首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For buildings in which the emissions from people is the main source of pollution, the number of people is the limiting factor for air ventilation. When such buildings are not used at full capacity, the ventilation, and consequently the energy consumption, is unnecessarily high. A great deal of the energy could be saved if the ventilation system could be developed to adjust the air flow to the actual requirements. One possible system would allow the amount of CO2 in the exhaust air to control the ventilation rate. To study if this principle is practicable and economic, a CO2 indicator has been installed in an office building in Helsinki. The mixture of exterior air and recirculated air is adjusted so that the amount of CO2 during working hours is kept on ca 700 ppm (μL/L). The equipment was used during winter 1981-82, and the variation of CO2 and the exterior air flow has been registered. The proportion of CO2 has also been measured locally in order to study occasional variations that may occur. The proportion of other pollutants in the room air has been studied simultaneously with a gas chromatograph. Different types of CO2 indicators were used to study the efficiency of the control system. The successful results indicate that the system can be used in new constructions, as well as in existing buildings.  相似文献   

2.
Sixteen existing multi-family buildings (94 apartments) in Finland and 20 (96 apartments) in Lithuania were investigated prior to their renovation in order to develop and test out a common protocol for the indoor environmental quality (IEQ) assessment, and to assess the potential for improving IEQ along with energy efficiency. Baseline data on buildings, as well as data on temperature (T), relative humidity (RH), carbon dioxide (CO2), carbon monoxide (CO), particulate matter (PM), nitrogen dioxide (NO2), formaldehyde, volatile organic compounds (VOCs), radon, and microbial content in settled dust were collected from each apartment. In addition, questionnaire data regarding housing quality and health were collected from the occupants. The results indicated that most measured IEQ parameters were within recommended limits. However, different baselines in each country were observed especially for parameters related to thermal conditions and ventilation. Different baselines were also observed for the respondents' satisfaction with their residence and indoor air quality, as well as their behavior related to indoor environment. In this paper, we present some evidence for the potential in improving IEQ along with energy efficiency in the current building stock, followed by discussion of possible IEQ indicators and development of the assessment protocol.  相似文献   

3.
This report presents results of a review of available methods for control of environmental hazards applied to indoor air pollutants. Indoor air pollution originates from transport of ambient outdoor air contaminants into occupied spaces by natural infiltration ventilation, or by mechanical ventilation using outdoor makeup air, plus contributions from indoor emission sources. When air exchange with the external ambient environment is reduced to conserve energy, contributions from indoor emission sources may dominate indoor air pollutant levels. This paper identifies alternative methods available to control indoor air pollutant exposures. The performance characteristics of ventilation systems and of air cleaning devices used in mixed modes for ventilation of occupied spaces are described. Models for predicting effectiveness of several alternative modes are reviewed, with field trial validation results cited where available. Results of previous confined-space studies are briefly reviewed as points of departure for consideration of necessary air quality, ventilation, and air cleaning. Understanding of indoor air contaminant generation and controls is aided by examination of earlier studies of indoor air quality, using modern perspectives on occupational environmental health and hygiene.  相似文献   

4.
A sample of 58 occupied homes in Rochester, NY, most of which incorporated special builder-designed weatherization components, were studied to assess (1) the effectiveness of construction techniques designed to reduce air leakage; (2) the indoor air quality and air-exchange rates in selected airtight houses, and (3) the impact on indoor air quality of mechanical ventilation systems employing air-to-air heat exchangers. The “specific leakage area” was measured in each house using the fan pressurization technique. Houses built with polyethylene vapor barriers and joint-sealing were as a group 50% tighter than a similar group of houses without such components. Mechanical ventilation systems with air-to-air heat exchangers were installed in nine relatively airtight houses, some of which had gas stoves and/or tobacco smoking occupants. Air-exchange rates and indoor concentrations of radon (Rn), formaldehyde (HCHO), nitrogen dioxide (NO2), and humidity were measured in each house for 1-week periods with and without mechanical ventilation. More detailed measurements, including concentrations of carbon monoxide and inhalable particulates, were made in two of these houses by a mobile laboratory. In all nine houses, air-exchange rates were relatively low (0.2–0.5 ach) without mechanical ventilation, and yet indoor concentrations of Rn, HCHO, and NO2 were below existing guidelines. Mechanical ventilation systems were effective in further reducing indoor contaminant concentrations. We conclude that when contaminant source strengths are low, acceptable indoor air quality can be compatible with low air-exchange rates.  相似文献   

