首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
During this study 352 whole air samples were collected in an urban area of Beijing between January 2005 and March 2007. The temporal variation of the concentrations of chlorofluorocarbons (CFCs: CFC-11, CFC-12, and CFC-113) in air in the Beijing urban atmosphere is presented and discussed. The weighted mean monthly values of these concentrations have been compared with the data from the north hemisphere. It has been concluded that, in the observed period of time, the mean enhancement of CFCs was relatively small, with increase of 10–15%, with respect to the global background. Change rate in concentrations of CFCs is −1.39, −1.04, and −0.16 pptv/month for CFC-11, CFC-12, and CFC-113, respectively. The tendency of the CFC concentration of the three compounds toward background values is observed to fall and indicates that limitation of emission of CFCs is taking effect, under the Montreal Protocol.  相似文献   

2.
In-situ measurements of atmospheric chlorofluorocarbons (CFCs) can be used to the assess their global and regional emissions and to check for compliance with phase-out schedules under Montreal protocol and its amendments. The atmospheric mixing ratios of CFC-11 (CCl3F), CFC-12 (CCl2F2) and CFC-113 (CCl2F–CClF2) have been measured by an automated in-situ GC-ECDs system at the regional Chinese Global Atmosphere Watch (GAW) station Shangdianzi (SDZ), from November 2006 to October 2009. The time series for these three principal CFCs showed large episodic events and background conditions occurred for approximately 30% (CFC-11), 52% (CFC-12) and 56% (CFC-113) of the measurements. The mean background mixing ratios for CFC-11, CFC-12 and CFC-113 were 244.8 ppt (parts per trillion, 10?12, molar) 539.6 ppt and 76.8 ppt, respectively, for 2006–2009. The enhanced CFC mixing ratios compared to AGAGE sites such as Trinidad Head (THD), US and Mace Head (MHD), Ireland suggest regional influences even during background conditions at SDZ, which is much closer to highly-populated areas. Between 2006 and 2009 background CFCs exhibited downward trends at rates of ?2.0 ppt yr?1 for CFC-11, ?2.5 ppt yr?1 for CFC-12 and ?0.7 ppt yr?1 for CFC-113. De-trended 3-year average background seasonal cycles displayed small fluctuations with peak-to-trough amplitudes of 1.0 ± 0.02 ppt (0.4%) for background CFC-11, 1.3 ± 2.1 ppt (0.3%) for CFC-12 and 0.2 ± 0.4 ppt (0.3%) for CFC-113. On the other hand, during pollution periods these CFCs showed much larger seasonal cycles of 11.2 ± 10.7 ppt (5%) for CFC-11, 7.5 ± 6.5 ppt (2%) for CFC-12 and 1.0 ± 1.2 ppt (1.2%) for CFC-113, with apparent winter minima and early summer maxima. This enhancement was attributed to prevailing wind directions from urban regions in summer and to enhanced anthropogenic sources during the warm season. In general, horizontal winds from northeast showed negative contribution to atmospheric CFCs loading, whereas South Western advection (urban sector: Beijing) had positive contributions.  相似文献   

3.
An emplaced hydrocarbon source field experiment was conducted in the relatively homogeneous sandy geology of the vadose zone at Airbase Vaerl?se, Denmark. The source (10.2 l of NAPL) consisted of 13 hydrocarbons (n-, iso- and cyclo-alkanes and aromates) and CFC-113 as a tracer. Monitoring in the 107 soil gas probes placed out to 20 m from the centre of the source showed spreading of all the compounds in the pore air and all compounds were measured in the pore air within a few hours after source emplacement. Seven of the fourteen compounds were depleted from the source within the 1 year of monitoring. The organic vapours in the pore air migrated radially from the source. The CFC-113 concentrations seemed to be higher in the deeper soil gas probes compared with the hydrocarbons, indicating a high loss of CFC-113 to the atmosphere and the lack of degradation of CFC-113. For the first days after source emplacement, the transport of CFC-113, hexane and toluene was successfully simulated using a radial gas-phase diffusion model for the unsaturated zone. Groundwater pollution caused by the vadose zone hydrocarbon vapours was only detected in the upper 30 cm of the underlying groundwater and only during the first 3 months of the experiment. Only the most water-soluble compounds were detected in the groundwater and concentrations decreased sharply with depth (approximately one order of magnitude within 10 cm depth) to non-detect at 30 cm depth. The groundwater table varied more than 1 m within the measurement period. However that did not influence the direction of the groundwater flow. Approximately 7 months after source emplacement the groundwater table rose more than 1 m within 1 month. That did not cause additional pollution of the groundwater.  相似文献   

