首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
Abstract:  Mollusks are the group most affected by extinction according to the 2007 International Union for Conservation of Nature (IUCN) Red List, despite the group having not been evaluated since 2000 and the quality of information for invertebrates being far lower than for vertebrates. Altogether 302 species and 11 subspecies are listed as extinct on the IUCN Red List. We reevaluated mollusk species listed as extinct through bibliographic research and consultation with experts. We found that the number of known mollusk extinctions is almost double that of the IUCN Red List. Marine habitats seem to have experienced few extinctions, which suggests that marine species may be less extinction prone than terrestrial and freshwater species. Some geographic and ecologic biases appeared. For instance, the majority of extinctions in freshwater occurred in the United States. More than 70% of known mollusk extinctions took place on oceanic islands, and a one-third of these extinctions may have been caused precipitously by introduction of the predatory snail Euglandina rosea. We suggest that assessment of the conservation status of invertebrate species is neglected in the IUCN Red List and not managed in the same way as for vertebrate species .  相似文献   

2.
At local scales, infectious disease is a common driver of population declines, but globally it is an infrequent contributor to species extinction and endangerment. For species at risk of extinction from disease important questions remain unanswered, including when does disease become a threat to species and does it co‐occur, predictably, with other threats? Using newly compiled data from the International Union for Conservation of Nature (IUCN) Red List, we examined the relative role and co‐occurrence of threats associated with amphibians, birds, and mammals at 6 levels of extinction risk (i.e., Red List status categories: least concern, near threatened, vulnerable, endangered, critically endangered, and extinct in the wild/extinct). We tested the null hypothesis that the proportion of species threatened by disease is the same in all 6 Red List status categories. Our approach revealed a new method for determining when disease most frequently threatens species at risk of extinction. The proportion of species threatened by disease varied significantly between IUCN status categories and linearly increased for amphibians, birds, and all species combined as these taxa move from move from least concern to critically endangered. Disease was infrequently the single contributing threat. However, when a species was negatively affected by a major threat other than disease (e.g., invasive species, land‐use change) that species was more likely to be simultaneously threatened by disease than species that had no other threats. Potential drivers of these trends include ecological factors, clustering of phylogenetically related species in Red List status categories, discovery bias among species at greater risk of extinction, and availability of data. We echo earlier calls for baseline data on the presence of parasites and pathogens in species when they show the first signs of extinction risk and arguably before. La Amenaza de Enfermedades Incrementa a Medida que las Especies se Aproximan a la Extinción  相似文献   

3.
Abstract:  Infectious disease is listed among the top five causes of global species extinctions. However, the majority of available data supporting this contention is largely anecdotal. We used the IUCN Red List of Threatened and Endangered Species and literature indexed in the ISI Web of Science to assess the role of infectious disease in global species loss. Infectious disease was listed as a contributing factor in <4% of species extinctions known to have occurred since 1500 (833 plants and animals) and as contributing to a species' status as critically endangered in <8% of cases (2852 critically endangered plants and animals). Although infectious diseases appear to play a minor role in global species loss, our findings underscore two important limitations in the available evidence: uncertainty surrounding the threats to species survival and a temporal bias in the data. Several initiatives could help overcome these obstacles, including rigorous scientific tests to determine which infectious diseases present a significant threat at the species level, recognition of the limitations associated with the lack of baseline data for the role of infectious disease in species extinctions, combining data with theory to discern the circumstances under which infectious disease is most likely to serve as an agent of extinction, and improving surveillance programs for the detection of infectious disease. An evidence-based understanding of the role of infectious disease in species extinction and endangerment will help prioritize conservation initiatives and protect global biodiversity.  相似文献   