5.
The indoor and outdoor air quality of two staff quarters of Hong Kong Polytechnic University at Tsim Sha Tsui East (TSTE) and Shatin (ST) were investigated. The air sampling was carried out in winter for about two months starting from January to February of 1996. Fifteen flats from each staff quarter were randomly selected for indoor/outdoor air pollutant measurements. The pollutants measured were NOx, NO, NO2, SO2, CO, and O3. The variations of pollutant concentrations between indoor and outdoor air were investigated on weekday mornings, weekday evenings, weekend mornings, and weekend evenings. All indoor/outdoor pollutant concentrations measured did not exceed the ASHRAE/NAAQS standard. The carbon monoxide concentrations indoors were systemically higher than those outdoors at the TSTE and the ST quarters, both on weekdays and Sunday, which indicates there are CO sources indoors. Except for CO, the indoor levels of other pollutants (NOx, NO, NO2, SO2, and O3) are lower than those outdoors. There was a significant correlation (P < 0.05) between indoor and outdoor concentrations for SO2 and O3 at both the TSTE and the ST quarters. Except for O3, the mean concentrations of all the pollutants in the TSTE quarters, both indoor and outdoor, were higher than that of the ST quarters in all sampling periods. All indoor and outdoor O3 levels were lower at the TSTE quarters than those at the ST quarters. The O3 ratios of TSTE/ST were 0.72 outdoor and 0.79 indoor. This can be explained by the NO titration reaction through NO conversion to NO2.  相似文献   

6.
Given the shrinking spatial contrasts in outdoor air pollution in Switzerland and the trends toward tightly insulated buildings, the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA) needs to understand to what extent outdoor air pollution remains a determinant for residential indoor exposure. The objectives of this paper are to identify determining factors for indoor air pollution concentrations of particulate matter (PM), ultrafine particles in the size range from 15 to 300 nm, black smoke measured as light absorbance of PM (PMabsorbance) and nitrogen dioxide (NO2) and to develop predictive indoor models for SAPALDIA. Multivariable regression models were developed based on indoor and outdoor measurements among homes of selected SAPALDIA participants in three urban (Basel, Geneva, Lugano) and one rural region (Wald ZH) in Switzerland, various home characteristics and reported indoor sources such as cooking. Outdoor levels of air pollutants were important predictors for indoor air pollutants, except for the coarse particle fraction. The fractions of outdoor concentrations infiltrating indoors were between 30% and 66%, the highest one was observed for PMabsorbance. A modifying effect of open windows was found for NO2 and the ultrafine particle number concentration. Cooking was associated with increased particle and NO2 levels. This study shows that outdoor air pollution remains an important determinant of residential indoor air pollution in Switzerland.  相似文献   

7.
The air quality in a newly built preschool was investigated in a longitudinal study. Typical air contaminants emanating from building materials were determined, their variation over time (0–18 months) was measured, and the influence of the ventilation system (81%–91% recirculation of return air) on contaminant concentrations was studied. Volatile organic compounds were sampled by adsorption on porous polymer, analysed by a GC/FID system, and identified by MS. A spatial build-up in concentration (ppb or μg/m3 levels) is evident for all the organic compounds, as well as for CO2, from the outdoor air, through the ventilation system, and through the rooms to the exhaust air. The longitudinal comparison over time shows that all the organic compounds decline in concentration mainly within the first 6 months of occupancy: 1-butanol 4–14 times, toluene and pentanal + hexanal 2–4 times, while formaldehyde remained at a constant low level of 90 ppb (110 μg/m3). It is difficult to believe that the problems of poor air quality in 100 preschools in Stockholm are caused by the organic compounds alone unless interactions occur. A preschool building needs to be gassed off during the first 6 months after its construction with no recirculation of return air allowed (outdoor air rate approx 4–5 ach). During at least 1–2 additional years, it is desired that the recirculation rate of return air is restricted, perhaps to 50%.  相似文献   