4.
Time-series observations of the atmospheric concentrations of the halocarbons, trichlorofluorocarbon (CFC-11), dichlorofluorocarbon (CFC-12), 1,2-trichlorofluoroethane (CFC-113), methyl chloroform (CH3CCl3) and carbon tetrachloride (CCl4) were conducted at a site in Lukang, in Central Taiwan between April and August 2004. Fluctuations in atmospheric concentrations of CFC-11, CFC-12 and CH3CCl3 were generally driven by diurnal land–sea breeze and anthropogenic activity in this area. Elevated levels of CFC-11, CFC-12, and CH3CCl3 frequently occurred when the air was stagnant and the prevailing seaward land breeze was dominant. Atmospheric concentrations of CFC-113 and CCl4 were much less variable relative to CFC-11, CFC-12 and CH3CCl3 during the same period, indicating that emissions of these two species from anthropogenic activities were small. The time-series distributions of atmospheric levels of CFC-12, CFC-11, CH3CCl3 and CO were characterized as a diurnal cycle with an elevated level at night and a low level during the daytime for most of the observed periods. As CFC-12, CFC-11 and CH3CCl3 behave as traffic- and industry-derived airborne pollutants in the urban atmosphere, they provide as a useful tracer in the application for the study of terrestrial airborne pollutants transport across the coastal area driven by land–sea breezes in this area.  相似文献   

5.
《Chemosphere》2013,90(11):1384-1389
The emission concentrations of several chlorofluorocarbons (CFCs) were measured from a municipal waste treatment facility (located in Seoul, Republic of Korea) to investigate the emission characteristics of CFCs in the urban environment. To this end, a total of five CFCs (CFC-10, CFC-11, CFC-20, CFC-30, and CFC-113) were analyzed by the thermal desorption–gas chromatography–mass spectrometry (TD–GC–MS) method. The results of this study indicate that the formation of CFC-11 (8.21 ± 1.68 ppb in spring) and CFC-20 (3.92 ± 3.93 ppb in spring) proceeded very actively within the facility. Moreover, CFC-113 was also found in relatively high concentrations (3.34 ± 1.31 ppb in spring) in the treatment facility. Unlike other CFCs, CFC-10 was observed mainly at ambient (and reference) locations and one point inside the treatment facility. In conclusion, emissions of some important CFCs are a prominent process, as they were measured either frequently or abundantly both in winter and spring. It is further indicated that certain CFCs (like CFC-11 and CFC-30) are subject to highly significant seasonal variations.  相似文献   

6.
The emission concentrations of several chlorofluorocarbons (CFCs) were measured from a municipal waste treatment facility (located in Seoul, Republic of Korea) to investigate the emission characteristics of CFCs in the urban environment. To this end, a total of five CFCs (CFC-10, CFC-11, CFC-20, CFC-30, and CFC-113) were analyzed by the thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) method. The results of this study indicate that the formation of CFC-11 (8.21 ± 1.68 ppb in spring) and CFC-20 (3.92 ± 3.93 ppb in spring) proceeded very actively within the facility. Moreover, CFC-113 was also found in relatively high concentrations (3.34 ± 1.31 ppb in spring) in the treatment facility. Unlike other CFCs, CFC-10 was observed mainly at ambient (and reference) locations and one point inside the treatment facility. In conclusion, emissions of some important CFCs are a prominent process, as they were measured either frequently or abundantly both in winter and spring. It is further indicated that certain CFCs (like CFC-11 and CFC-30) are subject to highly significant seasonal variations.  相似文献   

