Shenzhen markets (0.85-1.46), which indicated a low but possible risk in consuming the mussels.  相似文献   

6.
Pain S  Parant M 《Chemosphere》2007,67(6):1258-1263
The biological defence mechanism called MXR or MXD for multixenobiotic resistance or defence protects cells against the entry and the accumulation of xenobiotics. As the defence is modulated by man made chemicals, MXR is used as a biomarker of organisms' exposure to environmental contamination. However, to reliably assess and evidence MXR induction, the use of a reference level is required. In this context, we focused on MXR background level in a freshwater bivalve, the zebra mussel Dreissena polymorpha, in order to propose its use as a reference during MXR evaluation. We monitored the MXR transport activity in mussels collected either in a natural population or in a caged population and then transplanted to clean water in the laboratory. The results showed that MXR activity was decreased to its baseline level after an eight to nine day depuration period (13.1+/-3.1; 7+/-2.6; 13.7+/-3.9 pmol RB min(-1)org(-1) after three experiments of laboratory depurations). Moreover, significant MXR induction was measured in depurated zebra mussels exposed to contaminated sites (39.6+/-3.7; 59.2+/-20.3 pmol RB min(-1)org(-1) after two experiments of field exposure), showing that the laboratory depuration did not affect the induction potential. The MXR responses (decrease as well as increase) occurred in few days and were highly significant, highlighting its reactivity in zebra mussels. Finally, this paper confirms the usefulness of MXR as a tool in biomonitoring studies and provides a protocol for field experiments that enables to establish and use the background level of MXR activity as a reference.  相似文献   

7.
This study presents the distribution of Cu, Zn, Pb, Cd, Hg and As in various marine organisms collected along the western coast of Taiwan from 1991 to 1998, and also evaluates the time variation of Cu in oysters before (1980-85) and after (1986-98) the "green oyster" incident. The results show that relatively high geometric mean (GM) concentrations of Cu, Zn, Pb, Cd, As and Hg were generally found in Crassostrea gigas (Cu=229 microg/g, Zn=783 microg/g), Gomphina aeguialtera (Pb=30.3 microg/g), Tegillarca granosa (Cd=2.85 microg/g), Thais clavigera (As=96.9 microg/g) and Parapenaeopsis cornuta (Hg=1.35 microg/g), respectively. Especially, maximum Cu and Zn concentrations (GM=229 and 783 microg/g, respectively) in oysters (C. gigas) from different culture areas were much higher than those of the other organisms by about 1.13-458 and 2.40-63.7 times, respectively. Similarly, rock-shells (Thais clavigera) had a high capacity for accumulating Cu (GM=202 microg/g) and Zn (GM=326 microg/g) under the same physico-chemical conditions. The highest GM Cu and Zn concentrations of 1108 (range from 113 to 2806) and 1567 (range from 303 to 3593) microg/g were obtained in oysters from the Hsiangshan coastal area, one of the most important oyster culture areas in Taiwan. However, the highest GM Cd and As concentrations of 6.82 and 19.3 microg/g were found in oysters from the Machu Islands. Mean Cu concentrations in the oysters from the Erhjin Chi estuary declined from 2194+/-212 microg/g in 1986-90 to 545 microg/g (GM) in 1991-96. In the Hsiganshan area, GM Cu concentrations of 909 microg/g (1991-96) and 1351 microg/g (1997-98) in oysters were significantly higher than those of 201 microg/g (1980-85) and 682 microg/g (1986-90). The gradually increasing levels of Cu and Zn in the oysters from the Hsiangshan area have been observed year by year.  相似文献   

8.
Larval stages of bivalve molluscs are highly sensitive to pollutants. Oysters from a hatchery from Normandy (English Channel) were induced to spawn, and fertilized eggs were exposed to copper or cadmium for 24 h. Metal accumulation (from 0.125 to 5 microg Cu L(-1) and from 25 to 200 microg Cd L(-1)) and MT concentrations were measured in larvae. Compared to controls, larvae accumulated copper and cadmium with an increase in MT concentrations particularly with cadmium (i.e. 130.96 ng Cu (mg protein)(-1) and 12.69 microg MT (mg protein)(-1) at 1 microg Cu L(-1) versus 23.19 ng Cu (mg protein)(-1) and 8.92 microg MT (mg protein)(-1) in control larvae; 334.3 ng Cd (mg protein)(-1) and 11.70 microg MT (mg protein)(-1) at 200 microg Cd L(-1) versus 0.87 ng Cd (mg protein)(-1) and 4.60 microg MT (mg protein)(-1) in control larvae). Larvae were also obtained from oysters of a clean area (Arcachon Bay) and a polluted zone (Bidassoa estuary) and exposed to copper in the laboratory, their MT concentration was measured as well as biomarkers of oxidative stress. Biomarker responses and sensitivity to copper for the larvae from Arcachon oysters were higher than for those from Bidassoa.  相似文献   

