首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 473 毫秒
1.
Abstract: We present a method to integrate a process‐based (PB) snowmelt model that requires only daily temperature and elevation information into the Soil and Water Assessment Tool (SWAT) model. The model predicts the spatiotemporal snowpack distribution without adding additional complexity, and in fact reduces the number of calibrated parameters. To demonstrate the utility of the PB model, we calibrate the PB and temperature‐index (TI) SWAT models to optimize agreement with stream discharge on a 46‐km2 watershed in northwestern Idaho, United States, for 10 individual years and use the calibrated parameters for the year with the best agreement to run the model for 15 remaining years. Stream discharge predictions by the PB and TI model were similar, although the PB model simulated snowmelt more accurately than the TI model for the remaining 15‐year period. Spatial snow distributions predicted by the PB model better matched observations from LandSat imagery and a SNOTEL station. Results for this watershed show that including PB snowmelt in watershed models is feasible, and calibration of TI‐based watershed models against discharge can incorrectly predict snow cover.  相似文献   

2.
Abstract: This article describes the development of a calibrated hydrologic model for the Blue River watershed (867 km2) in Summit County, Colorado. This watershed provides drinking water to over a third of Colorado’s population. However, more research on model calibration and development for small mountain watersheds is needed. This work required integration of subsurface and surface hydrology using GIS data, and included aspects unique to mountain watersheds such as snow hydrology, high ground‐water gradients, and large differences in climate between the headwaters and outlet. Given the importance of this particular watershed as a major urban drinking‐water source, the rapid development occurring in small mountain watersheds, and the importance of Rocky Mountain water in the arid and semiarid West, it is useful to describe calibrated watershed modeling efforts in this watershed. The model used was Soil and Water Assessment Tool (SWAT). An accurate model of the hydrologic cycle required incorporation of mountain hydrology‐specific processes. Snowmelt and snow formation parameters, as well as several ground‐water parameters, were the most important calibration factors. Comparison of simulated and observed streamflow hydrographs at two U.S. Geological Survey gaging stations resulted in good fits to average monthly values (0.71 Nash‐Sutcliffe coefficient). With this capability, future assessments of point‐source and nonpoint‐source pollutant transport are possible.  相似文献   

3.
Abstract: Hydrologic monitoring in a small forested and mountainous headwater basin in Niigata Prefecture has been undertaken since 2000. An important characteristic of the basin is that the hydrologic regime contains pluvial elements year‐round, including rain‐on‐snow, in addition to spring snowmelt. We evaluated the effect of different snow cover conditions on the hydrologic regime by analyzing observed data in conjunction with model simulations of the snowpack. A degree‐day snow model is presented and applied to the study basin to enable estimation of the basin average snow water equivalent using air temperature at three representative elevations. Analysis of hydrological time series data and master recession curves showed that flow during the snowmelt season was generated by a combination of ground water flow having a recession constant of 0.018/day and diurnal melt water flow having a recession constant of 0.015/hour. Daily flows during the winter/snowmelt season showed greater persistence than daily flows during the warm season. The seasonal water balance indicated that the ratio of runoff to precipitation during the cold season (December to May) was about 90% every year. Seasonal snowpack plays an important role in defining the hydrologic regime, with winter precipitation and snowmelt runoff contributing about 65% of the annual runoff. The timing of the snowmelt season, indicated by the date of occurrence of the first significant snowmelt event, was correlated with the occurrence of low flow events. Model simulations showed that basin average snow water equivalent reached a peak around mid‐February to mid‐March, although further validation of the model is required at high elevation sites.  相似文献   

4.
Snow is an important component of the hydrologic cycle for many regions worldwide. In addition to vital water resources, snowmelt can be important for forest ecosystem dynamics and flood risk. However, standard design events in the United States lack a design snowmelt event, including only precipitation events, though snowmelt has been shown to be larger than rainfall. In this article, we present a method using hourly snow water equivalent data to develop and test a function for representing the diurnal pattern of snowmelt. A two‐parameter beta distribution function is modified for the purposes of this study and found to fit the pattern of snowmelt well with a root mean squared error of 0.008. Soil moisture sensors were additionally utilized to assess the timing of the snowmelt water outflow from the base of the snowpack that supports the shape of the function, but suggests that the timing of losses recorded on snow pillows lag as much as 3 h. Further testing of the function showed the shape of the function to be accurate. The methods developed and tested in this paper can be applied for design purposes comparing snowmelt and rainfall events or to improve hydrological models investigating processes such as streamflow or groundwater recharge.  相似文献   

