首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
The kinetics of the reaction between carbon dioxide (CO2) and mixed solutions of methyldiethanolamine (MDEA) and piperazine (PZ) was investigated experimentally in a laminar jet apparatus. The experimental kinetic data were obtained under no interfacial turbulence and over a temperature range from 313 to 333 K, MDEA/PZ wt% concentration ratios of 27/3, 24/6 and 21/9, and CO2 loadings from 0.0095 to 0.33 mol CO2/mol amine. In addition, a new absorption-rate/kinetics model for the kinetics of the mixed of solvents was developed, which takes into account the coupling between chemical equilibrium, mass transfer, and all possible chemical reactions involved in the CO2 reaction with MDEA/PZ solvent. The partial differential equations of this model were solved by the finite element numerical method (FEM) based on COMSOL software. The obtained experimental kinetics data were used to obtain the kinetic parameters of CO2 absorption into MDEA/PZ solutions. The reaction-rate constant obtained for PZ blended with MDEA was kPZ = 2.572 × 1012 exp(?5211/T). The 2D model for the blended amines MDEA/PZ has revealed the concentration profiles of all the species in both the radial and axial directions of the laminar jet which has enabled a better understanding of the correct sequence in which the reaction steps involved in the reactive absorption of CO2 in aqueous mixed MDEA/PZ solution occur. It also revealed that PZ may be depleted by the time the solvent blend of MDEA/PZ with a loading greater than 0.015 mol/mol amine is exposed to CO2 from the top of the laminar jet absorber.  相似文献   

2.
Studies of the kinetics of sulfur dioxide (SO2)- and oxygen (O2)-induced degradation of aqueous monoethanolamine (MEA) during the absorption of carbon dioxide (CO2) from flue gases derived from coal- or natural gas-fired power plants were conducted as a function of temperature and the liquid phase concentrations of MEA, O2, SO2 and CO2. The kinetic data were based on the initial rate which shows the propensity for amine degradation and obtained under a range of conditions typical of the CO2 absorption process (3–7 kmol/m3 MEA, 6% O2, 0–196 ppm SO2, 0–0.55 CO2 loading, and 328–393 K temperature). The results showed that an increase in temperature and the concentrations of MEA, O2 and SO2 resulted in a higher MEA degradation rate. An increase in CO2 concentration gave the opposite effect. A semi-empirical model based on the initial rate, ?rMEA = {6.74 × 109 e?(29,403/RT)[MEA]0.02([O]2.91 + [SO2]3.52)}/{1 + 1.18[CO2]0.18} was developed to fit the experimental data. With the higher order of reaction, SO2 has a higher propensity to cause MEA to degrade than O2. Unlike previous models, this model shows an improvement in that any of the parameters (i.e. O2, SO2, and CO2) can be removed without affecting the usability of the model.  相似文献   

3.
The kinetics of CO2 absorption in unloaded aqueous ammonia solution were measured using a string of discs contactor with the aqueous ammonia concentrations ranging 0.9–5.4 kmol/m3 and temperatures ranging 298.3–321.9 K. The reaction rates strongly increase with the concentration and less strongly with temperature. Both the termolecular and zwitterion models were applied in this study as amine solutions. The parameters for both of the models were interpreted. The kinetic rate constants for CO2 absorption in aqueous ammonia were compared with those for other amines and were found to be around 1/10 that for monoethanolamine. The fitting results for the termolecular mechanism seem more robust than those for the zwitterion mechanism from a statistical perspective.  相似文献   