9.
Most of the oyster mariculture beds in Taiwan are in areas located along the west of the island. One of these areas is the Charting coast, where green oysters were found in 1986. During this incident, which became internationally notorious, mass mortality occurred in the Charting oyster beds. After this discovery, measures were taken by the authorities to counter pollution which lead to the problem. The effectiveness of these pollution control actions was evaluated in this study. Two water column indicators, particulate and sediment, and oysters were sampled and analyzed for metals (Cu, Zn, Pb, Ni) in Charting and its neighboring areas, Kuen-Shen Lake and Shin-Da Harbor, and the control area/station, Dah-Pen Wan. The current study shows that copper and zinc concentrations in both oysters and particulates significantly decreased in the Charting area, compared with concentrations found during the period of the green oyster incident. Six years after the incident, the copper concentration in oysters had fallen from a high of 4400 μg/g dry weight to an average of 300±69 μg/g dry weight, figures similar to the copper concentration in 1982. The pollution control actions taken after the incident are believed to be the cause of this recovery of the coastal environment. Nevertheless, Charting still produced oysters with the highest copper and zinc concentrations among the areas investigated. Further measures currently being taken by the government, including removing the sediment of some portions of Erhjin Chi, should be able to bring the oyster copper concentrations down to the levels similar to those observed in the neighboring area, (average concentration below 200 μg/g dry weight or all time maximum concentration below 500 μg/g dry weight).  相似文献   

10.
The distributions of copper, zinc, iron, and cadmium among the tissues of Dorippe granulata were determined. The highest copper concentrations were found in the haemolymph (c. 53 microg ml(-1)) while the highest iron concentrations occurred in the gills (c. 720 microg g(-1) dry weight) and the highest zinc concentrations in the exoskeleton (c. 200 microg g(-1) dry weight). By comparison, concentrations of the non-essential metal, cadmium, were low in all tissues (mean = 10 microg g(-1) dry weight). The highest value was recorded from the midgut gland of a female crab (18.5 microg Cd g(-1) dry weight). Concentrations of copper, zinc, and iron were positively correlated with tissue-hydration levels. Such a relationship was not found for cadmium. The findings are discussed with regard to trace-metal levels found in temperate and tropical brachyurans from clean and polluted localities.  相似文献   

11.
Hemolymph sodium, potassium and calcium concentrations were determined in crayfish (Orconectes propinquus) exposed to (203)HgCl(2) mixed with food to a concentration of 1 microg Hg g(-1). Dummy-fed animals were exposed to Hg-dosed food wrapped in dialysis tubing to control for mercury reaching the animals via leaching from food to water. Hemolymph analyses were made following 14-day Hg exposures and again after a further 21-day 'depuration' period during which all animals were fed Hg-free food. After 14 days, the mercury reached a concentration of 0.175 microg g(-1) in the hepatopancreas and approximately half this level in the gills of Hg-fed animals. No depuration occurred from the hepatopancreas although the gills lost approximately two-thirds of their labelled mercury during the depuration period. Hemolymph sodium concentrations in Hg-exposed crayfish, both fed and dummy-fed, after 14 days were significantly lower than in Hg-free controls and remained low following the 21-day depuration period. Hemolymph calcium concentrations were lower in Hg-fed animals than in dummy-fed and control animals after 14 days although calcium levels rose in all treatments after 35 days. This may have been due to the incidence of pre-molt animals in all experimental groups, although the relationship between this and mercury exposure was not established unequivocally. Hemolymph potassium levels showed no differences between treatments.  相似文献   