5.
Observed streamflow and climate data are used to test the hypothesis that climate change is already affecting Rio Grande streamflow volume derived from snowmelt runoff in ways consistent with model‐based projections of 21st‐Century streamflow. Annual and monthly changes in streamflow volume and surface climate variables on the Upper Rio Grande, near its headwaters in southern Colorado, are assessed for water years 1958–2015. Results indicate winter and spring season temperatures in the basin have increased significantly, April 1 snow water equivalent (SWE) has decreased by approximately 25%, and streamflow has declined slightly in the April–July snowmelt runoff season. Small increases in precipitation have reduced the impact of declining snowpack on trends in streamflow. Changes in the snowpack–runoff relationship are noticeable in hydrographs of mean monthly streamflow, but are most apparent in the changing ratios of precipitation (rain + snow, and SWE) to streamflow and in the declining fraction of runoff attributable to snowpack or winter precipitation. The observed changes provide observational confirmation for model projections of decreasing runoff attributable to snowpack, and demonstrate the decreasing utility of snowpack for predicting subsequent streamflow on a seasonal basis in the Upper Rio Grande Basin.  相似文献   

6.
Abstract: Flood forecast and water resource management requires reliable estimates of snow pack properties [snow depth and snow water equivalent (SWE)]. This study focuses on application of satellite microwave images to estimate the spatial distribution of snow depth and SWE over the Great Lakes area. To estimate SWE, we have proposed the algorithm which uses microwave brightness temperatures (Tb) measured by the Special Sensor Microwave Imager (SSM/I) radiometer along with information on the Normalized Difference Vegetation Index (NDVI). The algorithm was developed and tested over 19 test sites characterized by different seasonal average snow depth and land cover type. Three spectral signatures derived from SSM/I data, namely T19V‐T37V (GTV), T19H‐T37H (GTH), and T22V‐T85V (SSI), were examined for correlation with the snow depth and SWE. To avoid melting snow conditions, we have used observations taken only during the period from December 1‐February 28. It was found that GTH, and GTV exhibit similar correlation with the snow depth/SWE and are most should be used over deep snowpack. In the same time, SSI is more sensitive to snow depth variations over a shallow snow pack. To account for the effect of dense forests on the scattering signal of snow we established the slope of the regression line between GTV and the snow depth as a function of NDVI. The accuracy of the new technique was evaluated through its comparison with ground‐based measurements and with results of SWE analysis prepared by the National Operational Hydrological Remote Sensing Center (NOHRSC) of the National Weather Service. The proposed algorithm was found to be superior to previously developed global microwave SWE retrieval techniques.  相似文献   

7.
Young, Charles A., Marisa I. Escobar‐Arias, Martha Fernandes, Brian Joyce, Michael Kiparsky, Jeffrey F. Mount, Vishal K. Mehta, David Purkey, Joshua H. Viers, and David Yates, 2009. Modeling the Hydrology of Climate Change in California’s Sierra Nevada for Subwatershed Scale Adaptation. Journal of the American Water Resources Association (JAWRA) 45(6):1409‐1423. Abstract: The rainfall‐runoff model presented in this study represents the hydrology of 15 major watersheds of the Sierra Nevada in California as the backbone of a planning tool for water resources analysis including climate change studies. Our model implementation documents potential changes in hydrologic metrics such as snowpack and the initiation of snowmelt at a finer resolution than previous studies, in accordance with the needs of watershed‐level planning decisions. Calibration was performed with a sequence of steps focusing sequentially on parameters of land cover, snow accumulation and melt, and water capacity and hydraulic conductivity of soil horizons. An assessment of the calibrated streamflows using goodness of fit statistics indicate that the model robustly represents major features of weekly average flows of the historical 1980‐2001 time series. Runs of the model for climate warming scenarios with fixed increases of 2°C, 4°C, and 6°C for the spatial domain were used to analyze changes in snow accumulation and runoff timing. The results indicated a reduction in snowmelt volume that was largest in the 1,750‐2,750 m elevation range. In addition, the runoff center of mass shifted to earlier dates and this shift was non‐uniformly distributed throughout the Sierra Nevada. Because the hydrologic model presented here is nested within a water resources planning system, future research can focus on the management and adaptation of the water resources system in the context of climate change.  相似文献   