4.
The carbon dioxide capture and release from aqueous 2,2′-iminodiethanol (DEA) and N-methyl-2,2′-iminodiethanol (MDEA) have been investigated by means of 13C NMR spectroscopy. We have designed two experimental procedures using a gas mixture containing 12% (v/v) CO2 in N2 or air and 0.667 M aqueous solutions of DEA and MDEA. To understand the CO2–amine reaction equilibria, separate experiments of CO2 absorption (at 293, 313 and 333 K) and desorption (at boiling temperature, room pressure) were carried out. The 13C NMR analysis has allowed us to establish: (1) the percentage of CO2 stored in solution as HCO3?, CO32? and DEA carbamate; (2) the formation of DEA carbamate as a function of absorption temperature and time; (3) the slower decomposition of DEA carbamate than that of bicarbonate. In the experiments planned to test the reuse of the regenerated amines, the absorbent solution was continuously circulated in a closed cycle while it was absorbing CO2 in the absorber (set at 293 K) and simultaneously regenerating amine in the desorber (set at 388 K). After the equilibrium has been reached (13 h), the CO2 absorption efficiency is comprised between 84.0% (DEA) and 82.6% (MDEA) and the average amine regeneration efficiency ranges between 69.6% (DEA) and 78.2% (MDEA). Additionally, MDEA is more stable towards thermal degradation than DEA.  相似文献   

5.
The simulation tool ASPEN Plus® is used to model the full CO2-capture process for chemical absorption of CO2 by piperazine-promoted potassium carbonate (K2CO3/PZ) and the subsequent CO2-compression train. Sensitivity analysis of lean loading, desorber pressure and CO2-capture rate are performed for various solvent compositions to evaluate the optimal process parameters. EbsilonProfessional® is used to model a 600 MWel (gross) hard coal-fired power plant. Numerical equations for power losses due to steam extraction for solvent regeneration are derived from simulation runs. The results of the simulation campaigns are used to find the process parameters that show the lowest specific power loss. Subsequently, absorber and desorber columns are dimensioned to evaluate investment costs for these main components of the CO2-capture process. Regeneration heat duty, net efficiency losses and column investment costs are then compared to the reference case of CO2-capture by monoethanolamine (MEA).CO2-capture by piperazine-promoted potassium carbonate with subsequent CO2-compression to 110 bar shows energetic advantages over the reference process which uses MEA. Additionally, investment costs for the main components in the CO2-capture process (absorber and desorber columns) are lower due to the enhanced reaction kinetics of the investigated K2CO3/PZ solvent which leads to smaller component sizes.  相似文献   

6.
A reaction calorimeter was used to determine the enthalpies of absorption of CO2 in aqueous ammonia and in aqueous solutions of ammonium carbonate at temperatures of 35–80 °C. The heat of absorption of CO2 with 2.5 wt% aqueous ammonia solution was found to be about 70 kJ/mol CO2, which is lower than that with MEA (around 85 kJ/mol) at 35 and 40 °C. The value decreases with increased loading, but not to as low a value as expected by the carbonate–bicarbonate reaction (26.88 kJ/mol). The enthalpy of absorption of CO2 in aqueous ammonia at 60 and 80 °C decreases with loadings at first, then increases between 0.2 mol CO2/mol NH3 and 0.6 mol CO2/mol NH3, and then decreases again. The behavior of the heat of absorption of CO2 in 10 wt% ammonium carbonate solution was found to be the same as that of aqueous ammonia at loadings above 0.6 mol CO2/mol NH3. The heat of absorption increases with increasing temperature. The heats of absorption are directly related to the extent of the various reactions with CO2 and can be assessed from the species variation in the liquid phase.  相似文献   

7.
The present work is a study to evaluate ionic liquids as a potential solvent for post-combustion CO2 capture. In order to enhance the absorption performance of a CO2 capture unit, different ionic liquids have been designed and tested. The main goal was to get a comparison between a reference liquid and selected ionic liquids. As the reference, a solution of 30 w% monoethanolamine (MEA) and water was used. A large range of different pure and diluted ionic liquids was tested with a special screening process to gain general information about the CO2 absorption performance. Based on these results, a 60 w% ionic liquid solution in water was selected and the vapour–liquid equilibrium was measured experimentally between 40 °C and 110 °C. From these curves the enthalpy of absorption for capturing CO2 into the ionic liquid was determined. With these important parameters one is able to calculate the total energy demand for stripping of CO2 from the loaded solvent for comparison of the ionic liquid based solvent with the reference MEA solvent. The energy demand of this 60 w% ionic liquid is slightly lower than that of the reference solution, resulting in possible energy savings between 12 and 16%.  相似文献   