7.
Gas-phase reaction of CFC-12 (CCl2F2) with methane was carried out in a plug flow reactor over the temperature range of 873-1123 K. The major organic halocarbons formed during the reaction were C2F4, C2H2F2, CHClF2, CH3Cl, C3H2F6 and CCl3F. The formation of all products except C2H2F2 decreased with temperature, while the selectivity to C2H2F2 (difluoroethylene) increased with temperature and reached approximately 80% at 1123 K. Under these reaction conditions, methane acts as hydrogen and carbon source, resulting in the formation of an unsaturated C2 hydrofluorocarbon from two C1 precursors.  相似文献   

8.
Abstract

One of the thermal oxidation technologies recommended by the United Nations Environment Programme (UNEP) is destruction of chlorofluorocarbons (CFCs) in a cement kiln. The destruction of CFC12, CFC11 and CFC113 was studied in a cement kiln plant in actual commercial operation. CFCs were completely destroyed in the kiln under normal operating conditions. Hydrogen fluoride and hydrogen chloride generated by CFC decomposition were absorbed by cement materials. No formation of toxic ha-logenated organic compounds, such as polychlorinated dibenzo-p-dioxins or dibenzofurans (PCDDs/PCDFs), was observed in the CFC incineration.  相似文献   

9.
Releases of CFCs occur promptly from applications such as aerosol sprays, or over a period of several years from refrigeration and air conditioning or more slowly still from use as blowing agents for closed cell plastic foams. As a consequence of the Montreal Protocol, the emissions have fallen and their pattern is continuing to change. To help quantify these changes the emissions from closed cell foam blowing have been re-examined in a comprehensive market survey, developing a lifecycle assessment for each foam type, production method and foaming agent.The original model for the time series of emissions from foam applications was shown to remain a robust representation in general terms. There is an “immediate” loss when the foam is manufactured, a slow emission from the foam itself during use and a loss on disposal of the artefact made with the foam. The original model used an initial loss rate of 10% and a subsequent loss of 4.5% yr−1 over 20 yr.The new survey showed a wide range of initial and service loss rates. Immediate release ranges from 95% down to 4%; similarly, the rate of loss during service varies from 0.5% to 5% yr−1 and the service lifetimes of the artefacts made with the foams varies from 12 to 50 yr. The apparent emission function, in terms of the mean value of the annual fractional release from the bank of CFC-11 residing in foams, was calculated from the survey to be 0.043±0.008 over 28 yr. There is a small and non-significant fall in this function with time; so that over the last ten years of the data record the more appropriate value is 0.0366±0.0008. However, up to the early 1990s, it is the original emission function that is consistent with the observed atmospheric concentrations. Thenceforth this function seriously overpredicts the concentrations but, if the new emissions function for foams is used from 1993 onwards in conjunction with the original emission functions for all other uses, the fit becomes better. This suggests that the emission functions for prompt and short term releases remain valid and should be coupled with the new function to calculate emissions of CFC-11 or other fluorocarbon foam blowing agents from the early 1990s onwards.  相似文献   

10.
C. Rittmeyer  J. Vehlow 《Chemosphere》1993,26(12):2129-2138
Disposal of chlorofluorocarbons in a municipal solid waste incinerator has been studied. Destruction of CFC-11 (trichloromonofluoromethane) and CFC-113 (trichlorotrifluoroethane) was found to be better than 99.9%. Neither emission limits for hydrogen chloride or hydrogen fluoride specified in the 17th BImSchV are exceeded during CFC incineration nor could formation of toxic halogenated organic compounds like dibenzo-p-dioxins or dibenzofurans be observed.  相似文献   