8.
9.
This paper describes the application of a continuous daily water balance model called SWAT (Soil and Water Assessment Tool) for the conterminous U.S. The local water balance is represented by four control volumes; (1) snow, (2) soil profile, (3) shallow aquifer, and (4) deep aquifer. The components of the water balance are simulated using “storage” models and readily available input parameters. All the required databases (soils, landuse, and topography) were assembled for the conterminous U.S. at 1:250,000 scale. A GIS interface was utilized to automate the assembly of the model input files from map layers and relational databases. The hydrologic balance for each soil association polygon (78,863 nationwide) was simulated without calibration for 20 years using dominant soil and land use properties. The model was validated by comparing simulated average annual runoff with long term average annual runoff from USGS stream gage records. Results indicate over 45 percent of the modeled U.S. are within 50 mm of measured, and 18 percent are within 10 mm without calibration. The model tended to under predict runoff in mountain areas due to lack of climate stations at high elevations. Given the limitations of the study, (i.e., spatial resolution of the data bases and model simplicity), the results show that the large scale hydrologic balance can be realistically simulated using a continuous water balance model.  相似文献   

10.
Abstract: Determining watershed response to vegetation treatment has been the subject of numerous hydrologic studies over the years. However, generalizing the information obtained from traditional paired‐watershed studies to other watersheds in a region is problematic because of the empirical nature of such studies and the context dependence of hydrologic responses. This paper addresses the issue of generalizing hydrologic information through integration of process‐based modeling and field observations from small‐scale watershed experiments. To this end, the results from application of a process‐based model were compared with the results from small‐scale watershed experiments in ponderosa pine forests of Arizona. The model simulated treatment impacts reasonably well when compared to the traditional paired‐watershed approach. However, the model tended to overestimate water yields during periods of low flow, and there was a significant difference between the two approaches in the estimation of treatment impacts during the first four years following treatment. The results indicate that the lumped‐parameter modeling approach used here may be limited in its ability to detect small changes, and tends to overestimate changes that occur immediately following treatment. It is concluded that watershed experiments can be highly informative due to their direct examination of cause‐effect relationships, while process‐based models are useful for their processing power and focus on functional relationships. The integrated use of both watershed experiments and process‐based models provides a way to generalize hydrologic information, illuminate the processes behind landscape treatment effects, and to generate and test hypotheses.  相似文献   

11.
ABSTRACT: Snowmelt from deep mountainous snowpacks is seldom rapid enough to exceed infiltration rates; thus, the source of streamflow in many mountainous watersheds is snowmelt recharge through shallow ground water systems. The hydrologic response and interaction between surface and sub-surface flow processes in these watersheds, which is controlled by basin structure, the spatial distribution of snowmelt, and the hydrogeology of the subsurface, are not well understood. The purpose of this study was to test a three-dimensional ground water model using simulated snowmelt input to simulate ground water response to spatially distributed snowmelt on the Upper Sheep Creek Watershed located within the Reynolds Creek Experimental Watershed in Southwestern Idaho. The model was used to characterize the mountainous aquifer and to delineate the subsurface flow mechanisms. Difficulty in finding a reasonable combination of grid spacing and time stepping within the model was encountered due to convergence problems with the Picard solution to the non-linear variably saturated ground water flow equations. Simulation results indicated that flow may be either unconfined or confined depending on inflow rate and hydrogeologic conditions in the watershed. The flow mechanism had a much faster response time when confined flow occurred. Response to snowmelt from a snow drift approximately 90 m away took only a few hours when flow was confined. Simulated results showed good agreement with piezometer measurements both in magnitude and timing; however, convergence problems with the Picard solution limited applicability of the model.  相似文献   

