首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper studies the nitration and hydroxylation of benzene in the presence of nitrite/nitrous acid in aqueous solution, both in the dark upon addition of hydrogen peroxide and under 360 nm irradiation. In both cases the detected transformation intermediates were phenol (P), nitrobenzene (NB), 2-nitrophenol (2NP) and 4-nitrophenol (4NP). P and NB directly form from benzene, and the initial formation rate of P is at least an order of magnitude higher than that of NB. In our experiments nitrophenols arise from P nitration, as can be inferred by their time evolution and isomer ratio (2NP:4NP=60:40, 3NP below detection limit). Nitrophenols may also form upon hydroxylation of NB, but in a different ratio (2NP:3NP:4NP=45:30:25). The detection of 3NP is thus a marker for the hydroxylation of NB, since this isomer is not formed in P nitration processes. The formation rates of P and NB increase with decreasing pH, both in the presence of HNO2 + H2O2 in the dark (which produce HOONO) and in the presence of NO2/HNO2 under irradiation. In the former case the pH dependence reflects the formation rate of HOONO. In the case of the irradiation experiments the pH effect can be accounted for by the higher molar absorbivity and photolysis quantum yield of nitrous acid when compared with nitrite. Interestingly, benzene does not react with HNO2 alone in the dark. An important feature of benzene nitration in the presence of NO2/HNO2 under irradiation is that the process is not inhibited by the addition of hydroxyl scavengers, differently from the case of phenol nitration. This finding indicates that nitrite irradiation might lead to the nitration of certain aromatic compounds in natural waters even in the presence of natural hydroxyl scavenging agents, which are usually thought to limit the environmental role of many photochemical processes.  相似文献   

2.
天然水体中亚硝酸根和硝酸根的光化学研究进展   总被引:1,自引:0,他引:1  
综述了近年来亚硝酸根和硝酸根 (NO-2 /NO-3 )在天然水体中的环境光化学研究进展。重点介绍了NO-2 /NO-3 光解生成活性氧 (如羟基 )的机理及其影响因素 ,探讨了NO-2 /NO-3 光解引发天然水体中有机物反应的环境意义 ,并据此提出了本领域今后的研究方向  相似文献   

3.
Beitz T  Bechmann W  Mitzner R 《Chemosphere》1999,38(2):351-361
The photoreactions of selected azaarenes with nitrate and nitrite ions were investigated under irradiation at lambda = 313 nm. The excitation of both anions leads to several photochemical reactions forming mainly hydroxyl radicals and nitrogen oxides. The purification capability of natural waters i.e. the oxidation of inorganic and organic substances results from the formation of hydroxyl radicals. Nitrated isomers of azaarenes were found among the main products of the investigated photoreactions. The nitrogen oxides were responsible for the production of nitrated derivatives which possess a high toxic potential. Their formation was explained by the parallel occurance of two mechanism, a molecular and a radical one. The molecular mechanism became more important with increasing ionisation potentials of the azaarenes. The spectrum of oxidized products corresponded to the one got in the photoreactions of azaarenes with hydrogen peroxide. The formation of several oxidation and nitration products of the pyridine ring with its low electron density was explained by the reaction of excited states of azaarenes. The photoreactions with nitrite ions only led to the formation of oxidized and nitrated products. Nitroso products were not formed. The reactivity of nitrogen monoxide is too low for its reaction with the azaarenes.  相似文献   

4.
Laboratory studies on the heterogeneous conversion of nitrogen dioxide into nitrous acid on irradiated ice films containing humic acid are described. It was found that the presence of light in the visible range of the solar spectrum significantly enhances the rate of nitrous acid release from a humic acid doped ice film. This process might contribute to observed HONO production in snow, where the NO2 is thought to originate from nitrate photolysis. Analysis of the experimental data based on the Langmuir Hinshelwood model framework allowed quantification of the observed dependencies of the nitrous acid production rate on nitrogen dioxide concentration. The observed dependencies on the humic acid concentration as well as on the irradiation intensity were used to estimate light-driven HONO fluxes for environmental snow covers.  相似文献   