11.
A large-scale experiment was conducted to investigate the transport of trichloroethylene (TCE) vapors in the unsaturated zone and to determine the mass transfer to the groundwater and the atmosphere. The experiment involved injection of 5 1 of TCE in the unsaturated zone under controlled conditions, with multidepth sampling of gas and water through the unsaturated zone and across the capillary zone into underlying groundwater. The mass transfer of TCE vapors from the vadose zone to the atmosphere was quantified using a vertical flux chamber. A special soil water sampler was used to monitor transport across the capillary fringe. Experimental data indicated that TCE in the unsaturated zone was mainly transported to the atmosphere and this exchange reduced significantly the potential for groundwater pollution. The maximum measured TCE flux to the atmosphere was about 3 g/m(2)/day. Observed and calculated fluxes based on vertical TCE vapor concentration gradients and Fick's law were in good agreement. This confirms that TCE vapor transport under the experimental conditions was governed essentially by molecular diffusion. TCE vapors also caused a lower, but significant contamination of the underlying groundwater by dispersion across the capillary fringe with a corresponding maximum flux of about 0.1 g/m(2)/day. This mass transfer to groundwater is partly uncertain due to an inadvertent entry of some nonaqueous phase liquid (NAPL) from the source area into the saturated zone. Application of an analytical solution to estimate the TCE flux from the unsaturated zone to the groundwater indicated that this phenomenon is not only influenced by molecular diffusion but also by vertical dispersion. The mass balance indicates that, under the given experimental conditions (e.g. proximity of the source emplacement relative to the soil surface, relatively high permeable porous medium), nearly 95% of the initial TCE mass was transferred to the atmosphere.  相似文献   

12.
Ambient halocarbon mixing ratios in 45 Chinese cities   总被引:4,自引:0,他引:4  
During this study 158 whole air samples were collected in 45 Chinese cities in January and February 2001. The spatial distribution of different classes of halocarbons in the Chinese urban atmosphere, including chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), hydrofluorocarbons (HFCs), Halon-1211, and other chlorinated compounds is presented and discussed. Most of these compounds were enhanced compared to background levels. However, the mean enhancement of CFCs was relatively small, with CFC-12 and CFC-11 increases of 6% (range 1–31%) and 10% (range 2–89%), respectively, with respect to the global background. On the contrary, strongly enhanced levels of CFC replacement compounds and halogenated compounds used as solvents were measured. The average Halon-1211 concentration exceeded the background of 4.3 pptv by 75% and was higher than 10 pptv in several cities. Methyl chloride mixing ratios were also strongly elevated (78% higher than background levels), which is likely related to the widespread use of coal and biofuel in China.  相似文献   

13.
The production of N2 gas by denitrification may lead to the appearance of a gas phase below the water table prohibiting the conservative transport of tracer gases required for groundwater dating. We used a two-phase flow and transport model (STOMP) to study the reliability of 3H/3He, CFCs and SF6 as groundwater age tracers under agricultural land where denitrification causes degassing. We were able to reproduce the amount of degassing (R2 = 69%), as well as the 3H (R2 = 79%) and 3He (R2 = 76%) concentrations observed in a 3H/3He data set using simple 2D models. We found that the TDG correction of the 3H/3He age overestimated the control 3He/3He age by 2.1 years, due to the accumulation of 3He in the gas phase. The total uncertainty of degassed 3H/3He ages of 6 years (± 2 σ) is due to the correction of degassed 3He using the TDG method, but also due to the travel time in the unsaturated zone and the diffusion of bomb peak 3He. CFCs appear to be subject to significant degradation in anoxic groundwater and SF6 is highly susceptible to degassing. We conclude that 3H/3He is the most reliable method to date degassed groundwater and that two-phase flow models such as STOMP are useful tools to assist in the interpretation of degassed groundwater age tracer data.  相似文献   

