首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Purpose: This is a study of the influence of an unbelted rear occupant on the risk of severe injury to the front seat occupant ahead of them in frontal crashes. It provides an update to earlier studies.

Methods: 1997–2015 NASS-CDS data were used to investigate the risk for severe injury (Maximum Abbreviated Injury Score [MAIS] 4+F) to belted drivers and front passengers in frontal crashes by the presence of a belted or unbelted passenger seated directly behind them or without a rear passenger. Frontal crashes were identified with GAD1 = F without rollover (rollover ≤ 0). Front and rear outboard occupants were included without ejection (ejection = 0). Injury severity was defined by MAIS and fatality (F) by TREATMNT = 1 or INJSEV = 4. Weighted data were determined. The risk for MAIS 4+F was determined using the number of occupants with known injury status MAIS 0+F. Standard errors were determined.

Results: The risk for severe injury was 0.803 ± 0.263% for the driver with an unbelted left rear occupant and 0.100 ± 0.039% with a belted left rear occupant. The driver's risk was thus 8.01 times greater with an unbelted rear occupant than with a belted occupant (P <.001). With an unbelted right rear occupant behind the front passenger, the risk for severe injury was 0.277 ± 0.091% for the front passenger. The corresponding risk was 0.165 ± 0.075% when the right rear occupant was belted. The front passenger's risk was 1.68 times greater with an unbelted rear occupant behind them than a belted occupant (P <.001). The driver's risk for MAIS 4+F was highest when their seat was deformed forward. The risk was 9.94 times greater with an unbelted rear occupant than with a belted rear occupant when the driver's seat deformed forward. It was 13.4 ± 12.2% with an unbelted occupant behind them and 1.35 ± 0.95% with a belted occupant behind them.

Conclusions: Consistent with prior literature, seat belt use by a rear occupant significantly lowered the risk for severe injury to belted occupants seated in front of them. The reduction was greater for drivers than for front passengers. It was 87.5% for the driver and 40.6% for the front passenger. These results emphasize the need for belt reminders in all seating positions.  相似文献   


2.
Objective: Whiplash-associated disorder (WAD), commonly denoted whiplash injury, is a worldwide problem. These injuries occur at relatively low changes of velocity (typically <25 km/h) in impacts from all directions. Rear impacts, however, are the most common in the injury statistics. Females have a 1.5–3 times higher risk of whiplash injury than males.

?Improved seat design is the prevailing means of increasing the protection of whiplash injury for occupants in rear impacts. Since 1997, more advanced whiplash protection systems have been introduced on the market, the Saab Active Head Restraint (SAHR) being one of the most prominent. The SAHR—which is height adjustable—is mounted to a pressure plate in the seatback by means of a spring-resisted link mechanism.

?Nevertheless, studies have shown that seats equipped with reactive head restraints (such as the SAHR) have a very high injury-reducing effect for males (~60–70%) but very low or no reduction effect for females. One influencing factor could be the position of the head restraint relative to the head, because a number of studies have reported that adjustable head restraints often are incorrectly positioned by drivers.

?The aim was to investigate how female and male Saab drivers adjust the seat in the car they drive the most.

Methods: The seated positions of drivers in stationary conditions have been investigated in a total of 76 volunteers (34 females, 42 males) who participated in the study. Inclusion criteria incorporated driving a Saab 9–3 on a regularly basis.

Results: The majority of the volunteers (89%) adjusted the head restraint to any of the 3 uppermost positions and as many as 59% in the top position.

?The average vertical distance between the top of the head and the top of the head restraint (offset) increase linearly with increasing statures, from an average of ?26 mm (head below the head restraint) for small females to an average of 82 mm (head above the head restraint) for large males. On average, the offset was 23 mm for females, which is within a satisfactory range and in accordance with recommendations; the corresponding value for males was 72 mm.

?The backset tended to be shorter among female volunteers (on average 27 mm) compared to the male volunteers (on average 44 mm). Moreover, the backset tended to increase with increasing statures.

Conclusions: Incorrect adjustment of the head restraint cannot explain the large differences found between the sexes in the effectiveness of the SAHR system.  相似文献   

3.
Purpose: This is a study that updates earlier research on the influence of a front passenger on the risk for severe driver injury in near-side and far-side impacts. It includes the effects of belt use by the driver and passenger, identifies body regions involved in driver injury, and identifies the sources for severe driver head injury.

