首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 255 毫秒
1.
A variety of models for predicting the behaviour of radionuclides in fresh water ecosystems have been developed and tested during recent decades within the framework of many international research projects. These models have been implemented in Computerised Decision Support Systems (CDSS) for assisting the appropriate management of fresh water bodies contaminated by radionuclides. The assessment of the state-of-the-art and the consolidation of these CDSSs has been envisaged, by the scientific community, as a primary necessity for the rationalisation of the sector. The classification of the approaches of the various models, the determination of their essential features, the identification of similarities and differences among them and the definition of their application domains are all essential for the harmonisation of the existing CDSSs and for the possible development and improvement of reference models that can be widely applied in different environmental conditions. The present paper summarises the results of the assessment and evaluation of models for predicting the behaviour of radionuclides in lacustrine ecosystems. Such models were developed and tested within major projects financed by the European Commission during its 4th Framework Programme (1994-1998). The work done during the recent decades by many modellers at an international level has produced some consolidated results that are widely accepted by most experts. Nevertheless, some new results have arisen from recent studies and certain model improvements are still necessary.  相似文献   

2.
The present paper summarises the results of the review and assessment of models developed for predicting the migration of radionuclides from catchments to water bodies. The models were classified and evaluated according to their main methodological approaches. A retrospective analysis of the principles underpinning the model development in relation to experimental finding and results was carried out. It was demonstrated that most of the various conceptual approaches of different modellers can be integrated in a general, harmonised perspective supported by a variety of experimental evidences. Shortcomings and advantages of the models were discussed.  相似文献   

3.
In the Model Complexity working group of BIOMOVS II, models of varying complexity have been applied to a theoretical problem concerning downward transport of radionuclides in soils. The purpose was to study how uncertainty in model predictions varies with model complexity and how model simplifications can suitably be made. A scenario describing a case of surface contamination of a pasture soil was defined. Three different radionuclides with different environmental behavior and radioactive half-lives were considered: 137Cs, 90Sr and 129I. A detailed specification of the parameters required by different kinds of models was given, together with reasonable values for the parameter uncertainty. A total of seven modelling teams participated in the study using 13 different models. Four of the modelling groups performed uncertainty calculations using nine different modelling approaches. The models ranged in complexity from analytical solutions of a 2-box model using annual average data to numerical models coupling hydrology and transport using data varying on a daily basis.  相似文献   

4.
This paper presents results on the calibration and validation of a model (Ventomod) for leaf to fruit transfer of (134)Cs, (85)Sr and (65)Zn in processing tomato plants after leaf contamination. Several models (e.g. FARMLAND) that deal specifically with the transfer of radionuclides to fruits are adaptations of models that were developed for agricultural crops such as leafy green vegetables. "Ventomod" represents a dynamic evaluation model exclusively built for the short-term behaviour of radionuclide depositions. It forecasts the level of radionuclide contamination in ripe processing tomato fruits following an accidental radionuclide release into the atmosphere. A validation of the developed model by data sets from an independent experiment showed that the model successfully reproduced the observed radionuclide distribution and dynamics in tomato fruits. The level of uncertainty was within the normal range of similar assessment models. For a more general use of this model further testing with independent data sets from experiments obtained under different environmental conditions and data from other horticulturally important plant species would be desirable.  相似文献   

5.
The migration of a contaminant through the environment is the result of the transport by a variety of biotic and abiotic carriers which move according to different dispersion mechanisms. Consequently, the patterns of the distribution of a pollutant in the environment cannot be ever explained on the basis of a single migration process or assuming that the concentrations of contaminant in the different kinds of carriers quickly reach the equilibrium condition. The present work discusses two examples (wash-off from catchments and transport through soils of radionuclides) that clearly demonstrate the inadequacy of “single dispersion” models to predict these patterns. On the contrary, models based on multiple dispersion can successfully simulate the particular features of the above mentioned processes. It was demonstrated that the time behaviour of radionuclide migration rates from catchment of different rivers vary within small ranges as a consequence of multiple dispersion. This result can be useful for the development of generic predictive models.  相似文献   