4.
The criteria as laid out by the International Union for the Conservation of Nature (IUCN) Red List are the gold standard by which the extinction risk of a species is assessed and where appropriate biological extinctions are declared. However, unlike all other categories, the category of extinct lacks a quantitative framework for assigning this category. Given its subjective nature, we surveyed expert assessors working on a diversity of taxa to explore the attributes they used to declare a species extinct. Using a choice experiment approach, we surveyed 674 experts from the IUCN Species Survival Commission specialist groups and taskforces. Data availability, time from the last sighting, detectability, habitat availability, and population decline were all important attributes favored by assessors when inferring extinction. Respondents with red-listing experience assigned more importance to the attributes data availability, time from the last sighting, and detectability when considering a species extinction, whereas those respondents working with well-known taxa gave more importance to the time from the last sighting. Respondents with no red-listing experience and those working with more well-known taxa (i.e., mammals and birds) were overall less likely to consider species extinct. Our findings on the importance assessors place on attributes used to declare a species extinct provide a basis for informing the development of specific criteria for more accurately assessing species extinctions.  相似文献   

5.
To understand the scope and scale of the loss of biodiversity, tools are required that can be applied in a standardized manner to all species globally, spanning realms from land to the open ocean. We used data from the International Union for the Conservation of Nature Red List to provide a synthesis of the conservation status and extinction risk of cetaceans. One in 4 cetacean species (26% of 92 species) was threatened with extinction (i.e., critically endangered, endangered, or vulnerable) and 11% were near threatened. Ten percent of cetacean species were data deficient, and we predicted that 2–3 of these species may also be threatened. The proportion of threatened cetaceans has increased: 15% in 1991, 19% in 2008, and 26% in 2021. The assessed conservation status of 20% of species has worsened from 2008 to 2021, and only 3 moved into categories of lesser threat. Cetacean species with small geographic ranges were more likely to be listed as threatened than those with large ranges, and those that occur in freshwater (100% of species) and coastal (60% of species) habitats were under the greatest threat. Analysis of odontocete species distributions revealed a global hotspot of threatened small cetaceans in Southeast Asia, in an area encompassing the Coral Triangle and extending through nearshore waters of the Bay of Bengal, northern Australia, and Papua New Guinea and into the coastal waters of China. Improved management of fisheries to limit overfishing and reduce bycatch is urgently needed to avoid extinctions or further declines, especially in coastal areas of Asia, Africa, and South America.  相似文献   

6.
International Union for Conservation of Nature (IUCN) Red List assessments are essential for prioritizing conservation needs but are resource intensive and therefore available only for a fraction of global species richness. Automated conservation assessments based on digitally available geographic occurrence records can be a rapid alternative, but it is unclear how reliable these assessments are. We conducted automated conservation assessments for 13,910 species (47.3% of the known species in the family) of the diverse and globally distributed orchid family (Orchidaceae), for which most species (13,049) were previously unassessed by IUCN. We used a novel method based on a deep neural network (IUC-NN). We identified 4,342 orchid species (31.2% of the evaluated species) as possibly threatened with extinction (equivalent to IUCN categories critically endangered [CR], endangered [EN], or vulnerable [VU]) and Madagascar, East Africa, Southeast Asia, and several oceanic islands as priority areas for orchid conservation. Orchidaceae provided a model with which to test the sensitivity of automated assessment methods to problems with data availability, data quality, and geographic sampling bias. The IUC-NN identified possibly threatened species with an accuracy of 84.3%, with significantly lower geographic evaluation bias relative to the IUCN Red List and was robust even when data availability was low and there were geographic errors in the input data. Overall, our results demonstrate that automated assessments have an important role to play in identifying species at the greatest risk of extinction.  相似文献   

7.
Understanding causes and consequences of ecological specialization is of major concern in conservation. Specialist species are particularly vulnerable to human activities. If their food or habitats are depleted or lost, they may not be able to exploit alternative resources, and population losses may result. We examined International Union for Conservation of Nature (IUCN) Red List bat data and the number of roosts used per species (accounting for phylogenetic independence) to determine whether roost specialization is correlated with extinction risk. We found a significant correlation between the IUCN Red List category and the number of roost types used. Species that use fewer roost types had a higher risk of extinction. We found that caves and similar structures were the most widely used roost types, particularly by species under some level of risk of extinction. Many critically endangered, endangered, or vulnerable species used natural roosts exclusively, whereas less threatened species used natural and human‐made roosts. Our results suggest that roost loss, particularly in species that rely on a single roost type, may be linked to extinction risk. Our focus on a single life history trait prevented us from determining how important this variable is for extinction risk relative to other variables, but we have taken a first step toward prioritizing conservation actions. Our results also suggest that roost specialization may exacerbate population declines due to other risk factors, such as hunting pressure or habitat loss, and thus that management actions to preserve species under risk of extinction should prioritize protection of roosting sites.  相似文献   