8.
Using integrating NO2 diffusion dosimeters, personal, indoor and outdoor exposures were measured for nine families in Topeka, Kansas. NO2 exposures in homes that used gas for cooking were clearly different from those in homes that used electricity. The gas-cooking homes had indoor levels three times the outdoor levels. Members of the gas-cooking households had levels twice those of electric-cooking families and twice the outdoor levels. A linear model that includes outdoor concentrations and stove types explains 77% of the variance in observed NO2 exposure. The differential NO2 exposures in homes with and without gas stoves should be considered in epidemiologic studies of the health effects of air pollution.  相似文献   

9.
A subcommittee of the Nordic Committee for Building Codes has released guidelines for building regulations regarding indoor air quality, especially concerning ventilation. The main features of the guidelines, such as acceptable outdoor air quality for ventilation and minimum outdoor air flows for dwellings and offices, are presented and discussed. Mechanical ventilation is, in principle, required in all buildings including dwellings, due to the requirement of a minimum outdoor air change of 0.5 h−1 and the normal highly airtight nature of new buildings. The guidelines are a basis for designing energy-efficient buildings while maintaining an indoor air quality which provides acceptable comfort and does not impair health.  相似文献   

10.
Determinants of outdoor, indoor and personal concentrations of nitrogen dioxide (NO2) were assessed in a subset of pregnant women of the Spanish INMA (Environment and Childhood) Study. Home indoor and outdoor NO2 concentrations were measured during 48 h with passive samplers for 50 and 58 women from the INMA cohorts of Valencia and Sabadell, respectively. Women from Sabadell also carried personal NO2 samplers during the same period. Data on time–activity patterns, socio-economic characteristics, and environmental exposures were obtained through questionnaires. Multiple linear regression models were developed to predict NO2 levels.In Valencia, median outdoor NO2 levels (42 µg/m3) were higher than median indoor levels (36 µg/m3). In Sabadell, personal NO2 showed the highest median levels (40 µg/m3), followed by indoor (32 µg/m3) and outdoor (29 µg/m3) levels. Personal exposure to NO2 correlated best with the indoor NO2 levels. Temporal and traffic-related variables were significant predictors for outdoor NO2 levels. Thirty-two percent of the indoor NO2 variability in the two cohorts was explained by outdoor NO2 levels and the use of the gas appliances. The model for personal exposure accounted for 59% of the variance in NO2 levels in Sabadell with four predictor variables (outdoor and indoor NO2 levels, time spent in outdoor environments and time exposed to a gas cooker). No significant association was found between personal or indoor NO2 levels and exposure to environmental tobacco smoke (ETS) at home.Personal NO2 levels were found to be strongly influenced by indoor NO2 concentrations. The study supports the use of time–activity patterns along with indoor measurements to predict personal exposure to traffic-related air pollution.  相似文献   

11.
The results of more than 1 yr of air monitoring inside and outside of five homes in each of two communities are presented for SO2, NO2, mass respirable particles, SO4, Al, Br, Cl, Mn, Na, and V. Outdoor measurements across the home site in each city are consistent with proximity to outdoor sources. Looking across indoor residential sites in each city, the home appears to alter outdoor concentrations in several ways. Indoor level of SO2, SO4, Mn, and V are lower than those measured outdoors. These constituents are thought generally to result from outdoor sources. The other constituents studied are at times found in excess within homes. In some cases the source or sources of excess concentration of a particular constituent could be identified; often, however, the source of excess indoor concentration could not be identified.  相似文献   

12.
Measurement of personal exposure to nitrogen dioxide for short and long term was made with a sensitive NO2 passive sampler by volunteer housewives and office workers in different seasons. These measurements were compared with the simultaneous measurement of outdoor and indoor concentration of the participants. A common result over all the measurements is the potential effect of using an unvented space heater to increase personal exposure. Mean personal exposure and indoor concentration are higher than outdoor levels elevated by the samples exposed to pollutant produced from the heater. Without an NO2 source indoors, the mean outdoor concentrations are always highest among the data of measurement. A time-weighted indoor/outdoor activity model gives modestly improved estimates of personal exposure over those predicted from measured indoor concentrations alone.  相似文献   