12.
Gundi VA  Reddy BR 《Chemosphere》2006,62(3):396-403
The degradation of a widely used organophosphorus insecticide, monocrotophos (dimethyl (E)-1-methyl-2-methylcarbamoyl vinyl phosphate) in two Indian agricultural soils at two concentration levels, 10 and 100 microg g(-1) soil under aerobic conditions at 60% water-holding capacity at 28+/-4 degrees C was studied in a laboratory. The degradation of monocrotophos at both concentrations in black vertisol and red alfinsol soils was rapid accounting for 96-98% of the applied quantity and followed the first-order kinetics with rate constants (k) of 0.0753 and 0.0606 day(-1) and half-lives (t1/2) of 9.2 and 11.4 days, respectively. Degradation of monocrotophos in soils proceeded by hydrolysis with formation of N-methylacetoacetamide. Even three additions of monocrotophos at 10 microg g(-1) soil did not result in its enhanced degradation. However, there was cumulative accumulation of N-methylacetoacetamide in soils pretreated with monocrotophos to the tune of 7-15 microg g(-1) soil. Both biotic and abiotic factors were involved in degradation of monocrotophos in soils.  相似文献   

13.
Groups of zebra mussels (Dreissena polymorpha) and asiatic clams (Corbicula fluminea) were exposed to cadmium and zinc with the aim of studying the effect of these metals on the 57Co, 110Ag and 134Cs uptake and depuration by these freshwater bivalves. In the presence of zinc, the 57Co concentration factor for the whole organism of the two species was halved, notably because of a decrease of the uptake parameter. Conversely, Zinc and the Cd + Zn mixture increased the 110mAg uptake process by clams and mussels. The two metals also increased the depuration of this radionuclide in mussels, whereas this phenomenon was only observed in clams exposed to cadmium. In comparison with 57Co and 110mAg, the 134Cs bioconcentration was 5-10 times lower in D. polymorpha and not detected in C. fluminea. This weak contamination by this radionuclide resulted from a lower uptake and a higher depuration parameters.  相似文献   

14.
Choi MC  Yu PK  Hsieh DP  Lam PK 《Chemosphere》2006,64(10):1642-1649
A local strain of the dinoflagellate Alexandrium tamarense (ATCI01), which predominantly produces C2 toxin, was fed to the clams (Ruditapes philippinarum) under laboratory conditions. Concentrations of paralytic shellfish toxins (PSTs) in the dosed clams were determined by High Performance Liquid Chromatographic (HPLC) analyses, and the clams were homogenized and then fed to the gastropods (Nassarius festivus). In the toxin accumulation phase, which lasted for 42 days, concentrations of PSTs increased in the snails gradually, reaching a maximum of 1.10 nmole g(-1) at the end of the exposure period. The toxin content of the homogenized clams (food) was 13.18 nmole g(-1), which was about 12-fold higher than the PST content in the snails. Between day 43 and day 82, the snails were fed with non-toxic clams, and this period represented the depuration phase. Accumulation and depuration rates of PSTs in the snails, N. festivus, were determined by fitting the experimental data to user-defined parameters program using a one-compartment model. Two different modeling approaches were used to derive the accumulation and depuration rates. The first approach is to derive both values from the data for the toxin uptake. The second approach is to derive depuration rate from the depuration data and then to derive uptake rate, allowing for toxin depuration, from the data for toxin uptake. The first approach yielded more consistent results for the toxin concentration at the end of the uptake period, when compared with the experimental data. The toxin uptake and depuration rates were 1.64 (pmole of toxin into snail per day) per (nmole g(-1) of toxin in food) and 0.06+/-0.02 day(-1) (mean+/-SE), respectively. The toxin profiles of snails were similar to the clams, but different from the algae. Besides C toxins (C1 and C2), dcGTX2 and dcGTX3 were also detected in both clams and snails. The beta:alpha epimer ratio gradually decreased during trophic transfer and approached a ratio of 1:3 (26.4 mol%:73.6 mol% at day 42) in the snails, near the end of the accumulation period.  相似文献   

15.
Katano S  Matsuo Y  Hanaoka K 《Chemosphere》2003,53(3):245-251
We investigated the water-soluble arsenic compounds present in the soft tissues of both the pearl-free and the pearl-containing pearl oysters. After dividing the soft tissue into five parts, i.e., adductor muscle, foot, mantle, viscera and gill, each part was analyzed by high-performance liquid chromatography-inductively coupled plasma mass spectrometry for the arsenic compounds accumulated in it. Arsenic concentration of each tissue part ranged from 22.1 to 45.7 microg g(-1) of dry tissue in the pearl-free pearl oyster and from 27.4 to 50.4 microg g(-1) of dry tissue in the pearl-containing pearl oyster. On the grounds of the present evidence the major water-soluble arsenic compound accumulated in each part was identified as arsenobetaine without exception in both types of pearl oysters (94.3-99.7% in the pearl-free pearl oyster and 87.2-99.7% in the pearl-containing pearl oyster). Trace or small amounts of arsenic compounds including tetramethylarsonium ion and arsenocholine were also detected in some parts. The levels of these minor arsenicals were a little higher in pearl-free pearl oyster than in the pearl-containing pearl oyster. This study confirms the hygienic safety of the soft tissues of both the pearl-free and the pearl-containing pearl oysters, as food.  相似文献   