8.
The International Union for Conservation of Nature (IUCN) Red List includes 832 species listed as extinct since 1600, a minuscule fraction of total biodiversity. This extinction rate is of the same order of magnitude as the background rate and has been used to downplay the biodiversity crisis. Invertebrates comprise 99% of biodiversity, yet the status of a negligible number has been assessed. We assessed extinction in the Hawaiian land snail family Amastridae (325 species, IUCN lists 33 as extinct). We did not use the stringent IUCN criteria, by which most invertebrates would be considered data deficient, but a more realistic approach comparing historical collections with modern surveys and expert knowledge. Of the 325 Amastridae species, 43 were originally described as fossil or subfossil and were assumed to be extinct. Of the remaining 282, we evaluated 88 as extinct and 15 as extant and determined that 179 species had insufficient evidence of extinction (though most are probably extinct). Results of statistical assessment of extinction probabilities were consistent with our expert evaluations of levels of extinction. Modeling various extinction scenarios yielded extinction rates of 0.4‐14.0% of the amastrid fauna per decade. The true rate of amastrid extinction has not been constant; generally, it has increased over time. We estimated a realistic average extinction rate as approximately 5%/decade since the first half of the nineteenth century. In general, oceanic island biotas are especially susceptible to extinction and global rate generalizations do not reflect this. Our approach could be used for other invertebrates, especially those with restricted ranges (e.g., islands), and such an approach may be the only way to evaluate invertebrates rapidly enough to keep up with ongoing extinction.  相似文献   

9.
The IUCN (International Union for Conservation of Nature) Red List categories and criteria are the most widely used framework for assessing the relative extinction risk of species. The criteria are based on quantitative thresholds relating to the size, trends, and structure of species’ distributions and populations. However, data on these parameters are sparse and uncertain for many species and unavailable for others, potentially leading to their misclassification or classification as data deficient. We devised an approach that combines data on land-cover change, species-specific habitat preferences, population abundance, and dispersal distance to estimate key parameters (extent of occurrence, maximum area of occupancy, population size and trend, and degree of fragmentation) and hence predict IUCN Red List categories for species. We applied our approach to nonpelagic birds and terrestrial mammals globally (∼15,000 species). The predicted categories were fairly consistent with published IUCN Red List assessments, but more optimistic overall. We predicted 4.2% of species (467 birds and 143 mammals) to be more threatened than currently assessed and 20.2% of data deficient species (10 birds and 114 mammals) to be at risk of extinction. Incorporating the habitat fragmentation subcriterion reduced these predictions 1.5–2.3% and 6.4–14.9% (depending on the quantitative definition of fragmentation) for threatened and data deficient species, respectively, highlighting the need for improved guidance for IUCN Red List assessors on the application of this aspect of the IUCN Red List criteria. Our approach complements traditional methods of estimating parameters for IUCN Red List assessments. Furthermore, it readily provides an early-warning system to identify species potentially warranting changes in their extinction-risk category based on periodic updates of land-cover information. Given our method relies on optimistic assumptions about species distribution and abundance, all species predicted to be more at risk than currently evaluated should be prioritized for reassessment.  相似文献   