5.
建立柱实验装置,探讨了反应柱中填加介质、硝酸盐的初始浓度及不同过水流速时硝酸盐的去除效果及产物的生成情况。4种不同材料,纳米铁、真养产碱杆菌、纳米铁与真养产碱杆菌简单混合体、纳米铁与真养产碱杆菌驯化培养5 d的复合体,分别与初始浓度为65 mg/L硝酸盐溶液反应。结果表明,经培养5 d的纳米铁-真养产碱杆菌复合体对硝酸盐的去除效果最佳,去除率可达到75%,且氨氮的生成量仅为2.99 mg/L;硝酸盐初始浓度分别为32、65和95 mg/L时,32mg/L的体系中硝酸盐的降解效果最好,去除率达78.9%且亚硝酸盐及氨氮的生成量分别为2.34 mg/L和2.89 mg/L,均低于另外2组;溶液流速为6.0 cm/h时,经驯化培养的纳米铁-真养产碱杆菌对硝酸盐的去除率达77%,当控制流速降至2.4cm/h时,亚硝酸盐氮的生成量降至0.34 mg/L。  相似文献   

6.
Chen QM  Yang C  Goh NK  Teo KC  Chen B 《Chemosphere》2004,55(3):339-344
A study on the destruction of 1,3-dinitrobenzene (1,3-DNB) in aqueous solution was carried out under ultraviolet (UV) irradiation alone and UV irradiation in the presence of hydrogen peroxide (H2O2). The combination of UV and H2O2 is significantly effective in degrading 1,3-DNB in terms of initial reaction rate and the mineralization of organic carbons. The photodegradation process can be influenced in certain extent by increasing the content of H2O2 and the acidity of reaction matrices. It was found that a variety of phenolic intermediates and inorganic acid were formed via hydroxyl radicals attacking the parent compound. The UV/H2O2 oxidation of 1,3-DNB was characterized by pseudo-zero order reaction for the degradation of 1,3-DNB with a 20 times enhanced rate constant of 1.36 x 10(-7) Ms(-1) and the initial rate constant was dependent on the initial concentration of 1,3-DNB.  相似文献   

7.
An interesting aspect of the chemistry of nitrite is the possibility for this compound to interact with other environmental factors and many oxidising species, which results in the oxidation of nitrite to nitrogen dioxide. This is a potentially interesting process that can lead to the formation of nitroaromatic compounds in the environment. In previous papers we have shown that nitrite can interact with dissolved Fe(III) and nitrate under irradiation, Fenton and heterogeneous photo-Fenton reagents, and semiconductor oxides such as TiO2, alpha-Fe2O3, and beta-FeOOH under irradiation. This paper reports on the interaction between nitrite/nitrous acid and the Mn(III,IV) (hydr)oxides beta-MnO2 and gamma-MnOOH, both in neutral solution under irradiation and in acidic conditions in the dark. beta-MnO2 and gamma-MnOOH originate from the oxidation of Mn(II) and play a key role in the redox cycling of manganese in the environment. These Mn(III,IV) (hydr)oxides show some photocatalytic activity, and they can act as thermal oxidants at acidic pH. The photoinduced oxidation of nitrite and the thermal oxidation of nitrous acid by Mn(III,IV) (hydr)oxides yield nitrogen dioxide and lead to the formation of nitrophenols in the presence of phenol. These processes can take place at the water-sediment or water-colloid interface in natural waters and on the surface of atmospheric particulate. Furthermore, the phenol/gamma-MnOOH/HNO2 system in dark acidic solution is an interesting model due to the formation of phenoxyl radical upon phenol monoelectronic oxidation by gamma-MnOOH. The kinetics of nitrophenol generation under such conditions indicates that phenol nitration is unlikely to take place upon reaction between phenoxyl and *NO2 and suggests a solution to a literature debate on the subject.  相似文献   

8.
The rate and extent of biodegradation of benzene, toluene, ethylbenzene and xylenes (BTEX) in ground-water was studied in samples from a contaminated site which contained total BTEX concentrations of up to 20 000 microg litre(-1). All compounds were rapidly degraded under natural aerobic conditions. Elevation of incubation temperature, supply of organic nutrients or addition of inorganic fertiliser did not increase the rate or extent of biodegradation and it appeared that oxygen supply was the factor limiting BTEX degradation at this site. Attempts to increase the dissolved oxygen concentration in the ground-water by the addition of hydrogen peroxide to give a final concentration of 200 mg litre(-1) resulted in the complete inhibition of biodegradation. No biodegradation occurred under anaerobic conditions except when nitrate was provided as a terminal electron acceptor for microbial respiration. Under denitrifying conditions there was apparent biodegradation of benzene, toluene, ethyl-benzene, m-xylene and p-xylene but o-xylene was not degraded. Degradation under denitrifying conditions occurred at a much slower rate than under oxygenated conditions.  相似文献   