16.
Blue mussels (Mytilus edulis) were exposed to an extract made of natural cyanobacterial mixture containing toxic cyanobacterium Nodularia spumigena (70-110 microg nodularin l(-1), 24-h exposure followed by 144-h depuration period in clean water). Toxin concentration increased from initial 400 to 1100 mg kg(-1) after 24-h exposure, measured by liquid chromatography/mass spectrometry (LC/MS). Acetylcholinesterase activity (AChE), a biomarker of direct neurotoxic effects, showed inhibition after 12 and 24h exposure but returned to control level during the depuration period. Catalase (CAT) activity, an indicator of oxidative stress, showed significantly elevated levels in exposed mussels but only 72 h after the end of the exposure. No change in the activity of glutathione-S-transferase (GST) involved in conjugation reactions could be observed. A gradual yet incomplete elimination of nodularin (from 1100 to 600 mg kg(-1)) was observed during the depuration period, and the tissue levels were 30% lower in clean water after 24 h. The observed increase in oxidative stress indicated by elevated CAT activity is likely connected to detoxification reactions leading to the production of reactive oxygen species, including an apparent time lag in this specific enzymatic defence response. That no change in GST activity was observed suggests that this enzyme is not significantly involved in the detoxification process of nodularin-containing cyanobacterial extract in M. edulis.  相似文献   

17.
Pollutant concentrations detected in oysters from 12 different culture areas of Taiwan (especially for the Hsiangshan area and the Machu Islands) from 1991-98 were evaluated to investigate potential carcinogenic (inorganic As and organochlorine pesticides) and non-carcinogenic (Cu, Zn, Cd and inorganic As) risk to the public from ingestion of the oysters. The highest geometric mean (GM) Cu and Zn concentrations of 1108 (range 113-2806) and 1567 (range 303-3593) microg/g dry weight were obtained in oysters from the Hsiangshan coastal area. The maximum GM Cd and As concentrations of 6.82 and 19.3 microg/g dry weight were found in oysters from the Machu Islands area. The p,p'-DDE values range from not detectable in Penghu Islands' oysters to 164 ng/g dry weight in Machu Islands' oysters. The highest tDDT (sum of p,p'-DDE, p,p'-DDD and p,p'-DDT) concentrations of 337 and 340 ng/g dry weight were found in oysters from Kimmen and Machu Islands, respectively. A calculated target hazard quotient (THQ; daily intake/reference dose) of 11.4 (based on 139 g oysters/day) for Cu caused by consuming oysters from the Hsiangshan area is higher than that from other areas (range 0.124-5.95). The highest average Cu intake from Hsiangshan's oysters for individuals is 11.4 times (i.e. THQ=11.4) more than that of reference dose (40 microg/kg/day). However, the maximum THQ values for Cd and As caused by consuming oysters collected from the Machu Islands were 5.57 and 2.63 for Cd and As, respectively. Generally, the results of THQ showed that if only the maximally exposed individuals were considered, the value of 65.4% for oyster was higher than 1.0 in comparison with reference dose. All cancer risk estimates for inorganic As from consuming oysters were higher than 10(-6) (range from 128x10(-6) to 509x10(-6) for maximally exposed individuals and range from 17.1x10(-6) to 68.0x10(-6) for typically exposed individuals, respectively); that is the risk of the lower end of the range of acceptable risk. The highest risk estimate for inorganic As was 509x10(-6) for consumption of oysters by Machu Islands' residents. The lifetime cancer risks of 19.0x10(-6) for tDDT by consuming oysters from the Machu Islands was higher than those from the Penghu Islands (0.37x10(-6)). Therefore, the sum of lifetime cancer risks for tDDT and inorganic As had the highest risks (total risk=528x10(-6)) of consuming oysters from the Machu Islands. Furthermore, a 10(-6) upper limit on lifetime risk as the health protection standard would require maximum oyster consumption rates of approximately 0.26 g/day.  相似文献   