10.
Previous studies show that conservation actions have prevented extinctions, recovered populations, and reduced declining trends in global biodiversity. However, all studies to date have substantially underestimated the difference conservation action makes because they failed to account fully for what would have happened in the absence thereof. We undertook a scenario‐based thought experiment to better quantify the effect conservation actions have had on the extinction risk of the world's 235 recognized ungulate species. We did so by comparing species’ observed conservation status in 2008 with their estimated status under counterfactual scenarios in which conservation efforts ceased in 1996. We estimated that without conservation at least 148 species would have deteriorated by one International Union for Conservation of Nature (IUCN) Red List category, including 6 species that now would be listed as extinct or extinct in the wild. The overall decline in the conservation status of ungulates would have been nearly 8 times worse than observed. This trend would have been greater still if not for conservation on private lands. While some species have benefited from highly targeted interventions, such as reintroduction, most benefited collaterally from conservation such as habitat protection. We found that the difference conservation action makes to the conservation status of the world's ungulate species is likely to be higher than previously estimated. Increased, and sustained, investment could help achieve further improvements.  相似文献   

11.
Megafauna species are intrinsically vulnerable to human impact. Freshwater megafauna (i.e., freshwater animals ≥30 kg, including fishes, mammals, reptiles, and amphibians) are subject to intensive and increasing threats. Thirty-four species are listed as critically endangered on the International Union for Conservation of Nature (IUCN). Red List of Threatened Species, the assessments for which are an important basis for conservation actions but remain incomplete for 49 (24%) freshwater megafauna species. Consequently, the window of opportunity for protecting these species could be missed. Identifying the factors that predispose freshwater megafauna to extinction can help predict their extinction risk and facilitate more effective and proactive conservation actions. Thus, we collated 8 life-history traits for 206 freshwater megafauna species. We used generalized linear mixed models to examine the relationships between extinction risk based on the IUCN Red List categories and the combined effect of multiple traits, as well as the effect of human impact on these relationships for 157 classified species. The most parsimonious model included human impact and traits related to species’ recovery potential including life span, age at maturity, and fecundity. Applying the most parsimonious model to 49 unclassified species predicted that 17 of them are threatened. Accounting for model predictions together with IUCN Red List assessments, 50% of all freshwater megafauna species are considered threatened. The Amazon and Yangtze basins emerged as global diversity hotspots of threatened freshwater megafauna, in addition to existing hotspots, including the Ganges-Brahmaputra and Mekong basins and the Caspian Sea region. Assessment and monitoring of those species predicted to be threatened are needed, especially in the Amazon and Yangtze basins. Investigation of life-history traits and trends in population and distribution, regulation of overexploitation, maintaining river connectivity, implementing protected areas focusing on freshwater ecosystems, and integrated basin management are required to protect threatened freshwater megafauna in diversity hotspots.  相似文献   

12.
Abstract:  We examined spatial distributions of fishes native to the lower basin of the Colorado River (25 species) at three scales to determine percent decline from historical distributions based on a regional biodiversity database. We cumulated records from 1843 to 1980 to develop a "historical distribution" for each species and used those occurrences recorded from 1981 to 1998 as "modern" records. We then contrasted historical and modern distributions to (1) quantify losses in spatial distribution; (2) determine how strongly these losses and fragmentation patterns corresponded to the perceived risk of extinction of each species, as represented by its status under the IUCN Red List of Endangered Species; and (3) update extinction risk rankings for 15 fishes endemic to the lower Colorado Basin according to the IUCN criteria. Based on presence and absence data, fish fauna of the lower Colorado Basin have suffered massive distributional losses. On average, ranges of extant species have diminished more than 45% relative to their historical distribution, and 35% of species have lost 50% or more of their occurrences. We provide nine new IUCN rankings and six updates to reflect more accurately the heightened imperilment of these species. Based on our new rankings, 7 of the 15 lower Colorado Basin endemics are critically endangered, 1 is endangered, 2 are vulnerable, and 1 is already extinct. We categorize the remaining 2 endemics as lower risk. This work demonstrates the utility of matching quantitative spatial metrics such as the scale-area slope statistic to extinction risk criteria for species whose persistence is strongly influenced by spatial distribution.  相似文献   