Methods: 1997–2015 NASS-CDS data were used to investigate the risk for Maximum Abbreviated Injury Scale (MAIS) 4 + F driver injury in near-side and far-side impacts by front passenger belt use and as a sole occupant in the driver seat. Side impacts were identified with GAD1 = L or R without rollover (rollover ≤ 0). Front-outboard occupants were included without ejection (ejection = 0). Injury severity was defined by MAIS and fatality (F) by TREATMNT = 1 or INJSEV = 4. Weighted data were determined. The risk for MAIS 4 + F was determined using the number of occupants with known injury status MAIS 0 + F. Standard errors were determined.

Results: Overall, belted drivers had greater risks for severe injury in near-side than far-side impacts. As a sole driver, the risk was 0.969 ± 0.212% for near-side and 0.313 ± 0.069% for far-side impacts (P < .005). The driver's risk was 0.933 ± 0.430% with an unbelted passenger and 0.596 ± 0.144% with a belted passenger in near-side impacts. The risk was 2.17 times greater with an unbelted passenger (NS). The driver's risk was 0.782 ± 0.431% with an unbelted passenger and 0.361% ± 0.114% with a belted passenger in far-side impacts. The risk was 1.57 times greater with an unbelted passenger (P < .10). Seat belt use was 66 to 95% effective in preventing MAIS 4 + F injury in the driver. For belted drivers, the head and thorax were the leading body regions for Abbreviated Injury Scale (AIS) 4+ injury. For near-side impacts, the leading sources for AIS 4+ head injury were the left B-pillar, roof, and other vehicle. For far-side impacts, the leading sources were the other occupant, right interior, and roof (8.5%).

Conclusions: Seat belt use by a passenger lowered the risk of severe driver injury in side impacts. The reduction was 54% in near-side impacts and 36% in far-side impacts. Belted drivers experienced mostly head and thoracic AIS 4+ injuries. Head injuries in the belted drivers were from contact with the side interior and the other occupant, even with a belted passenger.  相似文献   


4.

Introduction

Longitudinal barriers, such as guardrails, are designed to prevent a vehicle that leaves the roadway from impacting a more dangerous object while minimizing the risk of injury to the vehicle occupants. Current full-scale test procedures for these devices do not consider the effect of occupant restraints such as seatbelts and airbags. The purpose of this study was to determine the extent to which restraints are used or deployed in longitudinal barrier collisions and their subsequent effect on occupant injury.

Methods

Binary logistic regression models were generated to predict occupant injury risk using data from the National Automotive Sampling System / Crashworthiness Data System from 1997 through 2007.

Results

In tow-away longitudinal barrier crashes, airbag deployment rates were 70% for airbag-equipped vehicles. Compared with unbelted occupants without an airbag available, seat belt restrained occupants with an airbag available had a dramatically decreased risk of receiving a serious (MAIS 3+) injury (odds-ratio (OR) = 0.03; 95% CI: 0.004-0.24). A similar decrease was observed among those restrained by seat belts, but without an airbag available (OR = 0.03; 95% CI: 0.001- 0.79). No significant differences in risk of serious injuries were observed between unbelted occupants with an airbag available compared with unbelted occupants without an airbag available (OR = 0.53; 95% CI = 0.10-2.68).

Impact on Industry

This study refutes the perception in the roadside safety community that airbags rarely deploy in frontal barrier crashes, and suggests that current longitudinal barrier occupant risk criteria may over-estimate injury potential for restrained occupants involved in a longitudinal barrier crash.  相似文献   

5.
OBJECTIVES: To evaluate the factors that might influence an occupant's injury severity during a left turn movement. METHODS: We used the National Automotive Sampling System Crashworthiness Data System (1995-2005) to compare crash characteristics and injury outcome between intersection and midblock left turn collisions. RESULTS: A total of 7,396 collisions were evaluated. Traffic control devices were present in 82% of intersection and 10% of mid-block collisions. After adjustment for potential confounding variables, drivers' injury severity was not significantly associated with the crash location. However, front seat passengers in mid-block collisions had 72% higher odds of experiencing an injury with injury severity score > or =9 (odds ratio: 1.72, 95% confidence interval: 1.09-2.69). Our analysis did not show that drivers or passengers in larger vehicles, e.g., sport utility vehicles and mini-vans, were at lower risk of more severe injuries in comparison to the car occupants in sedans. CONCLUSION: We found that in comparison to intersection-related left turn collisions, mid-block crashes are associated with more severe injuries for front seat passengers. Furthermore, size of the turning vehicle was not significantly associated with injury severity for drivers or front seat passengers.  相似文献   