18.
The total concentration of toxic elements (aluminum, cadmium, chromium and lead) and selected macro and micro elements (iron, manganese, copper and zinc) are reported in six leafy edible vegetation species, namely lettuce, spinach, cabbage, chards and green and red types of Amaranth herbs. Although spinach and chards had greater than 125 mv of iron, both the amaranthus herbs recorded > than 320 microg g(-1) dry weight. In both the spinach and chard species, the Mn and Zn levels were appreciable recording > 225 microg g(-1) and 150 microg g(-1) dry weight, respectively. Aluminum concentrations were (in microg g(-1) dry weight) lettuce (10), cabbage (11), spinach (167), chards (65), amaranthus green (293) and amaranthus red (233). All the micro and macro elements and the toxic elements (Ni, Cr, Cd and Pb) elements analyzed, were below the recommended maximum permitted levels (RMI) in vegetables. Further the elemental uptake and distribution of the nine elements, at three growth stages of the lettuce plant grown on soil bed under controlled conditions are detailed. In the soil, except for iron (16%), greater than 33% of the other cations were in exchangeable form. Generally in the lettuce plant, roots retained much of the iron (> 224 microg g(-1)) and aluminum (> 360 microg g(-1)), while leaves had less than 200 microg g(-1) of iron and 165 microg g(-1) of Al. Although the concentrations of elements marginally decreased with growth, the lettuce leaves had significant amounts of Mn (30 microg g(-1)), Zn (50 microg g(-1)) and Cu (3.6 microg g(-1)). Some presence of lead in leaves (2.0 microg g(-1)) was noticed, but all the toxic and other elements analyzed were well below the RMI values for the vegetables.  相似文献   

19.
The aim of this study was to determine the concentration of some essential and toxic metals in the colostrum and transitory human milk in conjunction with various factors that may influence their concentrations i.e. diet, supplementation, place of residence, smoking, as well as socioeconomic and somatometric characteristics. Zinc, iron, copper, manganese, cadmium and lead were measured by AAS in 180 colostrum samples from healthy lactating women collected on third day postpartum. A second milk sample was collected in 95 (53%) subjects 14 days later. Dietary habits were assessed by a 7-day food frequency questionnaire and various characteristics and socio-economic factors were also recorded. The mean (+/-standard deviation) values of colostrum samples were: Zn 4905 +/- 1725 microg l(-1), Fe 544 +/- 348 microg l(-1), Mn 4.79 +/- 3.23 microg l(-1), Cu 381 +/- 132 microg l(-1), Cd 0.190 +/- 0.150 microg l(-1), Pb 0.48 +/- 0.60 microg l(-1). All metals with the exception of copper were found in lower concentrations in transitory samples. Cadmium and lead weekly intakes were found to be below the Maximum Tolerable Weekly Intakes as they have been established for infants by WHO or NRC. Our results revealed: higher Pb concentration in the samples from urban areas; effect of smoking on Cu level; dietary habits seem to play a role in metal levels in human milk as the logistic regression models revealed.  相似文献   

20.
Chronic effects of chlornitrofen (CNP) on the reproduction of Brachionus urceolaris (Rotatoria) were investigated by exposure of individuals to CNP from the egg stage, which had been attached to the adult. The survivors of 12 neonates, which had been exposed to CNP100, 70 or 40 microg liter(-1) decreased to 50% at the age of c. 2, 4 and 6 days, respectively, compared to c. 6.5 days for those exposed to 0, 10 and 20 microg liter(-1) CNP. Release of offspring (mostly two individuals per day) started at two days old. At the peak, four days old, a control female produced 8.1+/-0.9 offspring per day compared with 4.5+/-1.3 (mean+/-SD, n=12) at 40 microg liter(-1). The cumulative numbers of offspring produced by a female were 25.8+/-1.2, 24.2+/-2.9, 22.3+/-3.6 and 13.6+/-3.1 (mean+/-SD, n=12) at control, 10, 20 and 40 microg liter(-1) CNP exposure, respectively. The 50% reproductive impairment concentration was calculated to be 37 microg liter(-1). Growth of neonates was barely detectable at 70 microg liter(-1), and the rapid increase in the effect of CNP from 40 to 70 microg liter(-1) was attributed to an increase in tolerance with growth of the neonates. The effects of CNP on reproduction were also tested by CNP exposure through food (CNP-accumulated Chlorella). The 50% reproductive impairment concentration of CNP in the alga was calculated to be c.60 microg g(-1) (wet weight) by the same method used to assess the dissolved CNP, although the effect of CNP which may have been released from the alga to the water could not be estimated precisely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号