13.
International Union for Conservation of Nature (IUCN) Red List assessments rely on published data and expert inputs, and biases can be introduced where underlying definitions and concepts are ambiguous. Consideration of climate change threat is no exception, and recently numerous approaches to assessing the threat of climate change to species have been developed. We explored IUCN Red List assessments of amphibians and birds to determine whether species listed as threatened by climate change display distinct patterns in terms of habitat occupied and additional nonclimatic threats faced. We compared IUCN Red List data with a published data set of species’ biological and ecological traits believed to infer high vulnerability to climate change and determined whether distributions of climate change‐threatened species on the IUCN Red List concur with those of climate change‐threatened species identified with the trait‐based approach and whether species possessing these traits are more likely to have climate change listed as a threat on the IUCN Red List. Species in some ecosystems (e.g., grassland, shrubland) and subject to particular threats (e.g., invasive species) were more likely to have climate change as a listed threat. Geographical patterns of climate change‐threatened amphibians and birds on the IUCN Red List were incongruent with patterns of global species richness and patterns identified using trait‐based approaches. Certain traits were linked to increases or decreases in the likelihood of a species being threatened by climate change. Broad temperature tolerance of a species was consistently related to an increased likelihood of climate change threat, indicating counterintuitive relationships in IUCN assessments. To improve the robustness of species assessments of the vulnerability or extinction risk associated with climate change, we suggest IUCN adopt a more cohesive approach whereby specific traits highlighted by our results are considered in Red List assessments. To achieve this and to strengthen the climate change‐vulnerability assessments approach, it is necessary to identify and implement logical avenues for further research into traits that make species vulnerable to climate change (including population‐level threats).  相似文献   

14.
Abstract:  Of the roughly 12,000 known plant species in Madagascar, only 3% are found in the IUCN (World Conservation Union) Red List of Threatened Species. We assigned preliminary IUCN categories of threat to the species of a comparatively well-known tribe, Coleeae (Bignoniaceae), which comprises an endemic, species-rich radiation in Madagascar. Because the IUCN Red List Categories and Criteria 3.1 discourage the use of the data-deficient category, we developed a novel method for differentiating between range-limited species and poorly sampled species. We used the Missouri Botanical Garden (MBG) gazetteer to determine where other collection efforts had taken place. We drew buffers around each Coleeae locality and determined how many times the surrounding area had been visited since the last sighting of the specimens by intersecting the buffers with all known botanical localities from the MBG gazetteer. We determined that at least 54% of the Coleeae species are threatened with extinction. Assignments of species to this category were often due to predicted future decline within their current area of occupancy and their lack of inclusion within the protected-area network (only 42% of species are known to occur in protected areas). Three species were presumed extinct, and an additional 12 have not been seen in decades. Among the species threatened with extinction, we "rescued" six of them from the data-deficient category by considering both the sample dates and localities of places where they occurred in relation to additional collections that took place in the immediate area. Due to their recent discovery, 15 species remained in the data-deficient category. If Coleeae is representative of the Malagasy flora, or at least of other endemic-radiated plant groups, then species loss in Madagascar may be even more extreme than is realized.  相似文献   

15.
Abstract: The International Union for Conservation of Nature (IUCN) Red List of Threatened Species was increasingly used during the 1980s to assess the conservation status of species for policy and planning purposes. This use stimulated the development of a new set of quantitative criteria for listing species in the categories of threat: critically endangered, endangered, and vulnerable. These criteria, which were intended to be applicable to all species except microorganisms, were part of a broader system for classifying threatened species and were fully implemented by IUCN in 2000. The system and the criteria have been widely used by conservation practitioners and scientists and now underpin one indicator being used to assess the Convention on Biological Diversity 2010 biodiversity target. We describe the process and the technical background to the IUCN Red List system. The criteria refer to fundamental biological processes underlying population decline and extinction. But given major differences between species, the threatening processes affecting them, and the paucity of knowledge relating to most species, the IUCN system had to be both broad and flexible to be applicable to the majority of described species. The system was designed to measure the symptoms of extinction risk, and uses 5 independent criteria relating to aspects of population loss and decline of range size. A species is assigned to a threat category if it meets the quantitative threshold for at least one criterion. The criteria and the accompanying rules and guidelines used by IUCN are intended to increase the consistency, transparency, and validity of its categorization system, but it necessitates some compromises that affect the applicability of the system and the species lists that result. In particular, choices were made over the assessment of uncertainty, poorly known species, depleted species, population decline, restricted ranges, and rarity; all of these affect the way red lists should be viewed and used. Processes related to priority setting and the development of national red lists need to take account of some assumptions in the formulation of the criteria.  相似文献   