8.
While the demand for reduction in CO2 emission is increasing, the cost of the CO2 capture processes remains a limiting factor for large-scale application. Reducing the cost of the capture system by improving the process and the solvent used must have a priority in order to apply this technology in the future. In this paper, a definition of the economic baseline for post-combustion CO2 capture from 600 MWe bituminous coal-fired power plant is described. The baseline capture process is based on 30% (by weight) aqueous solution of monoethanolamine (MEA). A process model has been developed previously using the Aspen Plus simulation programme where the baseline CO2-removal has been chosen to be 90%. The results from the process modelling have provided the required input data to the economic modelling. Depending on the baseline technical and economical results, an economical parameter study for a CO2 capture process based on absorption/desorption with MEA solutions was performed.Major capture cost reductions can be realized by optimizing the lean solvent loading, the amine solvent concentration, as well as the stripper operating pressure. A minimum CO2 avoided cost of € 33 tonne−1 CO2 was found for a lean solvent loading of 0.3 mol CO2/mol MEA, using a 40 wt.% MEA solution and a stripper operating pressure of 210 kPa. At these conditions 3.0 GJ/tonne CO2 of thermal energy was used for the solvent regeneration. This translates to a € 22 MWh−1 increase in the cost of electricity, compared to € 31.4 MWh−1 for the power plant without capture.  相似文献   

9.
Carbon dioxide absorption using amine based solvents is a well-known approach for carbon dioxide removal. Especially with the increasing concerns about greenhouse gas emissions, there is a need for an optimization approach capable of multifactor calibration and prediction of interactions. Since conventional methods based on empirical relations are not efficiently applicable, this study investigates use of Response Surface Methodology as a strong optimization tool. A bubble column reactor was used and the effect of solvent concentration (10.0, 20.0 and 30.0 vol%), flow rate (4.0, 5.0 and 6.0 L min−1), diffuser pore size (0.5, 1.0 and 1.5 mm) and temperature (20.0, 25.0 and 30.0°C) on the absorption capacity and also overall mass transfer coefficient was evaluated. The optimization results for maintaining maximum capacity and overall mass transfer coefficient revealed that different optimization targets led to different tuned operational factors. Overall mass transfer coefficient decreased to 34.7 min−1 when the maximum capacity was the desired target. High reaction rate along with the highest absorption capacity was set as desirable two factor target in this application. As a result, a third scenario was designed to maximize both mass transfer coefficient and absorption capacity simultaneously. The optimized condition was achieved when a gas flow rate of 5.9 L min−1, MEA solution of 29.6 vol%, diffuser pore size of 0.5 mm and temperature of 20.6°C was adjusted. At this condition, mass transfer coefficient reached a maximum of 38.4 min−1, with a forecasted achievable absorption capacity of 120.5 g CO2 per kg MEA.  相似文献   

10.
Capture and storage of CO2 from fossil fuel fired power plants is drawing increasing interest as a potential method for the control of greenhouse gas emissions. An optimization and technical parameter study for a CO2 capture process from flue gas of a 600 MWe bituminous coal fired power plant, based on absorption/desorption process with MEA solutions, using ASPEN Plus with the RADFRAC subroutine, was performed. This optimization aimed to reduce the energy requirement for solvent regeneration, by investigating the effects of CO2 removal percentage, MEA concentration, lean solvent loading, stripper operating pressure and lean solvent temperature.Major energy savings can be realized by optimizing the lean solvent loading, the amine solvent concentration as well as the stripper operating pressure. A minimum thermal energy requirement was found at a lean MEA loading of 0.3, using a 40 wt.% MEA solution and a stripper operating pressure of 210 kPa, resulting in a thermal energy requirement of 3.0 GJ/ton CO2, which is 23% lower than the base case of 3.9 GJ/ton CO2. Although the solvent process conditions might not be realisable for MEA due to constraints imposed by corrosion and solvent degradation, the results show that a parametric study will point towards possibilities for process optimisation.  相似文献   