14.
The reductive transformation of the 10 most-widely distributed fluorinated volatile compounds and of tetrachloroethene was investigated for up to 177 days under anaerobic conditions in sewage sludge and aquifer sediment slurries. Concentrations of parent compounds and of degradation products were identified by GC-MS. We observed transformation of CFC-11 to HCFC-21 and HCFC-31, of CFC-113 to HCFC-123a, chlorotrifluoroethene and trifluoroethene, of CFC-12 to HCFC-22, of HCFC-141b to HCFC-151b, and of tetrachloroethene to vinyl chloride and ethene. CFC-114, CFC-115, HCFC-142b, HFC-134a and HCFC-22 were not transformed. The results suggest that with both inocula studied here, hydrogenolysis is the primary reductive dechlorination reaction. CFC-113 was the only compound where a dichloro-elimination was observed, leading to the formation of chlorotrifluoroethene as temporal intermediate and to trifluoroethene as end product. The relative reduction rates of chlorofluoromethanes compared reasonably well with theoretical rates calculated based on thermochemical data according to the Marcus theory. Some of the accumulating HCFCs and haloethenes observed in this study are toxic and may be of practical relevance in anaerobic environments.  相似文献   

15.
A 250 ha agricultural catchment has been characterized with respect to its hydrogeology and groundwater contamination by pesticides from October 1999 to August 2004. Five years after the ending of atrazine (At) application, used since the sixties, At and deethylatrazine (DEA) are still systematically quantified at the outlet of the watershed with concentrations from 0.07 to 0.43 microg l(-1) for At, and between 0.14 and 1.16 microg l(-1) for DEA. Isoproturon and chlortoluron are detected in only one (0.3 microg l(-1)) and two (0.7 and 2.0 microg l(-1)) of the 124 semi-monthly samples, respectively. DEA concentrations can be very different between two samples with a 15-day time step. The annual mean exported fluxes of cumulated At and DEA are stable, which indicates a long time transfer in the unsaturated or saturated zone with a progressive leaching of the stock of At and DEA probably accumulated in the soil and the vadose zone. These fluxes, between 0.90% and 2.82% of the annual mean dose of At applied before 1999, similar to those calculated in several studies at the bottom of the root zone, could be explained by low adsorption and degradation properties of At and DEA in the unsaturated and saturated zone.  相似文献   

16.
Long-term monitoring of the chemical composition of recharge sewage effluent and associated contaminated groundwater from the Dan Region Sewage Reclamation Project shows, after 16 years of recharge operation, the presence of a distinct saline plume (up to 400 mg/l Cl), extending 1600 m downgradient in the Coastal Plain aquifer of Israel. The recorded electrolyte composition of groundwater in the vicinity of the recharge area reflects the variations in the compositions of the sewage effluents, as well as water-rock interactions induced by the recharge of treated sewage effluents. The original sewage composition was modified, particularly during early stages of effluent migration in the unsaturated zone, by cation-exchange and adsorption reactions. Since the soil sorption capacity is finite these reactions caused only limited modifications, and once the system reached a steady state the inorganic composition of the contaminated groundwater became similar to that of the recharge water. Decomposition of organic matter in the unsaturated zone resulted in CO2 generation and dissolution of CaCO3 minerals in the aquifer. It was shown that chemical and/or bio-degradation of organic matter takes place mainly in the unsaturated (vadose) zone. Hence, monitoring the efficiency of the vadose zone to retain contaminants is essential for evaluating the quality of groundwater since it was shown that organic compounds behave almost conservatively once the effluents enter and flow within the saturated zone.  相似文献   

