首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对于低浓度含氨氮废水,铵离子交换工艺具有高效、低耗的优点。在实验室利用固定床离子交换装置处理氨氮废水,在20L/h条件下,铵交换量达到最大,为6.1mg/g。分别选用氢氧化钠和氯化钠的混合液以及碳酸钠溶液作为再生液,连续处理石化含氨废水。在进水氨氮浓度小于50mg/L条件下,出水氨氮小于1mg/L;在进水氨氮浓度60-80mg/L条件下,出水氨氮小于2mg/L。再生液用量约为床层体积的4倍。  相似文献   

2.
江苏某铸造公司,在表面处理过程中产生废盐酸槽液,该类废酸浓度高且含有大量铁离子是一类处理难度大、对环境危害极大的废水。本文通过一种双氧水氧化与特种离子交换树脂吸附相结合的含铁废酸回收提纯系统,废酸处理后含铁量≤5.0 mg/L,同时废盐酸回收率达到80%以上,满足生产的要求。  相似文献   

3.
D301弱碱性阴离子交换树脂吸附Cr(Ⅵ)的研究   总被引:1,自引:0,他引:1  
实验探索性地采用D301弱碱性阴离子交换树脂去除重金属废水中的C(rⅥ),为开发出一种高效、安全的处理、富集和回收含C(rⅥ)废水的新工艺提供理论和实验依据。静态吸附实验结果表明,该树脂对C(rⅥ)的吸附量随pH的降低而增加,在pH=2时吸附量为17.54 mg/g;吸附平衡过程符合Freundlich方程,且最大吸附量为94.34 mg/g;动力学和热力学研究表明,吸附过程为颗粒扩散控制,自发且放热的,表观吸附活化能为E(a300 mg/L)=16 243.06 kJ/mol;树脂的再生能力强,经过3次再生,树脂的平衡吸附量仅下降了8.54%;动态吸附和洗脱实验表明,以5%NaOH溶液为洗脱剂效果最佳,洗脱液浓度高达6 918.74 mg/L,浓缩了约69倍,且动态洗脱曲线没有托尾现象;该树脂尤其适合处理低浓度含C(rⅥ)废水(≤100 mg/L),且几乎不受流速限制。  相似文献   

4.
超深层曝气活性污泥法的应用   总被引:1,自引:0,他引:1  
为了节省用地和动力费用,超深层曝气活性污泥法已较为广泛地用于工业废水和城市污水的处理。本文简要介绍其处理制糖工业废水和城市污水的若干问题。 1 在制糖工业废水处理中的应用 1.1 废水性质及工程设计制糖废水的性质,因产品的种类不同而异。一般有淀粉工序废水(主要是浸渍废水)、糖化工序废水(主要是离子交换树脂再生废水)、异构化工序废水(离子交换树脂再生废水)及制山梨醇废水等。以生产淀粉、葡萄糖、异构糖和山梨醇的精  相似文献   

5.
烟道气同时脱硫和脱氮是当今处理烟道气技术的发展方向。但采用湿法净化烟道气时,废水处理却是一个重要的课题。本文介绍了一种处理废水的方法,其法是:用强碱性阴离子交换树脂选择吸附来自同时脱硫、脱氮废水的COD以及N和S化合物,而后将氯化钠溶液在废水流动的逆流方向通过树脂进行再生。树脂的再生在短时间内即可做完,费用低廉,实例:将含S_2O_6~(-2)~1200~1250毫克/升和COD35~45毫克/升的废水通过Dowex MAS-Ⅱ(阴离子交换树脂,美国道化学公司出品),而后用氯化钠再生树脂柱,再使废水通过它。树脂柱的流出物含S_2O_6~(-2)和COD2~3毫克/升。  相似文献   