11.
The carbon dioxide capture potential of amine amino acid salts (AAAS), formed by mixing equinormal amounts of amino acids; e.g. glycine, β-alanine and sarcosine, with an organic base; 3-(methylamino)propylamine (MAPA), was assessed by comparison with monoethanolamine (MEA), and with amino acid salt (AAS) from amino acid neutralized with an inorganic base; potassium hydroxide (KOH). Carbon dioxide absorption and desorption experiments were carried out on the solvent systems at 40 °C and 80 °C respectively. Experimental results showed that amine amino acid salts have similar CO2 absorption properties to MEA of the same concentration. They also showed good signs of stability during the experiments. Amino acid salt from an inorganic base, KOH, showed lower performance in CO2 absorption than the amine amino acid salts (AAAS) mainly due to a lower equilibrium temperature sensitivity. AAAS showed better performance than MEA of same concentration. AAAS from neutralization of sarcosine with MAPA showed the best performance and the performance could be further enhanced when promoted with excess MAPA. The solvent comparison is semi-quantitative since the bubble structure, and thus gas–liquid interfacial area may not be the same for all experiments, however superficial gas velocities were kept constant.  相似文献   

12.
Hilliard completed several thermodynamic models in Aspen Plus® for modeling CO2 removal with amine solvents, including MEA–H2O–CO2. This solvent was selected to make a system model for CO2 removal by absorption/stripping. Both the absorber and the stripper used RateSep? to rigorously calculate mass transfer rates. The accuracy of the new model was assessed using a recent pilot plant run with 35 wt.% (9 m) MEA. Absorber loading and removal were predicted within 6%, and the temperature profile was approached within 5 °C. An average 3.8% difference between measured and calculated values was achieved in the stripper. A three-stage flash configuration which efficiently utilizes solar energy was developed. It reduces energy use by 6% relative to a simple stripper. Intercooling was used to reach 90% removal in the absorber at these optimized conditions.  相似文献   

13.
Use of amines is one of the leading technologies for post-combustion carbon dioxide capture from gas and coal-fired power plants. This study assesses the potential environmental impact of emissions to air that result from use of monoethanol amine (MEA) as an absorption solvent for the capture of carbon dioxide (CO2). Depending on operation conditions and installed reduction technology, emissions of MEA to the air due to solvent volatility losses are expected to be in the range of 0.01–0.8 kg/tonne CO2 captured. Literature data for human and environmental toxicity, together with atmospheric dispersion model calculations, were used to derive maximum tolerable emissions of amines from CO2 capture. To reflect operating conditions with typical and with elevated emissions, we defined a scenario MEA-LOW, with emissions of 40 t/year MEA and 5 t/year diethyl amine (DEYA), and a scenario MEA-HIGH, with emissions of 80 t/year MEA and 15 t/year DEYA. Maximum MEA deposition fluxes would exceed toxicity limits for aquatic organisms by about a factor of 3–7 depending on the scenario. Due to the formation of nitrosamines and nitramines, the estimated emissions of DEYA are close to or exceed safety limits for drinking water and aquatic ecosystems. The “worst case” scenario approach to determine maximum tolerable emissions of MEA and other amines is in particular useful when both expected environmental loads and the toxic effects are associated with high uncertainties.  相似文献   