9.
Gas and aerosol measurements were made during the Polar Sunrise Experiment 2000 at Alert, Nunavut (Canada), using two independent denuder/filter systems for sampling and subsequent analysis by ion chromatography. Twelve to forty-eight hour samples were taken during a winter (9–21 February 2000) and a spring (17 April–5 May 2000) campaign. During the spring campaign, samples were taken at two different heights above the snow surface to investigate concentration differences. Total particulate NO3 is the most abundant inorganic nitrogen compound during Arctic springtime (mean 137.4 ng m−3). The NO3 fluxes were calculated above the snow surface to help identify processes that control snow–atmosphere exchange of reactive nitrogen compounds. We suggest that the observed fluxes of coarse particle NO3 via snow deposition may contribute to the nitrogen inventory in the snow surface. Measurements of surface snow provide experimental data that constrain the contribution of dry deposition of coarse particle NO3 to <7%. Wet deposition in falling snow appears to be the major contributor to the nitrate input to the snow.  相似文献   

10.
Vertical snow sampling and moss bag transplants were used to estimate the local inorganic and organic pollutant load deposited from traffic along a major highway in Finland. The pH and concentrations of Cl(-), NO(3)(-), SO(4)(2-), Ca(2+), Na(+) and polyaromatic hydrocarbons (PAHs) were determined from snow samples collected in winter at different sites along the highway. In summer, moss bags containing 20 g of fresh red-stemmed feather moss (Pleurozium schreberi) were transplanted at the same sites. The moss bag transplants remained exposed to roadside traffic for a period of one month following which the samples were collected and the PAH profiles and concentrations were analysed. The deposition of inorganic and organic pollutants from road traffic was observed up to 60 m from the road. The prevailing winds had a significant effect on the dispersion of pollutants. Snow appears to be a good collector of inorganic pollutants from the atmosphere and can be used to monitor local airborne pollution from road traffic. Snow packs can also be used as passive collectors of organic pollutant loads from road traffic on a local scale. To monitor organic PAH deposition from the road traffic, moss bags appeared to be better indicators compared to snow sampling. The efficiency of moss bags in accumulating PAH compounds indicate that vegetation may be an important sink for traffic pollution.  相似文献   

11.
The amounts of formaldehyde and nitrous acid (HONO) in gas phase and dews of Santiago de Chile were simultaneously measured. Formaldehyde concentrations values in the liquid phase (dews) correlate fairly well with those in the gaseous phase and are even higher than those expected from gas–dew equilibrium. On the other hand, nitrite concentrations in dews were considerably smaller (ca. 15 times) than those expected from the gas-phase concentrations. This under-saturation is attributed to diffusion limitations due to the relatively large HONO solubility. In agreement with this, under-saturation increases with the rate of dew formation and the pH of the collected waters, factors that should increase the rate of gas to liquid HONO transfer required to reach equilibrium.  相似文献   

12.
Cyanide has been detected in the effluents of some publicly owned treatment works (POTWs) at levels exceeding the influent concentration. The presence of nitrite ion (NO2-) as a common constituent in domestic wastewater effluents may play an important role in the formation of cyanide through reaction with certain kinds of organic compounds, especially aromatic compounds. Laboratory studies with seven organic compounds (aniline. p-toluidine, phenol, 1,2,4-trihydroxybenzene, L-serine, glycine, and benzoic acid) revealed that cyanide can be formed by reaction of nitrite with some of these compounds. The most substantial free cyanide (HCN. CN-) production observed at 25 degrees C was 0.15 mg/L from reaction of 0.01 mM 1.2.4-trihydroxybenze with 5 mg/L nitrite for 72 hours. Substantial free cyanide formation was also observed at pH 2-4 in experiments with POTW effluents when reactive organics and nitrite were both added to wastewater. Formation of cyanide through nitrosation was strongly pH dependent, being most significant at low pH (2 to 4) and negligible at neutral-to-high pH. This result points to nitrous acid (HNO2) as being more reactive than the dissociated NO2- ion. The reaction of these nitrite species with organics also occurs in conventional analyses for total cyanide which involve distillation under strongly acidic conditions. Sufficient sample pretreatment with sulfamic acid at the time of sampling, not at the time of analysis. is highly recommended to prevent biasing analytical measurement of total cyanide in POTW effluents.  相似文献   