13.
Cooking and heating with coal and biomass is the main source of household air pollution in China and a leading contributor to disease burden. As part of a baseline assessment for a household energy intervention program, we enrolled 205 adult women cooking with biomass fuels in Sichuan, China and measured their 48-h personal exposure to fine particulate matter (PM2.5) and carbon monoxide (CO) in winter and summer. We also measured the indoor 48-h PM2.5 concentrations in their homes and conducted outdoor PM2.5 measurements during 101 (74) days in summer (winter). Indoor concentrations of CO and nitrogen oxides (NO, NO2) were measured over 48-h in a subset of ~ 80 homes. Women's geometric mean 48-h exposure to PM2.5 was 80 μg/m3 (95% CI: 74, 87) in summer and twice as high in winter (169 μg/m3 (95% CI: 150, 190), with similar seasonal trends for indoor PM2.5 concentrations (winter: 252 μg/m3; 95% CI: 215, 295; summer: 101 μg/m3; 95% CI: 91, 112). We found a moderately strong relationship between indoor PM2.5 and CO (r = 0.60, 95% CI: 0.46, 0.72), and a weak correlation between personal PM2.5 and CO (r = 0.41, 95% CI: − 0.02, 0.71). NO2/NO ratios were higher in summer (range: 0.01 to 0.68) than in winter (range: 0 to 0.11), suggesting outdoor formation of NO2 via reaction of NO with ozone is a more important source of NO2 than biomass combustion indoors. The predictors of women's personal exposure to PM2.5 differed by season. In winter, our results show that primary heating with a low-polluting fuel (i.e., electric stove or wood-charcoal) and more frequent kitchen ventilation could reduce personal PM2.5 exposures. In summer, primary use of a gaseous fuel or electricity for cooking and reducing exposure to outdoor PM2.5 would likely have the greatest impacts on personal PM2.5 exposure.  相似文献   

14.
IntroductionThe United Kingdom (UK) has one of the highest prevalence of asthma in the world, which represents a significant economic and societal burden. Reduced ventilation resulting from increased energy efficiency measures acts as a modifier for mould contamination and risk of allergic diseases. To our knowledge no previous study has combined detailed asset management property and health data together to assess the impact of household energy efficiency (using the UK Government's Standard Assessment Procedure) on asthma outcomes in an adult population residing in social housing.MethodsPostal questionnaires were sent to 3867 social housing properties to collect demographic, health and environmental information on all occupants. Detailed property data, residency periods, indices of multiple deprivation (IMD) and household energy efficiency ratings were also investigated. Logistic regression was used to calculate odds ratios and confidence intervals while allowing for clustering of individuals coming from the same location.ResultsEighteen percent of our target social housing population were recruited into our study. Adults had a mean age of 59 (SD ± 17.3) years and there was a higher percentage of female (59%) and single occupancy (58%) respondents. Housing demographic characteristics were representative of the target homes. A unit increase in household Standard Assessment Procedure (SAP) rating was associated with a 2% increased risk of current asthma, with the greatest risk in homes with SAP > 71. We assessed exposure to mould and found that the presence of a mouldy/musty odour was associated with a two-fold increased risk of asthma (OR 2.2 95%; CI 1.3–3.8). A unit increase in SAP led to a 4–5% reduction in the risk of visible mould growth and a mouldy/musty odour.DiscussionIn contrast to previous research, we report that residing in energy efficient homes may increase the risk of adult asthma. We report that mould contamination increased the risk of asthma, which is in agreement with existing knowledge. Exposure to mould contamination could not fully explain the association between increased energy efficiency and asthma. Our findings may be explained by increased energy efficiency combined with the provision of inadequate heating, ventilation, and increased concentrations of other biological, chemical and physical contaminants. This is likely to be modified by a complex interaction between occupant behaviours and changes to the built environment. Our findings may also be confounded by our response rate, demographic and behavioural differences between those residing in low versus high energy efficient homes, and use of self-reported exposures and outcomes.ConclusionEnergy efficiency may increase the risk of current adult asthma in a population residing in social housing. This association was not significantly modified by the presence of visible mould growth, although further research is needed to investigate the interaction between other demographic and housing characteristic risk factors, especially the impact of fuel poverty on indoor exposures and health outcomes.Study implicationsA multidisciplinary approach is required to assess the interaction between energy efficiency measures and fuel poverty behaviours on health outcomes prior to the delivery of physical interventions aimed at improving the built environment. Policy incentives are required to address fuel poverty issues alongside measures to achieve SAP ratings of 71 or greater, which must be delivered with the provision of adequate heating and ventilation strategies to minimise indoor dampness. Changes in the built environment without changes in behaviour of domicile residents may lead to negative health outcomes.  相似文献   