6.
The sensitivity of a marine dispersion model for non-conservative radionuclides, previously developed and validated for the English Channel, to parameters describing the exchanges between the liquid and solid phases (suspended matter and bottom sediments) has been studied using a Monte Carlo method. A probability distribution is assigned to each parameter. They are sampled to obtain a set of model parameters and a model run is carried out. This process is repeated to obtain a distribution of model outputs. Partial correlation coefficients are calculated to assess the relative influence of each parameter on model output. Errors are also assigned to model results. Three situations are studied: an instantaneous release of radionuclides, a continuous release and the case of a contaminated sediment behaving as a long-term source of radionuclides. Calculations have also been carried out for two radionuclides with different geochemical behaviour: (137)Cs and (239,240)Pu. The results indicate that all parameters are relevant, depending on the phase we are interested in obtaining the result and on the source term (instantaneous, continuous or due to sediments). However, parameters that are, in general, more influential are kinetic rates, mixing depth in the sediment and mean radius of suspended and sediment particles. This suggests that including several particle sizes in future radionuclide dispersion models could lead to an improvement in model results. Differences have also been found with respect to the relevance of some parameters depending on the geochemical behaviour of the radionuclide.  相似文献   

7.
In the present paper a generic model for predicting the long-term migration of radionuclides and heavy metals from catchments is described. The model subdivides the catchment into a number of homogeneous, infinitesimal sub-catchments and integrates the radionuclide contributions from such sub-catchments to calculate the total flux of contaminant. It relates the radionuclide behaviour to the statistical distribution of the pollutant partition coefficient on the "ensemble" of sub-catchments. The methodology was validated for 90Sr and 137Cs by using data for water contamination in some European rivers. Values of migration parameters for Pu, Tc, I and Cd isotopes were obtained.  相似文献   

8.
Assessment of the environmental and radiological consequences of a nuclear accident requires the management of a great deal of data and information as well as the use of predictive models. Computerised Decision Support Systems (CDSS) are essential tools for this kind of complex assessment and for assisting experts with a rational decision process. The present work focuses on the assessment of the main features of selected state-of-the-art CDSS for off-site management of freshwater ecosystems contaminated by radionuclides. This study involved both developers and end-users of the assessed CDSS and was based on practical customisation exercises, installation and application of the decision systems. Potential end-users can benefit from the availability of several ready-to-use CDSS that allow one to run different kinds of models aimed at predicting the behaviour of radionuclides in aquatic ecosystems, evaluating doses to humans, assessing the effectiveness of different kinds of environmental management interventions and ranking these interventions, accounting for their social, economic and environmental impacts. As a result of the present assessment, the importance of CDSS “integration” became apparent: in many circumstances, different CDSS can be used as complementary tools for the decision-making process. The results of this assessment can also be useful for the future development and improvement of the CDSS.  相似文献   

9.
Most of the radionuclides released from nuclear power plants ( NPPs) into rivers are primarily adsorbed onto suspended matter. To describe this nuclide transfer, a model was used which takes the total suspended matter load as solid phase into account. The necessary partition factors of various radionuclides were determined in river water/suspended matter of the Moselle in laboratory investigations. By use of this model, a conservative estimate of the radionuclide concentration of the solid phase could be obtained which proved to be more realistic than the results based on the distribution law.Furthermore, the influence of grain-size on the specific activity of single fractions of a Moselle sediment was demonstrated using 137Cs, 106Ru and 144Ce from the Chernobyl nuclear accident as tracers. The grain-size pattern is considered to be a main factor which may seriously distort the determination of distribution coefficients and concentration factors that are needed in applying the model based on the distribution law.  相似文献   