12.
ABSTRACT: Snow course surveys in late winter provide stream‐flow forecasters with their best information for making water supply and flood forecasts for the subsequent spring and summer runoff period in mountainous regions of western North America. Snow survey data analyses are generally based on a 30‐year “normal” period. It is well documented that forest cover changes over time will affect snow accumulation on the ground within forests. This paper seeks to determine if forest cover changes over decades at long term snow courses decrease measured peak snow water equivalent (SWE) enough to affect runoff prediction. Annual peak SWE records were analyzed at four snow courses in two different forest types having at least 25 years of snowpack data to detect any decreases in SWE due to forest growth. No statistically significant decreases in annual peak SWE over time were found at any of these four snow courses. The wide range of annual winter precipitation and correspondingly highly variable peak snowpack accumulation, as well as many other weather and site variables, masked any minor trends in the data.  相似文献   

13.
Spackman Jones, Amber, David K. Stevens, Jeffery S. Horsburgh, and Nancy O. Mesner, 2010. Surrogate Measures for Providing High Frequency Estimates of Total Suspended Solids and Total Phosphorus Concentrations. Journal of the American Water Resources Association (JAWRA) 1‐15. DOI: 10.1111/j.1752‐1688.2010.00505.x Abstract: Surrogate measures like turbidity, which can be observed with high frequency in situ, have potential for generating high frequency estimates of total suspended solids (TSS) and total phosphorus (TP) concentrations. In the semiarid, snowmelt‐driven, and irrigation‐regulated Little Bear River watershed of northern Utah, high frequency in situ water quality measurements were recorded in conjunction with periodic chemistry sampling. Site‐specific relationships were developed using turbidity as a surrogate for TP and TSS at two monitoring locations. Methods are presented for employing censored data and for investigating categorical explanatory variables (e.g., hydrologic conditions). Turbidity was a significant explanatory variable for TP and TSS at both sites, which differ in hydrologic and water quality characteristics. The relationship between turbidity and TP was stronger at the upper watershed site where TP is predominantly particulate. At both sites, the relationships between turbidity and TP varied between spring snowmelt and base flow conditions while the relationships between TSS and turbidity were consistent across hydrological conditions. This approach enables the calculation of high frequency time series of TP and TSS concentrations previously unavailable using traditional monitoring approaches. These methods have broad application for situations that require accurate characterization of fluxes of these constituents over a range of hydrologic conditions.  相似文献   

14.
Stratton, Benjamin T., Venakataramana Sridhar, Molly M. Gribb, James P. McNamara, and Balaji Narasimhan, 2009. Modeling the Spatially Varying Water Balance Processes in a Semiarid Mountainous Watershed of Idaho. Journal of the American Water Resources Association (JAWRA) 45(6):1390‐1408. Abstract: The distributed Soil Water Assessment Tool (SWAT) hydrologic model was applied to a research watershed, the Dry Creek Experimental Watershed, near Boise Idaho to investigate its water balance components both temporally and spatially. Calibrating and validating SWAT is necessary to enable our understanding of the water balance components in this semiarid watershed. Daily streamflow data from four streamflow gages were used for calibration and validation of the model. Monthly estimates of streamflow during the calibration phase by SWAT produced satisfactory results with a Nash Sutcliffe coefficient of model efficiency 0.79. Since it is a continuous simulation model, as opposed to an event‐based model, it demonstrated the limited ability in capturing both streamflow and soil moisture for selected rain‐on‐snow (ROS) events during the validation period between 2005 and 2007. Especially, soil moisture was generally underestimated compared with observations from two monitoring pits. However, our implementation of SWAT showed that seasonal and annual water balance partitioning of precipitation into evapotranspiration, streamflow, soil moisture, and drainage was not only possible but closely followed the trends of a typical semiarid watershed in the intermountain west. This study highlights the necessity for better techniques to precisely identify and drive the model with commonly observed climatic inversion‐related snowmelt or ROS weather events. Estimation of key parameters pertaining to soil (e.g., available water content and saturated hydraulic conductivity), snow (e.g., lapse rates, melting), and vegetation (e.g., leaf area index and maximum canopy index) using additional field observations in the watershed is critical for better prediction.  相似文献   