6.
PURPOSE: Vehicle and occupant responses in rollovers are complex since many factors influence both. This study analyzes the following factors: 1) belt use, 2) seated position with respect to the lead side in the rollover, 3) another front occupant in the crash, and 4) number of quarter rolls. The aim was to improve our understanding of rollover injury mechanisms. METHOD: Rollover accidents were analyzed using 1992-2004 NASS-CDS data. The sample included adult drivers and right-front passengers. All occupants were evaluated and then a subset of non-ejected occupants was analyzed. Using roll direction and seating position, the sample was divided into near- and far-seated occupants. Injury and fatality risks were determined by seatbelt use, occupancy, rollover direction, and number of quarter rolls. Risk was defined as the number of injured (e.g., MAIS 3+) divided by the number of exposed occupants (MAIS 0-6). Significance in differences was determined. A matched-pair analysis was used to determine the risk of serious injury for near- and far-seated occupants who were either belted or unbelted in the same crash. RESULTS: For all occupants, serious injury risks were highest for far-seated, unbelted occupants at 18.1% +/- 4.8%, followed by near-seated unbelted occupants at 12.0% +/- 3.5%. However, the difference was not statistically significant. Belted near- and far-seated occupants had a similar injury risk of 4.3% +/- 1.2% and 4.0% +/- 1.2%, respectively. For non-ejected occupants, serious injury risk was 9.5% +/- 3.2% for far-seated unbelted occupants and 4.9% +/- 2.1% for near-seated unbelted occupants, not a statistically significant difference. Serious injury risk was similar for belted near- and far-seated non-ejected occupants, at 3.6% +/- 1.1%. Seatbelts were 64.2%-77.9% effective in preventing serious injury for all occupants and 62.1%-26.5% for far- and near-seated, non-ejected occupants, respectively. Based on the matched pairs, seatbelts were less effective for near-seated (5.0%) compared to far-seated (2.8%) occupant MAIS 3+F risks. This was similar for non-ejected occupants. An unbelted near-seated occupant increased the risk for a belted far-seated occupant by 2.2 times, whereas an unbelted far-seated occupant increased the risk for a belted near-seated occupant by 10.2 times. For all occupants, the risk of serious injury increased with the number of quarter rolls, irrespective of seated position. For near-seated occupants, seatbelt effectiveness was higher in < or =1 roll than 1+ roll, at 72.3% compared to 28.3%. For far-seated occupants, seatbelt effectiveness was similar in < or =1 and 1+ roll samples at 78.3% and 76.8%, respectively. Near-seated occupants had the lowest serious injury risk when they were the sole occupant in the vehicle. This was also true for non-ejected occupants. However, far-seated occupants had a lower injury risk when another occupant was involved in the crash. CONCLUSIONS: The effect of carrying another occupant appears to reduce the risk of serious injury to far-seated occupants. However, near-seated occupants are better off being the sole occupant in the vehicle. Seatbelt effectiveness was lowest at 28.3% for non-ejected, near-seated occupants in 1+ rolls. This finding deserves further evaluation in an effort to improve seatbelt effectiveness in rollovers. For belted drivers alone in a rollover, fatality risks are 2.24 times higher for the far- versus near-seated position. Analysis of rollovers by quarter turns indicates that occupants are both far-side and near-side in rollovers. The extent to which this confounds the relationship between roll direction, seating position, and injury risk is unknown.  相似文献   