15.
Fluorotelomer alcohols (FTOH) are important precursors of perfluorinated carboxylic acids (PFCA). These neutral and volatile compounds are frequently found in indoor air and may contribute to the overall human exposure to per- and polyfluorinated alkyl substances (PFAS). In this study air samples of ten workplace environments and a car interior were analysed. In addition, extracts and emissions from selected outdoor textiles were analysed in order to establish their potential contribution to the indoor levels of the above-mentioned compounds.Concentrations of FTOHs measured in air ranged from 0.15 to 46.8, 0.25 to 286, and 0.11 to 57.5 ng/m3 for 6:2, 8:2 and 10:2 FTOHs, respectively. The highest concentrations in air were identified in shops selling outdoor clothing, indicating outdoor textiles to be a relevant source of FTOH in indoor workplace environments. Total amounts of FTOH in materials of outdoor textiles accounted for < 0.8–7.6, 12.1–180.9 and 4.65–105.7 μg/dm2 for 6:2, 8:2 and 10:2 FTOHs, respectively. Emission from selected textiles revealed emission rates of up to 494 ng/h.The measured data show that a) FTOHs are present in indoor textiles (e.g. carpets), b) they are released at ambient temperatures and c) indoor air of shops selling outdoor textiles contains the highest levels of FTOH. Exposure of humans to perfluorooctanoic acid (PFOA) through absorption of FTOH and subsequent degradation is discussed on the basis of indoor air levels. Calculation of indoor air-related exposure using the median of the measured air levels revealed that exposure is on the same order of magnitude as the recently reported dietary intakes for a background-exposed population. On the basis of the 95th percentile, indoor air exposure to PFOA was estimated to exceed dietary exposure. However, indoor air-related intakes of FTOH are far below the tolerable daily intake (TDI) of PFOA, indicating that there is no risk to health, even when assuming an unrealistic complete degradation of FTOH into PFOA.  相似文献   

16.
In the frame of the OFFICAIR project, indoor and outdoor PM2.5 samples were collected in office buildings across Europe in two sampling campaigns (summer and winter). The ability of the particles to deplete physiologically relevant antioxidants (ascorbic acid (AA), reduced glutathione (GSH)) in a synthetic respiratory tract lining fluid, i.e., oxidative potential (OP), was assessed. Furthermore, the link between particulate OP and the concentration of the PM constituents was investigated.The mean indoor PM2.5 mass concentration values were substantially lower than the related outdoor values with a mean indoor/outdoor PM2.5 mass concentration ratio of 0.62 and 0.61 for the summer and winter campaigns respectively. The OP of PM2.5 varied markedly across Europe with the highest outdoor OPAA m−3 and OPGSH m−3 (% antioxidant depletion/m3 air) values obtained for Hungary, while PM2.5 collected in Finland exhibited the lowest values. Seasonal variation could be observed for both indoor and outdoor OPAA m−3 and OPGSH m−3 with higher mean values during winter. The indoor/outdoor OPAA m−3 and OPGSH m−3 ratios were less than one with 4 and 17 exceptions out of the 40 cases respectively. These results indicate that indoor air is generally less oxidatively challenging than outdoors. Correlation analysis revealed that trace elements play an important role in determining OP, in particular, the Cu content. Indoor air chemistry might affect OP since weaker correlations were obtained for indoor PM2.5. Our findings also suggest that office workers may be exposed to health relevant PM constituents to a different extent within the same building.  相似文献   