15.
ABSTRACT: Federal parks and other public lands have unique mandates and rules regulating their use and conservation. Because of variation in their response to local, regional, and global‐scale disturbance, development of mitigation strategies requires substantial research in the context of long‐term inventory and monitoring. In 1982, the National Park Service began long‐term, watershed‐level studies in a series of national parks. The objective was to provide a more comprehensive database against which the effects of global change and other issues could be quantified. A subset of five sites in North Carolina, Texas, Washington, Michigan, and Alaska, is examined here. During the last 50 years, temperatures have declined at the southern sites and increased at the northern sites with the greatest increase in Alaska. Only the most southern site has shown an increase in precipitation amount. The net effect of these trends, especially for the most northern and southern sites, would likely be an increase in the growing season and especially the time soil processes could continue without moisture or temperature limitations. During the last 18 years, there were few trends in atmospheric ion inputs. The most evident was the decline in SO42 deposition. There were no significant relationships between ion input and stream water output. This finding suggests other factors as modification of precipitation or canopy throughfall by soil processes, hydrologic flow path, and snowmelt rates are major processes regulating stream water chemical outputs.  相似文献   

16.
Abstract: The Soil and Water Assessment Tool (SWAT) has been applied successfully in temperate environments but little is known about its performance in the snow‐dominated, forested, mountainous watersheds that provide much of the water supply in western North America. To address this knowledge gap, we configured SWAT to simulate the streamflow of Tenderfoot Creek (TCSWAT). Located in central Montana, TCSWAT represents a high‐elevation watershed with ~85% coniferous forest cover where more than 70% of the annual precipitation falls as snow, and runoff comes primarily from spring snowmelt. Model calibration using four years of measured daily streamflow, temperature, and precipitation data resulted in a relative error (RE) of 2% for annual water yield estimates, and mean paired deviations (Dv) of 36 and 31% and Nash‐Sutcliffe (NS) efficiencies of 0.90 and 0.86 for monthly and daily streamflow, respectively. Model validation was conducted using an additional four years of data and the performance was similar to the calibration period, with RE of 4% for annual water yields, Dv of 43% and 32%, and NS efficiencies of 0.90 and 0.76 for monthly and daily streamflow, respectively. An objective, regression‐based model invalidation procedure also indicated that the model was validated for the overall simulation period. Seasonally, SWAT performed well during the spring and early summer snowmelt runoff period, but was a poor predictor of late summer and winter base flow. The calibrated model was most sensitive to snowmelt parameters, followed in decreasing order of influence by the surface runoff lag, ground water, soil, and SCS Curve Number parameter sets. Model sensitivity to the surface runoff lag parameter reflected the influence of frozen soils on runoff processes. Results indicated that SWAT can provide reasonable predictions of annual, monthly, and daily streamflow from forested montane watersheds, but further model refinements could improve representation of snowmelt runoff processes and performance during the base flow period in this environment.  相似文献   

17.
ABSTRACT: The performance of the Soil and Water Assessment Tool (SWAT) and artificial neural network (ANN) models in simulating hydrologic response was assessed in an agricultural watershed in southeastern Pennsylvania. All of the performance evaluation measures including Nash‐Sutcliffe coefficient of efficiency (E) and coefficient of determination (R2) suggest that the ANN monthly predictions were closer to the observed flows than the monthly predictions from the SWAT model. More specifically, monthly streamflow E and R2 were 0.54 and 0.57, respectively, for the SWAT model calibration period, and 0.71 and 0.75, respectively, for the ANN model training period. For the validation period, these values were ?0.17 and 0.34 for the SWAT and 0.43 and 0.45 for the ANN model. SWAT model performance was affected by snowmelt events during winter months and by the model's inability to adequately simulate base flows. Even though this and other studies using ANN models suggest that these models provide a viable alternative approach for hydrologic and water quality modeling, ANN models in their current form are not spatially distributed watershed modeling systems. However, considering the promising performance of the simple ANN model, this study suggests that the ANN approach warrants further development to explicitly address the spatial distribution of hydrologic/water quality processes within watersheds.  相似文献   