10.
11.
The available literature on the transfer of radionuclides from soil to fruit has been reviewed with the aim of identifying the main variables and processes affecting the behaviour of radionuclides in fruit plants. Where available, data for transfer of radionuclides from soil to other components of fruit plant have also been collected, to help in understanding the processes of translocation and storage in perennial plants. Soil-to-fruit transfer factors were derived from agricultural ecosystems, both from temperate and subtropical or tropical zones. Aggregated transfer factors have also been collected from natural or semi-natural ecosystems. The data concern numerous fruits and various radionuclides. Soil-to-fruit transfer is nuclide specific. The variability for a given radionuclide is first of all ascribable to the different properties of soils. Fruit plant species are very heterogeneous, varying from woody trees and shrubs to herbaceous plants. In temperate areas the soil-to-fruit transfer is higher in woody trees for caesium and in shrubs for strontium. Significant differences between the values obtained in temperate and subtropical and tropical regions do not necessarily imply that they are ascribable to climate. Transfer factors for caesium are higher in subtropical and tropical fruits, while those for strontium, as well as for plutonium and americium, in the same fruits, are lower; these results can be interpreted taking into account different soil characteristics.  相似文献   

12.
Radionuclides from past uranium mining in rivers of Portugal   总被引:2,自引:0,他引:2  
During several decades and until a few years ago, uranium mines were exploited in the Centre of Portugal and wastewaters from uranium ore milling facilities were discharged into river basins. To investigate enhancement of radioactivity in freshwater ecosystems, radionuclides of uranium and thorium series were measured in water, sediments, suspended matter, and fish samples from the rivers Vouga, D?o, Távora and Mondego. The results show that these rivers carry sediments with relatively high naturally occurring radioactivity, and display relatively high concentrations of radon dissolved in water, which is typical of a uranium rich region. Riverbed sediments show enhanced concentrations of radionuclides in the mid-section of the Mondego River, a sign of past wastewater discharges from mining and milling works at Urgeiri?a confirmed by the enhanced values of (238)U/(232)Th radionuclide ratios in sediments. Radionuclide concentrations in water, suspended matter and freshwater fish from that section of Mondego are also enhanced in comparison with concentrations measured in other rivers. Based on current radionuclide concentrations in fish, regular consumption of freshwater species by local populations would add 0.032 mSv a(-1) of dose equivalent (1%) to the average background radiation dose. Therefore, it is concluded that current levels of enhanced radioactivity do not pose a significant radiological risk either to aquatic fauna or to freshwater fish consumers.  相似文献   

13.
The Ob and Yenisey rivers are major contributors to total riverine discharge to the Arctic Ocean. Several large nuclear facilities discharge into these rivers, which could affect actual and potential discharges of radionuclides to the Arctic region. This article presents new radionuclide concentration and grain-size data resulting from analyses of several sediment samples collected during research cruises in the Ob and Yenisey estuaries and adjacent areas during 2000 and 2001. Results indicate that discharges from the main nuclear facilities do not constitute a major contribution to the level of radioactive contamination in the marine areas studied, though Co-60 was detected at low concentrations in some sediment horizons. However, the aggregate contamination from different sources is not radioecologically significant in sediments within the study area, maximum Cs-137 levels being approximately 80 Bq kg(-1) dry weight.  相似文献   

14.
During last decades, a number of projects have been launched to validate models for predicting the behaviour of radioactive substances in the environment. The project of the "Aquatic" working group of the project EMRAS (Environmental Modelling for Radiation Safety) organised by the International Atomic Energy Agency (IAEA) was based on the validation and assessment of models for predicting the behaviour of radionuclides in the aquatic ecosystems. The present paper describes a blind test of models aimed at assessing the dispersion of tritium releases in the Loire River (France), on a large domain ( approximately 350km) and on a period of six months, by comparing the results obtained by operational-to-experimental values of tritium concentration at Angers, a city along the Loire River. The common conclusion is that the models used by the different participants namely 1D models and models based on a schematic hydraulic (box models) are reliable tools for tritium transport modelling. Nevertheless, the importance of proper and detailed hydrological data for the appropriate prediction of pollutant migration in water is demonstrated by the example provided during this study.  相似文献   