13.
运用摇瓶试验,研究了含氮杂环化合物吡啶的缺氧降解情况、毒性削减规律以及它们之间的关系。结果表明,在吡啶缺氧降解过程中,有利于废水毒性削减的C/N比为8左右;废水中主要致毒物质为吡啶和亚硝酸盐,且亚硝酸盐的毒性大于吡啶的毒性,两者的联合为毒性相加作用;在整个吡啶降解过程中,废水毒性与吡啶降解和亚硝酸盐的产生有着直接联系,毒性削减时间长短与吡啶初始浓度有关。  相似文献   

14.
Aquaculture effluents are rich in nitrogen compounds that may enhance local primary productivity, leading to the development of algae blooms. The goal of this study was to assess the potential use of naturally occurring green macroalgae (Ulva and Enteromorpha) as bioremediators for nitrogen-rich effluents from a fish aquaculture plant, by evaluating their respective uptake dynamics under controlled conditions. Ulva and Enteromorpha were incubated separately in aquaculture effluent from a local pilot station. Algae tissue and water samples were collected periodically along 4 h. For each sample, nitrate, nitrite, and ammonia concentrations were quantified in the effluent, while internal algae reserve pools and nitrate reductase activity (NRA) were determined within the algae tissues. Both macroalgae absorbed all dissolved inorganic nitrogen compounds in less than 1 h, favoring ammonia over nitrate. Ulva stored nitrate temporarily as an internal reserve and only used it after ammonia availability decreased, whereas Enteromorpha stored and metabolized ammonia and nitrate simultaneously. These distinct dynamics of ammonia and nitrate uptake supported an increase in NRA during the experiment. This study supports the hypothesis that Ulva or Enteromorpha can be used as bioremediators in aquaculture effluents to mitigate excess of dissolved inorganic nitrogen.  相似文献   

15.
Atmospheric chemistry directly above snowpacks is strongly influenced by ultraviolet (UV) radiation initiated emissions of chemicals from the snowpack. The emission of gases from the snowpack to the atmosphere is in part due to chemical reactions between hydroxyl radical, OH (produced from photolysis of hydrogen peroxide (H2O2) or nitrate (NO3)) and impurities in the snowpack. The work presented here is a radiative-transfer modelling study to calculate the depth-integrated production rates of hydroxyl radical from the photolysis of hydrogen peroxide and nitrate anion in snow for four different snowpacks and for solar zenith angles 30°–90°. This work also demonstrates the importance of hydrogen peroxide photolysis to produce hydroxyl radical relative to nitrate photolysis with (a) different snowpacks, (b) different ozone column depths, and (c) snowpack depths. The importance of hydrogen peroxide photolysis over nitrate photolysis for hydroxyl radical production increases with increasing depth in snowpack, column ozone depth, and solar zenith angle. With a solar zenith angle of 60° the production of hydroxyl radical from hydrogen peroxide photolysis accounts for 91–99% of all hydroxyl radical production from hydrogen peroxide and nitrate photolysis.  相似文献   

16.
We have manipulated the winter-time soil temperature regime of small headwater catchments in a montane heathland area of southern Norway to study the possible effects on concentrations and fluxes of inorganic nitrogen in runoff. The experiments included extra insulation of soils in two catchments to prevent subzero temperatures during winter, and removal of snow in two other catchments to promote soil frost. Increased soil temperatures during winter increased the springtime concentrations and fluxes of ammonium (NH4) and nitrate (NO3) in runoff. By contrast, snow removal with development of significant soil frost showed no systematic effects on mean concentrations or fluxes of inorganic N. The results from our experiments suggest that warmer soils during winter caused by exceptionally mild winters, or alternatively a heavy snowpack, imply a greater risk for inorganic N leaching in this region than a possible increase of soil frost events because of reduced snow cover.  相似文献   