16.
The world's tropical forests are being cleared rapidly, and ecologists claim this is causing a massive loss of species. This claim has its critics. Can we predict extinctions from the extent of deforestation? We mapped the percentage of deforestation on the islands of the Philippines and Indonesia and counted the number of bird species found only on these islands. We then used the species-area relationship to calculate the number of species predicted to become globally extinct following deforestation on these islands. Next, we counted the numbers of insular southeast Asian endemic bird species considered threatened—i.e., those having "a high probability of extinction in the wild in the medium-term future"—in the latest summary Red Data Book. The numbers of extinctions predicted from deforestation and the numbers of species actually threatened are strikingly similar. This suggests we can estimate the size of the extinction crisis in once-forested regions from the extent of deforestation. The numbers of extinctions will be large. Without rapid and effective conservation, many of the species endemic to insular southeast Asia will soon be lost.  相似文献   

17.
Climate Change, Elevational Range Shifts, and Bird Extinctions   总被引:4,自引:0,他引:4  
Abstract:  Limitations imposed on species ranges by the climatic, ecological, and physiological effects of elevation are important determinants of extinction risk. We modeled the effects of elevational limits on the extinction risk of landbirds, 87% of all bird species. Elevational limitation of range size explained 97% of the variation in the probability of being in a World Conservation Union category of extinction risk. Our model that combined elevational ranges, four Millennium Assessment habitat-loss scenarios, and an intermediate estimate of surface warming of 2.8° C, projected a best guess of 400–550 landbird extinctions, and that approximately 2150 additional species would be at risk of extinction by 2100. For Western Hemisphere landbirds, intermediate extinction estimates based on climate-induced changes in actual distributions ranged from 1.3% (1.1° C warming) to 30.0% (6.4° C warming) of these species. Worldwide, every degree of warming projected a nonlinear increase in bird extinctions of about 100–500 species. Only 21% of the species predicted to become extinct in our scenarios are currently considered threatened with extinction. Different habitat-loss and surface-warming scenarios predicted substantially different futures for landbird species. To improve the precision of climate-induced extinction estimates, there is an urgent need for high-resolution measurements of shifts in the elevational ranges of species. Given the accelerating influence of climate change on species distributions and conservation, using elevational limits in a tested, standardized, and robust manner can improve conservation assessments of terrestrial species and will help identify species that are most vulnerable to global climate change. Our climate-induced extinction estimates are broadly similar to those of bird species at risk from other factors, but these estimates largely involve different sets of species.  相似文献   

18.
Abstract: Thorough evaluation has made the International Union for Conservation of Nature (IUCN) Red List the most widely used and accepted authority on the conservation status of biodiversity. Although the system used to determine risk of extinction is rigorously and objectively applied, the list of threatening processes affecting a species is far more subjectively determined and has not had adequate review. I reviewed the threats listed in the IUCN Red List for randomly selected groups within the three most threatened orders of mammals: Artiodactyla, Carnivora, and Primates. These groups are taxonomically related and often ecologically similar, so I expected they would suffer relatively similar threats. Hominoid primates and all other terrestrial fauna faced similar threats, except for bovine artiodactyls and large, predatory carnivores, which faced significantly different threats. Although the status of bovines and hominoids and the number of threats affecting them were correlated, this was not the case for large carnivores. Most notable, however, was the great variation in the threats affecting individual members of each group. For example, the endangered European bison (Bison bonasus) has no threatening processes listed for it, and the lion (Panthera leo) is the only large predator listed as threatened with extinction by civil war. Some threatening processes appear spurious for the conservation of the species, whereas other seemingly important factors are not recorded as threats. The subjective nature of listing threatening processes, via expert opinion, results in substantial biases that may be allayed by independent peer review, use of technical manuals, consensus among multiple assessors, incorporation of probability modeling via decision‐tree analysis, and adequate coordination among evaluators. The primary focus should be on species‐level threats rather than population‐level threats because the IUCN Red List is a global assessment and smaller‐scale threats are more appropriate for national status assessments. Until conservationists agree on the threats affecting species and their relative importance, conservation action and success will be hampered by scattering scarce resources too widely and often by implementing conflicting strategies.  相似文献   