7.
Introduction and Method: We explored the relationship between nighttime seat belt use of right-front passengers and their drivers using observational data from 33,310 vehicles in east Tennessee during March 2015 – May 2017. Results: Overall, nighttime passenger seat belt use varied by 50 percentage points from 92% when drivers were belted to 42% when drivers were not belted, suggesting that part-time seat belt users can be heavily influenced by the seat belt status of their traveling companions. When stratified by vehicle type and sex, passenger seat belt use by driver seat belt status varied as much as 74 percentage points from 96% to 22%. Passenger seat belt use was typically lower when riding with unbelted same-sex drivers than when riding with unbelted drivers of the opposite sex. Conclusions and Practical Applications: This finding suggests that the role of peer influence in decision-making about seat belt use may differ depending on the sex of a vehicle driver and his or her passengers. Further research is warranted to explore this finding as well as other social and cultural influences that have not been fully examined in seat belt research.  相似文献   

8.
One hundred ninety-five rear impacts with both front- and rear-seat occupants in the struck car, where at least one occupant sustained permanent disability, were selected for study. There was a significantly higher disability risk for the female rear-seat occupant compared with the male driver. Furthermore, a higher risk was found for female rear-seat occupants compared with female front-seat passengers. The disability risk for occupants of the driver's seat was three times higher for females than for males, and four times higher for females in the rear seat. In the future, test methods should consider the risk of whiplash injury in both the front and the rear seat.  相似文献   

9.
OBJECTIVES: To examine the relationship between seatbelt non-use at the time of a crash, habitual non-use of seatbelts, and car crash injury; and to calculate the population attributable risk for car crash injury due to seatbelt non-use. METHODS: A population-based case control, interview study in Auckland, New Zealand, with 571 injured or killed drivers as cases and 588 population-based controls randomly selected from the driving population. RESULTS: Unbelted drivers had 10 times the risk of involvement in an injury crash compared to belted drivers after adjustment for multiple confounders. Habitual non-users were likely to be unbelted when involved in a crash. The population attributable risk for seatbelt non-use was 13%. CONCLUSIONS: Non-use of seatbelts is very strongly associated with increased injury crash involvement. Even where seatbelt use rates are higher than 90%, there remains a small group of habitual non-users who are at high risk; these drivers may benefit from targeted interventions.  相似文献   

10.
Introduction: The availability of highly automated driving functions will vastly change the seating configuration in future vehicles. A reclined and rearward-facing seating position could become one of the popular seating positions. The occupant safety needs to be addressed in these novel seating configurations, as novel occupant loading conditions occur and the current standards as well as regulations are not fully applicable. Method: Twelve finite element simulations using a series production seat model and a state of the art 50th percentile male human body model were conducted to investigate the influences of various parameters on the occupant kinematics and injury risk. The varied parameters included the seatback angle, impact speed, and seatback rotational stiffness. Results: The seat model shows a large seatback rotation angle during the frontal crash scenario with high impact speed. A reclining of the seatback angle leads to no significant increase of the injury risk for the assessed injury values. However, the reclining does affect the interaction among the occupant, seatbelt, and seatback. An increase of the seatback rotational stiffness helps reduce brain and chest injury metrics, while neck injury values are higher for the stiffer seatback.  相似文献   

11.
A 1988 study reported that females are more likely than males to be killed by the same physical insult. This was determined by analyzing 1975–1983 data. The present study revisits this question using 123,678 fatalities from 1984–1996 data. As none of these data contributed to the earlier study, the present investigation is therefore independent of the earlier one. Female to male fatality risk ratios are calculated for 14 categories of vehicle occupants, including six light truck occupants (belted and unbelted drivers and right front passengers, and unbelted left and right rear passengers). The earlier study did not include light trucks. Close agreement is found between the results of the present and prior studies, thus solidifying the interpretation that findings are of a general nature and not dependent on specific data sets. Except at ages less than about 10 years, or older than about 55, females are more likely to be killed than males. While obtained using traffic data, the results are interpreted to reflect fundamental differences in human physiological response to blunt trauma in general, and are expected to apply to blunt trauma from falls, being struck by objects, etc.  相似文献   

12.
Abstract

Objectives: Earlier research has shown that the rear row is safer for occupants in crashes than the front row, but there is evidence that improvements in front seat occupant protection in more recent vehicle model years have reduced the safety advantage of the rear seat versus the front seat. The study objective was to identify factors that contribute to serious and fatal injuries in belted rear seat occupants in frontal crashes in newer model year vehicles.