14.
Acid gas geological disposal is a promising process to reduce CO2 atmospheric emissions and an environment-friendly and economic alternative to the transformation of H2S into sulphur by the Claus process. Acid gas confinement in geological formations is to a large extent controlled by the capillary properties of the water/acid–gas/caprock system, because a significant fraction of the injected gas rises buoyantly and accumulates beneath the caprock. These properties include the water/acid gas interfacial tension (IFT), to which the so-called capillary entry pressure of the gas in the water-saturated caprock is proportional. In this paper we present the first ever systematic water/acid gas IFT measurements carried out by the pendant drop technique under geological storage conditions. We performed IFT measurements for water/H2S systems over a large range of pressure (up to P = 15 MPa) and temperature (up to T = 120 °C). Water/H2S IFT decreases with increasing P and levels off at around 9–10 mN/m at high T (≥70 °C) and P (>12 MPa). The latter values are around 30–40% of water/CO2 IFTs, and around 20% of water/CH4 IFTs at similar T and P conditions. The IFT between water and a CO2 + H2S mixture at T = 77 °C and P > 7.5 MPa is observed to be approximately equal to the molar average IFT of the water/CO2 and water/H2S binary mixtures. Thus, when the H2S content in the stored acid gas increases the capillary entry pressure decreases, together with the maximum height of acid gas column and potential storage capacity of a given geological formation. Hence, considerable attention should be exercised when refilling with a H2S-rich acid gas a depleted gas reservoir, or a depleted oil reservoir with a gas cap: in the case of hydrocarbon reservoirs that were initially (i.e., at the time of their discovery) close to capillary leakage, acid gas leakage through the caprock will inevitably occur if the refilling pressure approaches the initial reservoir pressure.  相似文献   

15.
We performed a detailed analysis of the potential future costs and performance of post-combustion CO2 absorption in combination with a natural gas combined cycle (NGCC). After researching state-of-the-art technology, an Excel model was created to analyze possible developments in the performance of energy conversion, CO2 capture, and CO2 compression. The input variables for the three time frames we used were based on literature data, product information, expert opinions, and our own analysis. Using a natural gas price of 4.7 €/GJ, we calculated a potential decrease in the costs of electricity from 5.6 €ct/kWh in the short term to 4.8 €ct/kWh in the medium term and 4.5 €ct/kWh in the long term. The efficiency penalty is calculated to decline from 7.9%-points LHV in the short term to 4.9%-points and 3.7%-points in the medium and long terms, respectively. In combination with NGCC improvements, this may cause an improvement in the net efficiency, including CO2 capture, from 49% in the short term to 55% and 58% in the medium and long terms, respectively. The total capital costs including capital costs of the NGCC ware calculated to decline from 880 in the short term to 750 and 690 €/kW in the medium and long terms, respectively, with a decline in the incremental capital costs due to capture from 350 in the short term to 270 and 240 €/kW in the medium and long terms, respectively. Finally, the avoidance costs may decline from 45 €/tCO2 in the short term to 33 €/tCO2 in the medium term and 28 €/tCO2 in the long term.  相似文献   

16.
The capture of CO2 from a hot stove gas in steel making process containing 30 vol% CO2 by chemical absorption in a rotating packed bed (RPB) was studied. The RPB had an inner diameter of 7.6 cm, an outer diameter of 16 cm, and a height of 2 cm. The aqueous solutions containing 30 wt% of single and mixed monoethanolamine (MEA), 2-(2-aminoethylamino)ethanol (AEEA), and piperazine (PZ) were used. The CO2 capture efficiency was found to increase with increasing temperature in a range of 303–333 K. It was also found to be more dependent on gas and liquid flow rates but less dependent on rotating speed when the speed was higher than 700 rpm. The obtained results indicated that the mixed alkanolamine solutions containing PZ were more effective than the single alkanolamine solutions. This was attributed to the highest reaction rate of PZ with CO2. A higher portion of PZ in the mixture was more favorable to CO2 capture. The highest gas flow rates allowed to achieve a desired CO2 capture efficiency and the correspondent height of transfer unit (HTU) were determined at different aqueous solution flow rates. Because all the 30 wt% single and mixed alkanolamine solutions could result in a HTU less than 5.0 cm at a liquid flow rate of 100 mL/min, chemical absorption in a RPB instead of a packed bed adsorber is therefore suggested to capture CO2 from the flue gases in steel making processes.  相似文献   