17.
A set of soil columns was constructed to simulate discharge of disinfected tertiary treated wastewater to a river via nearby land application or indirect discharge. The system was primarily designed to observe the fate of metal ions and nutrients. The following three experiments were conducted: (1) flow through saturated soils only, which simulates indirect discharge where water is directly applied to groundwater; (2) flow through unsaturated soil followed by saturated flow, which simulates vadose then saturated zone transport; and (3) saturated flow only using ethylene diamine tetraacetic acid-metal chelates, which determined effects of metal organic complexes on metal mobility through the soil. Metal ion attenuation was substantial but not complete in experiments 1 and 2 (removal: 68% Cu2+, 43% Ni2+, 98% Pb2+, and 96% Hg2+), which was somewhat contrary to modeling results. Cyanide attenuation was also monitored (92% removal). In experiment 3, lead attenuation was somewhat reduced (92% removal) and delayed (requiring additional residence time); copper attenuation was significantly reduced (38% removal) and delayed; and nickel concentrations were higher in the 28-day sample (> 80 microg/L) than in the column feed water (58 microg/L). Near-complete denitrification and total phosphorus attenuation were observed. For the water quality constituents studied, unsaturated (vadose zone) transport did not appear to add additional benefit.  相似文献   

18.
Predictions of natural attenuation of volatile organic compounds (VOCs) in the unsaturated zone rely critically on information about microbial biodegradation kinetics. This study aims at determining kinetic rate laws for the aerobic biodegradation of a mixture of 12 volatile petroleum hydrocarbons and methyl tert-butyl ether (MTBE) in unsaturated alluvial sand. Laboratory column and batch experiments were performed at room temperature under aerobic conditions, and a reactive transport model for VOC vapors in soil gas coupled to Monod-type degradation kinetics was used for data interpretation. In the column experiment, an acclimatization of 23 days took place before steady-state diffusive vapor transport through the horizontal column was achieved. Monod kinetic parameters Ks and vmax could be derived from the concentration profiles of toluene, m-xylene, n-octane, and n-hexane, because substrate saturation was approached with these compounds under the experimental conditions. The removal of cyclic alkanes, isooctane, and 1,2,4-trimethylbenzene followed first-order kinetics over the whole concentration range applied. MTBE, n-pentane, and chlorofluorocarbons (CFCs) were not visibly degraded. Batch experiments suggested first-order disappearance rate laws for all VOCs except n-octane, which decreased following zero-order kinetics in live batch experiments. For many compounds including MTBE, disappearance rates in abiotic batch experiments were as high as in live batches indicating sorption. It was concluded that the column approach is preferable for determining biodegradation rate parameters to be used in risk assessment models.  相似文献   

19.
The coastal city of Tel Aviv was founded at the beginning of the 20th century. The number of its inhabitants and its water consumption increased rapidly. This study analyses a 15-year record (1934-1948) of pre-industrial development of groundwater chemistry in the urban area. Archive data on concentrations of major ions, dissolved gases (CO2 and O2), organic matter, and pH were available for each half-year during the period of 1934-1948. The major factors causing changes in the chemistry of groundwater flowing in three sandy sub-aquifers have been seawater encroachment due to overpumping, and infiltration of effluents from pit-latrine collectors. Influence of these factors decreases with depth. Landward-penetrating seawater passed through clayey coastal sediments, interbedded among sands and calcareous sandstones, and spread into the Kurkar Group aquifer. This has led to exchange of sodium (dominant in seawater) with calcium adsorbed on clay particles, enriching groundwater with calcium. Intensity of cation exchange decreases inland and with depth. Infiltration of pit-latrine effluents has introduced large amounts of ammonium into the unsaturated zone. Its rapid oxidation in unsaturated sediments has caused massive nitrate production, accompanied by pore-water acidification. This process induces dissolution of vadose carbonate, resulting in enrichment of groundwater recharge in calcium. Anthropogenically induced dissolution of calcite in the unsaturated zone has been the major factor for the increase of Ca2+ concentration in groundwater, accounting for about 80% of this increase. In the interface zone, an additional 20% of calcium has been supplied by cation exchange. Owing to pH increase caused by denitrification in the aquifer, Ca(2+)-rich waters supersaturated with calcite could be formed, especially in the capillary fringe of the uppermost sub-aquifer, which could induce calcite precipitation and ultimately lead to the cementation of sandy aquifers. Urban development has caused drastic changes in the gas content in the unsaturated zone and in groundwater. Carbon dioxide was intensively generated by nitrification-denitrification processes, by hydration of urea, to a lesser degree by oxidation of organic matter, and probably by anoxic biodegradation of organics. Between 1934 and 1948, concentrations of CO2 in unsaturated sediment air rose from 3.2% to 7.6%. In the unsaturated zone, oxygen consumption for oxidation of ammonium and organic matter lowered O2 concentrations in sediment air to unusually low values of 3.9-12.9%. Nitrification in the urban unsaturated zone could thus serve as a pump, sucking in atmospheric oxygen at a rate of about 0.3-0.5 g m-2 day-1. The extreme concentrations of CO2 and O2 in unsaturated sediments have been preserved due to production and consumption of gas under conditions of diminishing areas open to the atmosphere, uncovered by buildings and by roads.  相似文献   