Methods: A case series review of belted rear seat occupants who were seriously injured or killed in frontal crashes was conducted. Occupants in frontal crashes were eligible for inclusion if they were 6 years old or older and belted in the rear of a 2000 or newer model year passenger vehicle within 10 model years of the crash year. Crashes were identified using the 2004–2015 National Automotive Sampling System Crashworthiness Data System (NASS-CDS) and included all eligible occupants with at least one Abbreviated Injury Scale (AIS) 3 or greater injury. Using these same inclusion criteria but split into younger (6 to 12 years) and older (55+ years) cohorts, fatal crashes were identified in the 2014–2015 Fatality Analysis Reporting System (FARS) and then local police jurisdictions were contacted for complete crash records.

Results: Detailed case series review was completed for 117 rear seat occupants: 36 with Maximum Abbreviated Injury Scale (MAIS) 3+ injuries in NASS-CDS and 81 fatalities identified in FARS. More than half of the injured and killed rear occupants were more severely injured than front seat occupants in the same crash. Serious chest injury, primarily caused by seat belt loading, was present in 22 of the injured occupants and 17 of the 37 fatalities with documented injuries. Nine injured occupants and 18 fatalities sustained serious head injury, primarily from contact with the vehicle interior or severe intrusion. For fatal cases, 12 crashes were considered unsurvivable due to a complete loss of occupant space. For cases considered survivable, intrusion was not a large contributor to fatality.

Discussion: Rear seat occupants sustained serious and fatal injuries due to belt loading in crashes in which front seat occupants survived, suggesting a discrepancy in restraint performance between the front and rear rows. Restraint strategies that reduce loading to the chest should be considered, but there may be potential tradeoffs with increased head excursion, particularly in the absence of rear seat airbags. Any new restraint designs should consider the unique needs of the rear seat environment.  相似文献   

13.
Objective: A 3-phase real-world motor vehicle crash (MVC) reconstruction method was developed to analyze injury variability as a function of precrash occupant position for 2 full-frontal Crash Injury Research and Engineering Network (CIREN) cases.

Method: Phase I: A finite element (FE) simplified vehicle model (SVM) was developed and tuned to mimic the frontal crash characteristics of the CIREN case vehicle (Camry or Cobalt) using frontal New Car Assessment Program (NCAP) crash test data. Phase II: The Toyota HUman Model for Safety (THUMS) v4.01 was positioned in 120 precrash configurations per case within the SVM. Five occupant positioning variables were varied using a Latin hypercube design of experiments: seat track position, seat back angle, D-ring height, steering column angle, and steering column telescoping position. An additional baseline simulation was performed that aimed to match the precrash occupant position documented in CIREN for each case. Phase III: FE simulations were then performed using kinematic boundary conditions from each vehicle's event data recorder (EDR). HIC15, combined thoracic index (CTI), femur forces, and strain-based injury metrics in the lung and lumbar vertebrae were evaluated to predict injury.

Results: Tuning the SVM to specific vehicle models resulted in close matches between simulated and test injury metric data, allowing the tuned SVM to be used in each case reconstruction with EDR-derived boundary conditions. Simulations with the most rearward seats and reclined seat backs had the greatest HIC15, head injury risk, CTI, and chest injury risk. Calculated injury risks for the head, chest, and femur closely correlated to the CIREN occupant injury patterns. CTI in the Camry case yielded a 54% probability of Abbreviated Injury Scale (AIS) 2+ chest injury in the baseline case simulation and ranged from 34 to 88% (mean = 61%) risk in the least and most dangerous occupant positions. The greater than 50% probability was consistent with the case occupant's AIS 2 hemomediastinum. Stress-based metrics were used to predict injury to the lower leg of the Camry case occupant. The regional-level injury metrics evaluated for the Cobalt case occupant indicated a low risk of injury; however, strain-based injury metrics better predicted pulmonary contusion. Approximately 49% of the Cobalt occupant's left lung was contused, though the baseline simulation predicted 40.5% of the lung to be injured.