6.
沸石及其改性材料硅炭素处理含铅废水   总被引:3,自引:0,他引:3  
对沸石及其改性材料硅炭素(ANJ.SiC)处理含铅废水进行优化研究,结果表明,当废水中ρ(Pb)为10 mg/L,pH>4.62,吸附剂投加量为5 g/L,25 ℃处理30 min时,沸石及硅炭素对铅的去除率均可达到90%以上,且硅炭素的处理效果优于沸石.分别采用5种再生剂对饱和的沸石和硅炭素进行再生,NaOH再生效果最佳;经过5次再生,2种吸附剂的饱和容量呈现不同的衰减,硅炭素的再生效果较好,饱和容量从33.9 mg/L衰减到20.5 mg/L.通过扫描电镜(SEM)对沸石和硅炭素吸附前后的表面形貌进行观察发现,二者的除铅机理不尽相同,沸石主要是通过离子交换作用,使铅进入其结构内部;沸石经过改性,表面发生变化,硅炭素主要是通过材料表面与铅离子的反应达到除铅目的.   相似文献   

7.
概述江门市电镀厂有19条电镀生产线,废水排放量为1600M~3/d,废水中主要污染物为:SS=100mg/L-200mg/L;CN~-=10mg/L-20mg/L;Cr~(6 )=5mg/L~25mg/L;Cu~(2 )=10~20mg/L; Ni~(2 )=10mg/L~20mg/L;Zn~(2 )=5mg/L~20mg/L。pH=3~5。在70年代该厂原有的离子交换污水处理系统已残旧报废,该厂排出的废水对江门市蓬江河污染较大,根据环保部门一控双达标的政策和要求,需对污水实行治理,治理效果须达到国家排放标准。  相似文献   

8.
生物硫铁复合材料处理含铬废水及铬资源化研究   总被引:4,自引:1,他引:3       下载免费PDF全文
研究了由硫酸盐还原菌(SRB)与其原位生成的纳米硫铁化合物组成的生物硫铁复合材料(生物硫铁)的耐铬性能和再生性能,并利用其再生特性,设计了处理高浓度含铬废水及铬资源化的还原-再生循环处理工艺.结果表明,生物硫铁处理含铬废水后,污泥中的SRB仍具有活性,能以反应产物Fe3+和S单质为电子受体,重新生成生物硫铁;而且SRB在Cr(VI)浓度600mg/L的废水中仍能存活并逐渐将Cr(VI)去除.还原-再生循环处理工艺处理含铬废水结果表明,出水Cr(VI)低于0.019mg/L,总Cr低于0.929mg/L,能达标排放.经10个循环处理后污泥中铬(Cr2O3)含量达到40.47%,铬铁比达到6.98,污泥达到冶金级(湿法冶炼铬)铬矿标准和化工级铬矿标准,可资源化利用.  相似文献   

9.
巯基树脂的合成及对Hg2+的吸附特征   总被引:1,自引:1,他引:0  
使用聚苯乙烯交联微球为前驱体,经一系列反应合成了一种苯环上含巯基的离子交换树脂(巯基树脂),研究了其对水中Hg2+的吸附特征. 巯基树脂的红外与元素分析结果表明,巯基官能团成功地嫁接到树脂表面,树脂中b(巯基)为2.89 mmol/g. pH对吸附的影响较大,当pH为1时,巯基树脂对Hg2+的吸附量很低,因此,可以用酸洗树脂使其再生. 当pH为2~7时,巯基树脂对Hg2+的吸附量相差不大. 巯基树脂对水中Hg2+的吸附等温线结果表明,温度的升高有利于吸附,吸附量高达14.500 mg/g,且符合Langmuir模型. Hg2+在巯基树脂上的吸附符合准二级动力学方程,对于初始ρ(Hg2+)为1 mg/L的溶液,吸附后最终ρ(Hg2+)可降到0.003 mg/L.   相似文献   

10.
联邦德国从环境保护的要求,限制排入水体内的污水含盐量;同时为保证人身健康的需要对生活饮用水中硝酸根(NO_3~-)含量严格控制在25mg/L以下(这主要是农药污染造成的)。为了解决上述问题,联邦德国水处理专家,从事利用二氧化碳(CO_2)再生弱酸离子交换树脂的技术研究开发工  相似文献   