17.
There is growing evidence that projected climate change has the potential to significantly affect public health. In the UK, much of this impact is likely to arise by amplifying existing risks related to heat exposure, flooding, and chemical and biological contamination in buildings. Identifying the health effects of climate change on the indoor environment, and risks and opportunities related to climate change adaptation and mitigation, can help protect public health.We explored a range of health risks in the domestic indoor environment related to climate change, as well as the potential health benefits and unintended harmful effects of climate change mitigation and adaptation policies in the UK housing sector. We reviewed relevant scientific literature, focusing on housing-related health effects in the UK likely to arise through either direct or indirect mechanisms of climate change or mitigation and adaptation measures in the built environment. We considered the following categories of effect: (i) indoor temperatures, (ii) indoor air quality, (iii) indoor allergens and infections, and (iv) flood damage and water contamination.Climate change may exacerbate health risks and inequalities across these categories and in a variety of ways, if adequate adaptation measures are not taken. Certain changes to the indoor environment can affect indoor air quality or promote the growth and propagation of pathogenic organisms. Measures aimed at reducing greenhouse gas emissions have the potential for ancillary public health benefits including reductions in health burdens related heat and cold, indoor exposure to air pollution derived from outdoor sources, and mould growth. However, increasing airtightness of dwellings in pursuit of energy efficiency could also have negative effects by increasing concentrations of pollutants (such as PM2.5, CO and radon) derived from indoor or ground sources, and biological contamination. These effects can largely be ameliorated by mechanical ventilation with heat recovery (MVHR) and air filtration, where such solution is feasible and when the system is properly installed, operated and maintained. Groups at high risk of these adverse health effects include the elderly (especially those living on their own), individuals with pre-existing illnesses, people living in overcrowded accommodation, and the socioeconomically deprived.A better understanding of how current and emerging building infrastructure design, construction, and materials may affect health in the context of climate change and mitigation and adaptation measures is needed in the UK and other high income countries. Long-term, energy efficient building design interventions, ensuring adequate ventilation, need to be promoted.  相似文献   

18.
Contrasting effects of the dilution of indoor generated pollutants and the energy efficiency of heating and ventilating air conditioning systems (HVAC) for indoor air quality (IAQ) and thermal comfort were studied for 10 Kuwaiti residences. The levels of volatile organic compounds (VOCs) and the calculated cooling load of the HVAC systems were used as indicators for the IAQ and for the energy consumption, respectively. Air exchange rates and VOCs levels (both indoor and outdoor) were measured. It was found that the outdoor VOC concentrations were always less than the indoor values. Therefore reduction of indoor VOC levels can be accomplished either by increasing the ratio of the makeup air to the recirculation air of the HVAC system or by increasing the infiltration airflow rate through openings. A single compartment IAQ model, modified by the authors, was used to test for the variation in the above two dilution modes and to test the performance sensitivity. Hence, the optimum parameters in terms of IAQ and energy consumption were determined. The results indicated that it was necessary to increase the ratio of the makeup air to the recirculation air from its typical design value of 0.5 to a range of 0.7-1.3 in order to reduce indoor VOC to acceptable levels.  相似文献   

19.
Indoor air quality was examined for some gaseous pollutants and particulate matters. In a public library, the indoor/outdoor ratio of gaseous pollutants were found to be dependent on their reactivity, also on the outdoor concentrations and weather conditions. This ratio was 0.6 for SO2,and 1.3 for CO. The indoor/outdoor ratio of carbon monoxide was found to increase at the higher floors of the same building. Concentrations of indoor particulates was found to be influenced by the outdoor concentrations and the particle size. Analysis indicated that indoor suspended dust contained a significant high concentration of lead as compared with outdoor values. Indoor sources were found to pollute the premises of fossil-fuel equipped homes, thus having carbon monoxide concentrations more than the recognized threshold limit value for industry.  相似文献   

20.
Since the air pollution as measured by stationary monitoring stations is a poor indicator of the population exposure, personal monitors are indispensible to health effects studies. This article reviews the current research on the development of personal monitors. Although most of the analytical methods reviewed in this study appear to be sensitive to the levels of the target pollutants NO2, SO2, and O3 generally encountered in indoor and outdoor air, they lack the desired performance characteristics for a personal monitoring device, such as user safety and ease of operation, weight, and maintenance. Electrochemical transducers/sensors, which have not yet been exploited, are attractive candidates for the application to personal monitoring. This technique has an added feature of generating real-time measurements. A few research models and commercially attractive devices that can be used in field studies are included.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号