Conclusions: A method to compute injury metrics and risks as functions of precrash occupant position was developed and applied to 2 CIREN MVC FE reconstructions. The reconstruction process allows for quantification of the sensitivity and uncertainty of the injury risk predictions based on occupant position to further understand important factors that lead to more severe MVC injuries.  相似文献   

14.
Introduction: Restraint systems (seat belts and airbags) are important tools that improve vehicle occupant safety during motor vehicle crashes (MVCs). We aimed to identify the pattern and impact of the utilization of passenger restraint systems on the outcomes of MVC victims in Qatar.

Methods: A retrospective study was conducted for all admitted patients who sustained MVC-related injuries between March 2011 and March 2014 inclusive.

Results: Out of 2,730 road traffic injury cases, 1,830 (67%) sustained MVC-related injuries, of whom 88% were young males, 70% were expatriates, and 53% were drivers. The use of seat belts and airbags was documented in 26 and 2.5% of cases, respectively. Unrestrained passengers had greater injury severity scores, longer hospital stays, and higher rates of pneumonia and mortality compared to restrained passengers (P = .001 for all). There were 311 (17%) ejected cases. Seat belt use was significantly lower and the mortality rate was 3-fold higher in the ejected group compared to the nonejected group (P = .001). The overall mortality was 8.3%. On multivariate regression analysis, predictors of not using a seat belt were being a front seat passenger, driver, or Qatari national and young age. Unrestrained males had a 3-fold increase in mortality in comparison to unrestrained females. The risk of severe injury (relative risk [RR] = 1.82, 95% confidence interval [CI], 1.49–2.26, P = .001) and death (RR = 4.13, 95% CI, 2.31–7.38, P = .001) was significantly greater among unrestrained passengers.

Conclusion: The nonuse of seat belts is associated with worse outcomes during MVCs in Qatar. Our study highlights the lower rate of seat belt compliance in young car occupants that results in more severe injuries, longer hospital stays, and higher mortality rates. Therefore, we recommend more effective seat belt awareness and education campaigns, the enforcement of current seat belt laws, their extension to all vehicle occupants, and the adoption of proven interventions that will assure sustained behavioral changes toward improvements in seat belt use in Qatar.  相似文献   


15.
Problem: To assess how drivers view dangers on the highway, what motivates them to drive safely, how they say they reduce their crash and injury risk, and how they rate their own driving skills. Results: Most drivers rated their skills as better than average. The biggest motivating factor for safe driving was concern for safety of others in their vehicle, followed by negative outcomes such as being in a crash, increased insurance costs, and fines. The greatest threats to their safety were thought to be other drivers' actions that increase crash risk such as alcohol impairment or running red lights. In terms of reducing crashes and injuries, drivers tended to focus on actions they could take such as driving defensively or using seat belts. There was less recognition of the role of vehicles and vehicle features in crash or injury prevention. Impact on research, practice, and policy: Knowing how drivers view themselves and others, their concerns, and their motivations and techniques for staying out of trouble on the roads provides insight into the difficulty of changing driving practices.  相似文献   

16.
为探究约束系统在全承载客车正面碰撞事故中对乘客损伤的影响,利用有限元分析软件LSDYNA建立某大客车正面碰撞仿真模型,并开展整车50 km/h正面100%重叠碰撞固定刚性壁障试验;从车身变形、加速度曲线和乘员损伤等3方面验证仿真模型;基于已验证的仿真模型,开展不同座椅间距、车厢位置及安全带类型的乘员运动响应和损伤等综合分析与评价。研究结果表明:不同位置车身加速度波形整体趋势相似,但具体峰值和出现时刻存在差异;增大座椅间距和主动预紧安全带能够有效降低降低头部损伤值,而颈部损伤则随之增大;乘客胸部损伤值和大腿力受主动预紧安全带、座椅间距和车厢位置影响不大。  相似文献   