11.
用凹凸棒石处理高浓含油废水的研究   总被引:8,自引:0,他引:8  
研究了凹凸棒石吸附剂(包括其回收再生品)对废水中各种状态油的去除,结果表明,1%凹凸棒石原土与1mg/LPAM组合,可使含油约500mg/L的废水获得90%以上的除油率;若组合使用2.00%凹凸棒石和800mg/L硫酸铝,则易使含油126000mg/L的废乳化液破乳除油,除油率均达98%左右,COD_(Cr)去除率89%:如采用多级连续处理,则可有效地净化水质;油的去除效果是凹凸棒石投加量或初始油浓度的幂函数,且在剩余油量与投加量之间符合Freundlich吸附等温式:整个吸附过程具有不同特征的几个阶段,并随着时间的推延,逐渐呈现一级反应动力学的特征。  相似文献   

12.
镀镍漂洗废水水质单一,含有较高浓度的镍离子,具有较高的回收利用价值.本工程采用离子交换-超滤-反渗透组合工艺处理镀镍漂洗废水,利用离子交换系统浓缩回收废水中的镍离子,具有自动化程度高、回收利用有用金属、废水中水回用等特点.回收的Ni2+经进一步处理后可返回生产工序使用,处理后出水可回用到电镀生产漂洗工序中.镀镍漂洗废水中Ni2+质量浓度由424 mg/L降至1.0mg/L以下,CODcr由150 mg/L降至20 mg/L以下,SS由28 mg/L降至2mg/L以下.系统Ni2+的回收率能达到99%以上,废水回用率超过65%.  相似文献   

13.
为了解决废弃螯合吸附树脂堆积对环境造成污染,在参考了原树脂合成路线的基础上,设计出了资源化处理该树脂的方法。在二乙胺溶剂中,以废偕胺肟型螯合树脂为原料,加入羟胺试剂,使废树脂发生偕胺肟化反应改性为偕胺肟基聚丙烯腈-二乙烯基苯,实现了废树脂的再生。探讨了废螯合树脂改性工艺及吸附性能,在实验中单因素考察了反应温度、反应时间、二乙胺浓度、盐酸羟胺浓度以及NaOH浓度等因素对偕胺肟化反应效率的影响,同时对树脂及二乙胺溶液进行循环使用。结果表明,二乙胺浓度为70%,盐酸羟胺浓度为1.2mol/L,NaOH浓度为2mol/L,反应温度为50℃,反应时间为2h时达到最佳再生综合效能。以Cu(Ⅱ)离子进行吸附效率测试,有效地恢复该种树脂的吸附能力的90%。树脂循环使用四次之后,吸附效率仍能达到60%。傅里叶变换红外光谱(FT-IR)对螯合树脂表征表明,腈基转化成了偕胺肟基团。在废树脂再生的反应过程中,二乙胺溶剂表现为激活剂的作用。  相似文献   

14.
以天然斜发沸石粉为主要原料,水泥为粘结剂,铝粉为造孔剂通过优化实验制备出沸石加气混凝土生物填料(ZPBF),并利用偏光显微镜(PM)、扫描电子显微镜(SEM)等技术来表征ZPBF孔结构特征.结果表明:ZPBF开放孔隙率达到29.55%,为微生物进入ZPBF的内部附着生长提供空间.BET-N_2吸附测得介孔孔径平均11.92nm,比表面积59.54m~2/g,有利于离子交换吸附.ZPBF装填实验柱挂膜成熟后,以模拟含NH_4~+-N废水进行离子交换吸附、排空、鼓风微生物硝化再生、淋洗硝酸盐四阶段序批式运行,当离子交换吸附阶段HRT为2.8h,进水NH_4~+-N浓度10mg/L,以出水NH_4~+-N浓度1.5mg/L为穿透点,可吸附NH_4~+-N运行5d,鼓风24h可完成再生,NH_4~+-N平均去除率达到87%,TN平均去除率达到60%,出水达到北京城镇污水处理厂水污染物排放标准一级B.  相似文献   