18.
Shrestha, Rajesh R., Yonas B. Dibike, and Terry D. Prowse, 2011. Modeling Climate Change Impacts on Hydrology and Nutrient Loading in the Upper Assiniboine Catchment. Journal of the American Water Resources Association (JAWRA) 48(1): 74‐89. DOI: 10.1111/j.1752‐1688.2011.00592.x Abstract: This paper presents a modeling study on climate‐induced changes in hydrologic and nutrient fluxes in the Upper Assiniboine catchment, located in the Lake Winnipeg watershed. The hydrologic and agricultural chemical yield model, Soil and Water Assessment Tool (SWAT) was employed to model a 21‐year baseline (1980‐2000) and future (2042‐2062) periods with model forcings for future climates derived from three regional climate models (RCMs) and their ensemble means. The modeled future scenarios reveal that potential future changes in the climatic regime are likely to modify considerably hydrologic and nutrient fluxes. The effects of future changes in climatic variables, especially precipitation and temperature, are clearly evident in the resulting snowmelt and runoff regimes. The future hydrologic scenarios consistently show earlier onsets of spring snowmelt and discharge peaks, and higher total runoff volumes. The simulated nutrient loads closely match the dynamics of the future runoff for both nitrogen and phosphorus, in terms of earlier timing of peak loads and higher total loads. However, nutrient concentrations could decrease due to the higher rate of runoff increase. Overall, the effects of these changes on the nutrient transport regime need to be considered together with possible future changes in land use, crop type, fertilizer application, and transformation processes in the receiving water bodies.  相似文献   

19.
Recent legislation to initiate vegetation management in the Central Sierra hydrologic region of California includes a focus on corresponding changes in water yield. This served as the impetus for developing a combined geographic information system (GIS) and simulation assessment framework. Using the existing vegetation density condition, together with proposed rules for thinning to reduce fire risk, a set of simulation model inputs were generated for examining the impact of the thinning scenario on water yield. The approach allows results to be expressed as the mean and standard deviation of change in water yield for each 1-km2 map cell that is thinned. Values for groups of cells are aggregated for typical watershed units using area-weighted averaging. Wet, dry, and average precipitation years were simulated over a large region. Where snow plays an important role in hydrologic processes, the simulated change in water yield was less than 0.5% of expected annual runoff for a typical watershed. Such small changes would be undetectable in the field using conventional stream flow analysis. These results suggest that use of water yield increases to help justify forest-thinning activities or offset their cost will be difficult.  相似文献   

20.
In order to investigate snowpack sensitivity to temperature increases and end‐member atmospheric moisture conditions, we applied a well‐constrained energy‐ and mass‐balance snow model across the full elevation range of seasonal snowpack using forcing data from recent wet and dry years. Humidity scenarios examined were constant relative humidity (high) and constant vapor pressure between storms (low). With minimum calibration, model results captured the observed magnitude and timing of snowmelt. April 1 snow water equivalent (SWE) losses of 38%, 73%, and 90% with temperature increases of 2, 4, and 6°C in a dry year centered on areas of greatest SWE accumulation. Each 2°C increment of warming also resulted in seasonal snowline moving upslope by 300 m. The zone of maximum melt was compressed upward 100–500 m with 6°C warming, with the range reflecting differences in basin hypsometry. Melt contribution by elevations below 2,000 m disappeared with 4°C warming. The constant‐relative‐humidity scenario resulted in 0–100 mm less snowpack in late spring vs. the constant‐vapor‐pressure scenario in a wet year, a difference driven by increased thermal radiation (+1.2 W/m2) and turbulent energy fluxes (+1.2 W/m2) to the snowpack for the constant‐relative‐humidity case. Loss of snowpack storage and potential increases in forest evapotranspiration due to warming will result in a substantial shift in forest water balance and present major challenges to land management in this mountainous region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号