17.
Introduction: Crash data suggest an association between driver seatbelt use and child passenger restraint. However, community-based restraint use is largely unknown. We examined the association between driver seatbelt use and child restraint using data from a state-wide observational study. Methods: Data from Iowa Child Passenger Restraint Survey, a representative state-wide survey of adult seat belt use and child passenger safety, were analyzed. A total of 44,996 child passengers age 0–17 years were observed from 2005 to 2019. Information about driver seatbelt use and child restraint was directly observed by surveyors and driver age was reported. Logistic regression was used to examine the association between driver seatbelt use and child restraint adjusting for vehicle type, community size, child seating position, child passenger age, and year. Results: Over the 15-year study period, 4,114 (9.1%) drivers were unbelted, 3,692 (8.2%) children were completely unrestrained, and another 1,601 (3.6%) children were improperly restrained (analyzed as unrestrained). About half of unbelted drivers had their child passengers unrestrained (51.8%), while nearly all belted drivers had their child passengers properly restrained (92.3%). Compared with belted drivers, unbelted drivers had an 11-fold increased odds of driving an unrestrained child passenger (OR = 11.19, 95%CI = 10.36, 12.09). The association between driver seatbelt use and child restraint was much stronger among teenage drivers. Unbelted teenage drivers were 33-fold more likely (OR = 33.34, 95%CI = 21.11, 52.64) to have an unrestrained child passenger. Conclusion: These data suggest that efforts to increase driver seatbelt use may also have the added benefit of increasing child restraint use. Practical applications: Enforcement of child passenger laws and existing education programs for new drivers could be leveraged to increase awareness of the benefits of seatbelt use for both drivers themselves and their occupants. Interventions aimed at rural parents could emphasize the importance of child safety restraints.  相似文献   

18.
19.
OBJECTIVES: The horizontal distance between the back of the head and the frontal of the head restraint (backset) and rearward head movement relative to the torso (cervical retraction) were studied in different occupant postures and positions in a modern car. METHODS: A stratified randomized population of 154 test subjects was studied in a Volvo V70 year model 2003 car, in driver, front passenger, and rear passenger position. In each position, the subjects adopted (i) a self-selected posture, (ii) a sagging posture, and (iii) an erect posture. Cervical retraction, backset, and vertical distance from the top of the head restraint to the occipital protuberance in the back of the head of the test subject were measured. These data were analyzed using repeated measures ANOVA and linear regression analysis with a significance level set to p < 0.05. RESULTS: In the self-selected posture, the average backset was 61 mm for drivers, 29 mm for front passengers, and 103 mm for rear passengers (p < 0.001). Women had lower mean backset (40 mm) than men (81 mm), particularly in the self-selected driving position. Backset was larger and cervical retraction capacity lower in the sagging posture than in the self-selected posture for occupants in all three occupant positions. Rear passengers had the largest backset values. Backset values decreased with increased age. The average cervical retraction capacity in self-selected posture was 35 mm for drivers, 30 mm for front passengers, and 33 mm for rear passengers (p < 0.001). CONCLUSIONS: Future design of rear-end impact protection may take these study results into account when trying to reduce backset before impact. Our results might be used for future development and use of BioRID manikins and rear-end tests in consumer rating test programs such as Euro-NCAP.  相似文献   

20.
Both seat belt slack and anchor location are known to affect occupant excursion during high-speed frontal collisions, but their effects have not been studied at moderate collision severities. The goal of this study was to quantify how seat belt slack and anchor location affect occupant kinematics and kinetics in moderate severity frontal collisions. A Hybrid III 50th percentile male dummy was seated on a programmable sled and exposed to frontal collisions with a speed change of 17.5 km/h. The seat belt was adjusted either snugly or with 10 cm slack (distributed 60/40 between the shoulder and lap portions) and the anchor location was varied by adjusting the seat position either fully forward or rearward (seat travel = 13 cm). Accelerations and displacements of the head, T1 and pelvis were measured in the sagittal plane. Upper neck loads and knee displacements were also measured. Five trials were performed for each of the four combinations of belt adjustment (snug, slack) and anchor location (seat forward, seat rearward). For each trial, kinematic and kinetic response peaks were determined and then compared across conditions using ANOVAs. Peak displacements, accelerations and loads varied significantly with both seat belt slack and anchor location. Seat belt slack affected more parameters and had a larger effect than anchor location on most peak response parameters. Head displacements increased a similar amount between the snug/slack belt conditions and the rearward/forward anchor locations. Overall, horizontal head displacements increased from 23.8 cm in the snug-belt, rearward-anchor configuration to 33.9 cm in the slack-belt, forward-anchor configuration. These results demonstrated that analyses of occupant displacements, accelerations and loads during moderate frontal impacts should consider potential sources of seat belt slack and account for differences in seat belt anchor locations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号