15.
Biosphere dose conversion factors are computed for the French high-level geological waste disposal concept and to illustrate the combined probabilistic and deterministic approach. Both 135Cs and 79Se are used as examples. Probabilistic analyses of the system considering all parameters, as well as physical and societal parameters independently, allow quantification of their mutual impact on overall uncertainty. As physical parameter uncertainties decreased, for example with the availability of further experimental and field data, the societal uncertainties, which are less easily constrained, particularly for the long term, become more and more significant. One also has to distinguish uncertainties impacting the low dose portion of a distribution from those impacting the high dose range, the latter having logically a greater impact in an assessment situation. The use of cumulative probability curves allows us to quantify probability variations as a function of the dose estimate, with the ratio of the probability variation (slope of the curve) indicative of uncertainties of different radionuclides. In the case of 135Cs with better constrained physical parameters, the uncertainty in human behaviour is more significant, even in the high dose range, where they increase the probability of higher doses. For both radionuclides, uncertainties impact more strongly in the intermediate than in the high dose range. In an assessment context, the focus will be on probabilities of higher dose values. The probabilistic approach can furthermore be used to construct critical groups based on a predefined probability level and to ensure that critical groups cover the expected range of uncertainty.  相似文献   

16.
This paper presents a new general sub-model for fixation in catchment areas to be used within the framework of a river model for substances such as radionuclides and metals from continuous and single-pulse fallouts. The model has been critically tested using data from 27 European river sites covering a very wide geographical area and contaminated by radiocesium and radiostrontium from the Chernobyl accident and from the nuclear weapons tests (NWT fallout). This modelling approach gives radionuclide concentrations in water (total, dissolved and particulate phases) at defined sites on a monthly basis. The overall river model is based on processes in the upstream river stretch and in the catchment area. The catchment area is differentiated into inflow (approximately dry land) areas and outflow (approximately wetland) areas. The model has a general structure, which can be used for all radionuclides or substances. It is simple to apply in practice since all driving variables may be readily accessed from maps and standard monitoring programs. The driving variables are: latitude, altitude, catchment area, mean annual precipitation and fallout. Note that for large catchments, this model does not require data on the characteristic soil type or the percentage of outflow areas (wet lands) in the catchment, as in most previous models, since in practice it is very difficult to obtain reliable data on characteristic soil type or percentage of outflow areas, especially in large and topographically complex catchments. Modelled values have been compared to empirical data from rivers sites covering a wide domain (catchment areas from 3000 to 3,000,000 km2, precipitation from 400 to 1700 mm/year; fallouts from 1600 to 280,000 Bq/m2; altitudes from 0 to 1000 m.a.s.l. and latitudes from 41 degrees to 72 degrees N). The river model with its sub-model for fixation predicts close to the uncertainty factors given by the empirical data, which have been shown to be about a factor of 1.6 for 137Cs and a factor of 2.2 for 90Sr in river water. The obtained characteristic uncertainty factors for 137Cs from the Chernobyl fallout is 2.4, for 137Cs from the NWT fallout it is 1.3 and for the 90Sr results from the NWT fallout it is 3 using the new model.  相似文献   