20.
Removal of methyl chloroform in a coastal salt marsh of eastern China   总被引:3,自引:0,他引:3  
Wang J  Li R  Guo Y  Qin P  Sun S 《Chemosphere》2006,65(8):1371-1380
The atmospheric burden of methyl chloroform (CH(3)CCl(3)) is still considerable due to its long atmospheric lifetime, although CH(3)CCl(3) emissions have declined considerably since it was included into the Montreal Protocol. Moreover, CH(3)CCl(3) emissions are used to estimate hydroxyl radical (OH) levels, trends, and hemispheric distributions, and thus the mass balance of the trace gas in the atmosphere is critical for characterizing OH concentrations. Salt marshes may be a potential sink for CH(3)CCl(3) due to its anoxic environment and abundant organic matter in sediments. In this study, seasonal dynamics of CH(3)CCl(3) fluxes were measured using static flux chambers from April 2004 to January 2005, along an elevational gradient of a coastal salt marsh in eastern China. To estimate the contribution of higher plants to the gas flux, plant aboveground biomass was experimentally harvested and the flux difference between the treatment and the intact was examined. In addition, the flux was analyzed in relation to soil and weather conditions. Along the elevational gradient, the salt marsh generally acted as a net sink of CH(3)CCl(3) in the growing season (from April to October). The flux of CH(3)CCl(3) ranged between -3.38 and -32.03 nmol m(-2)d(-1) (positive for emission and negative for consumption), and the maximum negative rate occurred at the cordgrass marsh. However, the measurements made during inundation indicated that the mudflat was a net source of CH(3)CCl(3). In the non-growing season (from November to March), the vegetated marsh was a minor source of CH(3)CCl(3) when soil was frozen, the emission rate ranging from 3.43 to 7.77 nmol m(-2)d(-1). However, the mudflat was a minor sink of CH(3)CCl(3) whether it was frozen or not in the non-growing season. Overall, the coastal salt marsh in eastern China was a large sink for the gas, because the magnitude of consumption rate was lager than that of emission, and because the duration of the growing season was longer than that of the non-growing season. Plant aboveground biomass had a great effect on the flux. Comparative analysis showed that the direction and magnitude of the effect of higher plants on the flux of CH(3)CCl(3) depended on timing of sampling vegetation type. In the growing season the plant biomass decreased the gas flux and acted as a large sink of the gas, whereas it presented as a minor source in the non-growing season. However, the mechanism underlying plant uptake process is not clear. The CH(3)CCl(3) flux was positively related to the dissolved salt concentration and organic matter content in soil, as well as light intensity, but it was negatively related to soil temperature, sulfate concentrations, and initial ambient atmospheric concentrations of CH(3)CCl(3). Our observations have important implications for estimation of the tropospheric lifetime of CH(3)CCl(3) and global OH concentration from the global budget concentration of CH(3)CCl(3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号