15.
文章针对癸二酸生产中产生的含酚废水特点,研究开发了树脂吸附法处理该废水的工艺。采用吸附-脱附-吹脱固定床工艺,选用的树脂为超高交联大孔吸附树脂NDA150。通过实验初步确定了其工艺条件,开发出的树脂吸附法工艺处理采用仲辛醇萃取后的癸二酸含酚废水效果良好,20 BV处出水酚含量≤0.25 mg/L,COD≤25 mg/L,低于《国家污染物排放综合标准》(GB 8978-1996)中一级排放标准:苯酚≤0.3 mg/L,COD≤60 mg/L,且实验效果稳定。  相似文献   

16.
无机离子交换剂 zc-1,对NH_4~+-N 具有良好选择性离子交换作用,在选定条件下,对浓度为100-1000毫克/升的氨氮废水,经吸附交换后,能达到排放标准(上海市氨氮废水排放标准为15毫克/升)。饱和后的 zc-1离子交换剂,以6—10%食盐水再生,新生的离子交换剂可反复使用,含 NH_4~+-N的食盐水,用氨吹脱法介吸,以1—2%稀硫酸吸收 NH_3为(NH_4)_2SO_4做化肥,介吸后的食盐水也可反复使用,废水处理过程中物尽其用并化害为利。  相似文献   

17.
研究了非活性固定化啤酒酵母废菌体对废水中重金属离子Pb2 的动态吸附特性,考察了动力学方程、热力学方程对试验的拟合效果,了解吸附过程的规律性.结果表明:Langmuir和Freundlich模型都能较好地拟合试验过程,但以Langmuir模型的拟合效果更好,相关系数达0.996 8,其最大吸附量为7.788 mg/g;拟合试验过程同时符合Thomas动力学模型,相关系数达0.954 7;当溶液中的初始ρ(pb2 )(C0)和流速(Q)分别控制在20 mg/L和2 mL/min左右时,处理效果最好.通过对重金属废水的处理,可以达到以废治废的效果.  相似文献   

18.
CODcr比值约为0.49,采用生物接触氧化法可有效去除废水中易生物降解的有机物。当进水CODct为1732nl酬L,BODS为550111岁L,coDCr负荷2.52-2.73甲(m3·d)时,CODCt、BODS去除率可达75%、so%。该工艺流程利用纺丝废水调节pH值,减少酸的用量,以废治废,降低了运行成本。图2表3参4X792 .0312(X) 103432序批式缺氧一好氧工艺处理味精废水试验研究/黄翔峰(同济大学环境科学与工程学院)…//环境工程/冶金部建筑研究总院一2田1,19(2)一7一只 环图X一26 时礴青废水经吹脱、稀释预处理,CODcr32(X)训酬L、氨氮1701叫犷L、总氮闷仪〕mg/L,在co…  相似文献   

19.
畜禽养殖废水无害化处理并实现资源的回收利用已成为畜禽养殖业未来发展的主要方向。文章探讨了通气速率及阴离子交换树脂添加量对养猪废水中化学耗氧量、氨氮去除率的影响,明确废水处理的最佳条件,并采用磷酸实现对释放的氨气进行回收利用。结果显示:综合处理成本及废水排放标准,通气-树脂联用技术去除废水中氨氮和COD含量的最佳条件:45℃、22.7 g/L阴离子交换树脂、2 L/min通气速率。8 h后COD的含量为310.25 mg/L,低于畜禽废水国家排放标准(COD≤400 mg/L),去除率为79.17%;氨氮的含量为87.9 mg/L,接近国标(NH_4~+-N≤80 mg/L),去除率为85.38%。另外磷酸对氮源的回收率达到90.52%,实现了养猪废水的有效处理及氮源的高效率回收。  相似文献   

20.
以活性炭纤维处理高浓度有机化工废水,实验表明:活性炭纤维对COD(cr)=1.2×10~5mg/L有的机化工废水具有良好的吸附、分离性能,处理后出水COD_(cr)<1000mg/L,净化效率为98%以上;活性炭纤维失效后用过热蒸汽再生,可循环使用,再生废气用焚烧炉焚烧,不会造成二次污染.本文还对活性炭纤维的吸附机理进行了探讨  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号