17.
In this study, the water cycles of nine water-soluble organic salts of atmospheric interest were studied using an electrodynamic balance (EDB) at 25°C. Sodium formate, sodium acetate, sodium succinate, sodium pyruvate and sodium methanesulfonate (Na-MSA) particles crystallize as the relative humidity (RH) decreases and they deliquesce as the RH increases. Sodium oxalate and ammonium oxalate form supersaturated particles at low RH before crystallization but they do not deliquesce even at RH=90%. Sodium malonate and sodium maleate particles neither crystallize nor deliquesce. These two salts absorb and evaporate water reversibly without hysteresis. In most cases, the solid states of single particles resulting from the crystallization of supersaturated droplets do not form the most thermodynamically stable state found in bulk studies. Sodium formate, sodium oxalate, ammonium oxalate, sodium succinate, sodium pyruvate and Na-MSA form anhydrous particles after crystallization. Sodium acetate forms particles with a water/salt molar ratio of 0.5 after crystallization. In salts with several hydrated states including sodium formate and sodium acetate, the particles deliquesce at the lowest deliquescence relative humidity (DRH) of the hydrates. Except sodium oxalate and ammonium oxalate, all the salts studied here are as hygroscopic as typical inorganic hygroscopic aerosols. The hygroscopic organic salts have a growth factor of 1.76–2.18 from RH=10–90%, comparable to that of typical hygroscopic inorganic salts such as NaCl and (NH4)2SO4. Further study of other atmospheric water-soluble organic compounds and their mixtures with inorganic salts is needed to explain the field observations of the hygroscopic growth of ambient aerosols.  相似文献   

18.
An overview of the tropospheric ozone changes is presented focussing mainly on the tropospheric ozone precursors. The complexity of the problem is shown through the consideration of a great number of relevant substances, like nitrogen compounds, volatile organic compounds, peroxyacetyl nitrate, hydroxyl radical, carbon monoxide, alkyl nitrates. The up-to-date knowledge on the relevant numerical modelling is presented in Part II.  相似文献   

19.
The effects of chloride, nitrate, perchlorate and sulfate ions on the rates of the decomposition of hydrogen peroxide and the oxidation of organic compounds by the Fenton's process have been investigated. Experiments were conducted in a batch reactor, in the dark at pH < or = 3.0 and at 25 degrees C. Data obtained from Fe(II)/H2O2 experiments with [Fe(II)]0/[H2O2]0 > or = 2 mol mol(-1), showed that the rates of reaction between Fe(II) and H2O2 followed the order SO4(2-) > ClO4(-) = NO3- = Cl-. For the Fe(III)/H2O2 process, identical rates were obtained in the presence of nitrate and perchlorate, whereas the presence of sulfate or chloride markedly decreased the rates of decomposition of H2O2 by Fe(III) and the rates of oxidation of atrazine ([atrazine]0 = 0.83 microM), 4-nitrophenol ([4-NP]0 = 1 mM) and acetic acid ([acetic acid]0 = 2 mM). These inhibitory effects have been attributed to a decrease of the rate of generation of hydroxyl radicals resulting from the formation of Fe(III) complexes and the formation of less reactive (SO4(*-)) or much less reactive (Cl2(*-)) inorganic radicals.  相似文献   

20.
Bentley R  Chasteen TG 《Chemosphere》2004,55(3):291-317
Volatile organic sulfur compounds (VOSCs) play a major role in the global sulfur cycle. Two components, dimethyl sulfide (DMS) and methanethiol (MT) are formed in large amounts by living systems (e.g. algae, bacteria, plants), particularly in marine environments. A major route to DMS is by action of a lyase enzyme on dimethylsulfoniopropionate (DMSP). DMSP has other roles, for instance as an osmoprotectant and cryoprotectant. Demethiolation of DMSP and other materials leads to MT. A major transport process is release of DMS from the oceans to the atmosphere. Oxidation of DMS in the atmosphere by hydroxyl and nitrate radicals produces many degradation products including CO2, COS, dimethyl sulfoxide, dimethyl sulfone, organic oxyacids of sulfur, and sulfate. These materials also have roles in biotic processes and there are complex metabolic interrelationships between some of them. This review emphasizes the chemical reactions of the organic sulfur cycle. For biotic reactions, details of relevant enzymes are provided when possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号