17.
In this work, the rate of absorption of carbon dioxide by aqueous ammonia solvent has been studied by applying a newly built wetted wall column. The absorption rate in aqueous ammonia was measured at temperatures from 279 to 304 K for 1 to 10 wt% aqueous ammonia with loadings varying from 0 to 0.8 mol CO2/mol NH3. The absorption rate in 30 wt% aqueous mono-ethanolamine (MEA) was measured at 294 and 314 K with loadings varying from 0 to 0.4 as comparison.It was found that at 304 K, the rate of absorption of carbon dioxide by 10 wt% NH3 solvent was comparable to the rates for 30 wt% MEA at 294 and 314 K (a typical absorption temperature for this process). The absorption rate using ammonia was however significantly lower at temperatures of 294 K and lower as applied in the Chilled Ammonia Process. However, at these low temperatures, the rate of absorption in ammonia has only a small temperature dependency.The rate of absorption decreases strongly with decreasing ammonia concentrations and increasing CO2 loadings.The rate of absorption of carbon dioxide by aqueous ammonia solvent was modeled using the measurements of the unloaded solutions and the zwitter-ion mechanism. The model could successfully predict the experimental measurements of the absorption rate of CO2 in loaded ammonia solutions.  相似文献   

18.
A numerical study was conducted to predict pCO2 change in the ocean on a continental shelf by the leakage of CO2, which is originally stored in the aquifer under the seabed, in the case that a large fault connects the CO2 reservoir and the seabed by an earthquake or other diastrophism. The leakage rate was set to be 6.025 × 10−4 kg/m2/sec from 2 m × 100 m fault band, which corresponds to 3800 t-CO2/year, referring to the monitored seepage rate from an existing EOR field. The target space in this study was limited to the ocean above the seabed, the depth of which was 200 or 500 m. The computational domain was idealistically rectangular with the seabed fault-band perpendicular to the uniform flow. The CO2 takes a form of bubbles or droplets, depending on the depth of water, and their behaviour and dissolution were numerically simulated during their rise in seawater flow. The advection–diffusion of dissolved CO2 was also simulated. As a result, it was suggested that the leaked CO2 droplets/bubbles all dissolve in the seawater before spouting up to the atmosphere, and that the increase in pCO2 in the seawater was smaller than 500 μ atm.  相似文献   

19.
Amine volatility is a key screening criterion for amines to be used in CO2 capture. Excessive volatility may result in significant economic losses and environmental impact. It also dictates the capital cost of the water wash. This paper reports measured amine volatility in 7 m MEA (monoethanolamine), 8 m PZ (piperazine), 7 m MDEA (n-methyldiethanolamine)/2 m PZ (piperazine), 12 m EDA (ethylenediamine), and 5 m AMP (2-amino-2-methyl-1-propanol) at 40–60 °C with lean and rich loadings giving CO2 partial pressures of 0.5 and 5 kPa at 40 °C. The amine concentrations were chosen to maximize CO2 capture capacity at acceptable viscosity. At the lean loading condition (where volatility is of greatest interest), the amines are ranked in order of increasing volatility: 7 m MDEA/2 m PZ (6/2 ppm), 8 m PZ (8 ppm), 12 m EDA (9 ppm), 7 m MEA (31 ppm), and 5 m AMP (112 ppm). The apparent amine partial molar excess enthalpies in these systems were estimated to range from ~10 to 87 kJ/mol of amine.  相似文献   

20.
The CO2 absorption capacities of potassium glycinate, potassium sarcosinate (choline, proline), mono-ethanolamine (MEA), and tri-ethanolamine were evaluated to find the optimal absorbent for separating CO2 from gaseous products by a CO2 purification process. The absorption loading, desorption efficiency, cost, and environmental tolerance were assessed to select the optimal absorbent. MEA was found to be the optimum absorbent for separating the CO2 and H2 mixture in gaseous product. The maximum absorption loading rate was 0.77 mol CO2 per mol MEA at temperature of 20°C and absorbent concentration of 2.5 mol/L, whereas desorption efficiency was 90% by heating for 3 h at 130°C. MEA was found to be an optimal absorbent for the purification process of CO2 during gaseous production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号