19.
Small body size is generally correlated with r‐selected life‐history traits, including early maturation, short‐generation times, and rapid growth rates, that result in high population turnover and a reduced risk of extinction. Unlike other classes of vertebrates, however, small freshwater fishes appear to have an equal or greater risk of extinction than large fishes. We explored whether particular traits explain the International Union for Conservation of Nature (IUCN) Red List conservation status of small‐bodied freshwater fishes from 4 temperate river basins: Murray‐Darling, Australia; Danube, Europe; Mississippi‐Missouri, North America; and the Rio Grande, North America. Twenty‐three ecological and life‐history traits were collated for all 171 freshwater fishes of ≤120 mm total length. We used generalized linear mixed‐effects models to assess which combination of the 23 traits best explained whether a species was threatened or not threatened. We used the best models to predict the probability of 29 unclassified species being listed as threatened. With and without controlling for phylogeny at the family level, small body size—among small‐bodied species—was the most influential trait correlated with threatened species listings. The k‐folds cross‐validation demonstrated that body size and a random effect structure that included family predicted the threat status with an accuracy of 78% (SE 0.5). We identified 10 species likely to be threatened that are not listed as such on the IUCN Red List. Small body size is not a trait that provides universal resistance to extinction, particularly for vertebrates inhabiting environments affected by extreme habitat loss and fragmentation. We hypothesize that this is because small‐bodied species have smaller home ranges, lower dispersal capabilities, and heightened ecological specialization relative to larger vertebrates. Trait data and further model development are needed to predict the IUCN conservation status of the over 11,000 unclassified freshwater fishes, especially those under threat from proposed dam construction in the world's most biodiverse river basins.  相似文献   

20.
The International Union for Conservation of Nature (IUCN) Red List of Threatened Species, a species extinction risk assessment tool, has been guiding conservation efforts for over 5 decades. It is widely assumed to have been instrumental in preventing species from moving closer to extinction and driving recoveries. However, the impact of the IUCN Red List in guiding conservation has not been evaluated. We conducted, transcribed, and coded interviews with experts who use the IUCN Red List across a range of sectors to understand how the list is used in conservation. We developed a theory of change to illustrate how and why change is expected to occur along causal pathways contributing to the long-term goal of the IUCN Red List and an evaluation framework with indicators for measuring the impact of the IUCN Red List in generating scientific knowledge, raising awareness among stakeholders, designating priority conservation sites, allocating funding and resources, influencing development of legislation and policy, and guiding targeted conservation action (key themes). Red-list assessments were the primary input leading to outputs (scientific knowledge, raised awareness), outcomes (better informed priority setting, access to funding and resource availability, improved legislation and policy), and impact (implemented conservation action leading to positive change) that have resulted in achievement of IUCN Red List goals. To explore feasibility of attributing the difference made by the IUCN Red List across themes, we studied increased scientific knowledge, raised awareness, access to funding and resource allocation, and increased conservation activity. The feasibility exploration showed increased scientific knowledge over time identified through positive trends in publications referring to the IUCN Red List in the literature; raised awareness of the list following high IUCN activity identified by peaks in online search activity; an increased proportion of conservation funding bodies requesting IUCN Red List status in the application process; and, based on interviews with Amphibian Specialist Group members, red-list assessments were essential in connecting relevant stakeholders and ensuring conservation action. Although we identified the IUCN Red List as a vital tool in global conservation efforts, it was challenging to measure specific impacts because of its ubiquitous nature. We are the first to identify the influence of the IUCN Red List on conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号