17.
Systematic studies on radiation level and distribution of radionuclides have been carried out in riverine environs of three major rivers of coastal Karnataka, viz. Kali, Sharavathi and Netravathi. The ambient gamma radiation levels along three rivers were measured using a portable plastic scintillometer. Activity concentrations of (226)Ra, (232)Th and (40)K in soil, sediment and rock were measured using a NaI(Tl) gamma-ray spectrometer. In the Kali, Sharavathi and Netravathi riverbanks, the median values of absorbed gamma dose rates in air were found to be 44 nGy h(-1), 35 nGy h(-1) and 57 nGy h(-1), respectively. The highest activity of (226)Ra was found in riverbank soil samples of Sharavathi River. The highest activities of (232)Th and (40)K were found in riverbank soil and sediment samples of Netravathi River. In Kali River, the highest (226)Ra activity was recorded for rock samples. To assess the radiological hazard of natural radioactivity in the samples, absorbed gamma dose rates in air, radium equivalent activity, representative level index, external hazard index and internal hazard index associated with the radionuclides were calculated and compared with internationally recommended values. The representative level index (I(gammar)) values are high in sediment samples of Netravathi River. The radium equivalent activity (Ra(eq)), external hazard index (H(ex)) and internal hazard index (H(in)) values are high in rock samples of Kali River. The results of these investigations are presented and discussed in this paper.  相似文献   

18.
Because of their varied possibilities of consumption, tomatoes are an important component of the human diet. This paper presents results of the evaluation of a dynamic model (Ventomod) for the short-term behaviour of radionuclides deposited on tomato plants following a direct contamination event. To check its forecasting capability in assessing the risk of radionuclide contamination of the human diet, it has been tested with an independent dataset on the leaf to fruit transfer of 134Cs in a typical Hungarian tomato variety, "Dwarf of Kecskemet". Data obtained from this pot experiment were used to evaluate model behaviour. Model constants were varied according to the differences between the Hungarian dataset and the one used to calibrate it. Results show that the model output well reproduces the observed activity of fruits for various levels of contamination and at different contamination dates. The main part of this report summarises the experimental protocol, compares the experimental results with model predictions generated by Ventomod and makes recommendations for both updating model parameters and undertaking further experimental work.  相似文献   

19.
After an accidental release of radionuclides to the inhabited environment the external gamma irradiation from deposited radioactivity contributes significantly to the radiation exposure of the population for extended periods. For evaluating this exposure pathway, three main model requirements are needed: (i) to calculate the air kerma value per photon emitted per unit source area, based on Monte Carlo (MC) simulations; (ii) to describe the distribution and dynamics of radionuclides on the diverse urban surfaces; and (iii) to combine all these elements in a relevant urban model to calculate the resulting doses according to the actual scenario. This paper provides an overview about the different approaches to calculate photon transport in urban areas and about several dose calculation codes published. Two types of Monte Carlo simulations are presented using the global and the local approaches of photon transport. Moreover, two different philosophies of the dose calculation, the "location factor method" and a combination of relative contamination of surfaces with air kerma values are described. The main features of six codes (ECOSYS, EDEM2M, EXPURT, PARATI, TEMAS, URGENT) are highlighted together with a short model-model features intercomparison.  相似文献   

20.
In safety assessments of nuclear facilities, a wide range of radioactive isotopes and their potential hazard to a large assortment of organisms and ecosystem types over long time scales need to be considered. Models used for these purposes have typically employed approaches based on generic reference organisms, stylised environments and transfer functions for biological uptake exclusively based on bioconcentration factors (BCFs). These models are of non-mechanistic nature and involve no understanding of uptake and transport processes in the environment, which is a severe limitation when assessing real ecosystems. In this paper, ecosystem models are suggested as a method to include site-specific data and to facilitate the modelling of dynamic systems. An aquatic ecosystem model for the environmental transport of radionuclides is presented and discussed. With this model, driven and constrained by site-specific carbon dynamics and three radionuclide specific mechanisms: (i) radionuclide uptake by plants, (ii) excretion by animals, and (iii) adsorption to organic surfaces, it was possible to estimate the radionuclide concentrations in all components of the modelled ecosystem with only two radionuclide specific input parameters (BCF for plants and Kd). The importance of radionuclide specific mechanisms for the exposure to organisms was examined, and probabilistic and sensitivity analyses to assess the uncertainties related to ecosystem input parameters were performed. Verification of the model suggests that this model produces analogous results to empirically derived data for more than 20 different radionuclides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号