首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Han Y  Cao J  Chow JC  Watson JG  An Z  Jin Z  Fung K  Liu S 《Chemosphere》2007,69(4):569-574
Many optical, thermal and chemical methods exist for the measurement of elemental carbon (EC) but are unable or neglect to differentiate between the different forms of EC such as char- or soot-EC. The thermal/optical reflectance (TOR) method applies different temperatures for measuring EC and organic carbon (OC) contents through programmed, progressive heating in a controlled atmosphere, making available eight separate carbon fractions - four OC, one pyrolyzed organic carbon, and three EC. These fractions were defined by temperature protocol, oxidation atmosphere, and laser-light reflectance/transmittance. Stepwise thermal evolutional oxidation of the TOR method makes it possible to distinguish char- from soot-EC. In this study, different EC reference materials, including char and soot, were used for testing it. The thermograms of EC reference materials showed that activation energy is lower for char- than soot-EC. Low-temperature EC1 (550 degrees C in a 98% He/2% O2 atmosphere) is more abundant for char samples. Diesel and n-hexane soot samples exhibit similar EC2 (700 degrees C in a 98% He/2% O2 atmosphere) peaks, while carbon black samples peaks at both EC2 and EC3 (800 degrees C in a 98% He/2% O2 atmosphere). These results supported the use of the TOR method to discriminate between char- and soot-EC.  相似文献   

2.
Activated carbon (AC) strongly sorbs organic pollutants and can be used for remediation of soils and sediments. A method for AC quantification is essential to monitor AC (re)distribution. Since AC is black carbon (BC), two methods for BC quantification were tested for AC mixed in different soils and sediments: i) chemothermal oxidation (CTO) at a range of temperatures and ii) wet-chemical oxidation with a potassium dichromate/sulfuric acid solution. For three soils, the amount of AC was accurately determined by CTO at 375 °C. For two sediments, however, much of the AC disappeared during combustion at 375 °C, which could probably be explained by catalytic effects by sediment constituents. CTO at lower temperatures (325-350 °C) was a feasible alternative for one of the sediments. Wet oxidation effectively functioned for AC quantification in sediments, with almost complete AC recovery (81-92%) and low remaining amounts of native organic carbon (5-16%).  相似文献   

3.
BACKGROUND, AIMS AND SCOPE: Chromium enters into the aquatic environment as a result of effluent discharge from steel works, electroplating, leather tanning industries and chemical industries. As the Cr(VI) is very harmful to living organisms, it should be quickly removed from the environment when it happens to be contaminated. Therefore, the aim of this laboratory research was to develop a rapid, simple and adaptable solvent extraction system to quantitatively remove Cr(VI) from polluted waters. METHODS: Aqueous salt-solutions containing Cr(VI) as CrO4(2-) at ppm level (4-6 ppm) were prepared. Equal volumes (5 ml) of aqueous and organic (2-PrOH) phases were mixed in a 10 ml centrifuge tube for 15 min, centrifuged and separated. Concentrations of Cr(VI), in both the aqueous and organic phases, were determined by atomic absorption spectrometry. The effects of salt and acid concentrations, and phase-contact time on the extraction of Cr(VI) were investigated. In addition, the extraction of Cr(VI) was assessed in the presence of tetramethylammonium chloride (TMAC) in 2-PrOH phase. Effects of some other metals, (Cd(II), Co(II), Cu(II), Ni(II) and Zn(II)), on the extraction of Cr(VI) were also investigated. RESULTS AND DISCUSSION: The Cr(VI) at ppm level was extracted quantitatively by salting-out the homogeneous system of water and 2-propanol(2-PrOH) using chloride salts, namely CaCl2 or NaCl, under acidic chloride media. The extracted chemical species of Cr(VI) was confirmed to be the CrO3Cl-. The ion-pair complex extracted into the organic phase was rationalized as the solvated ion-pair complex of [2-PrOH2+, CrO3Cl-]. The complex was no longer stable. It implied the reaction between extracted species. Studies revealed that salts and acid directly participated in the formation of the above complex. Use of extracting agents (TMAC) didn't show any significant effect on the extraction of Cr(VI) under high salting-out conditions. There is no significant interference effect on the extraction of Cr(VI) by the presence of other metals. The Cr(VI) in the organic phase was back-extracted using an aqueous ammonia solution (1.6 mol dm(-3)) containing 3 mol dm(-3) NaCl. The extraction mechanism of Cr(VI) is also discussed. CONCLUSIONS: Salting-out of homogeneous mixed solvent of 2-propanol can be employed to extract Cr(VI) quantitatively, as an ion-pair of [2-PrOH2+ * CrO3Cl-] solvated by 2-PrOH molecules. Then, the complex becomes 'solvent-like' and is readily separated into the organic phase. The increase of Cl- ion concentration in the aqueous phase favors the extraction. The 2-PrOH, salts and acid play important roles in the extraction process. There is no need to use an extracting agent at a high salting-out condition. RECOMMENDATIONS AND PERSPECTIVES: Chromium(VI) must be quickly removed before it enters into the natural cycle. As the 2-PrOH is water-miscible in any proportion, ion-pairing between 2-PrOH2+ and CrO3Cl- becomes very fast. As a result, Cr(VI) can easily be extracted. Therefore, the method is recommended as a simple, rapid and adaptable method to quickly separate Cr(VI) from aqueous samples.  相似文献   

4.
Li CW  Korshin GV 《Chemosphere》2002,49(6):629-636
In this study, the complexation of Tb3+ with natural organic matter (NOM) was studied by the method of time-resolved fluorescence spectroscopy. In the presence of NOM, the excitation of Tb3+ was observed in a wide range of wavelengths, for which virtually no excitation of free Tb3+ took place. The pseudo-quantum yield spectra (excitation intensity normalized by corresponding light absorbance values) had a maximum at 282 nm. This indicated that the excitation of NOM-bound Tb3+ proceeds through energy transfer from aromatic groups in NOM. The concentration of the metal-binding sites (C(L)) was determined by titration with Tb3+ and was found to range from 0.21% to 0.83% of total moles of organic carbon. The actual number of the carbon atoms that comprise these functionalities was hypothesized to be at least seven times higher. The C(L) values were well correlated with the reactivity of NOM with chlorine quantified by total organic halogen formation potential and with the contribution of polyhydroxyaromatic moieties determined by pyrolysis-GC/MS method. The correlation of C(L) with the contributions of aromatic and carboxylic moieties in NOM determined by 13C NMR was poor. Based on the data, it was concluded that the metal binding functionalities in NOM are closely associated with halogen attack sites.  相似文献   

5.
Ferrate(VI): green chemistry oxidant for degradation of cationic surfactant   总被引:1,自引:0,他引:1  
Eng YY  Sharma VK  Ray AK 《Chemosphere》2006,63(10):1785-1790
Iron in its familiar form exists in the +2 and +3 oxidation states, however, higher oxidation state of iron +6, ferrate(VI) (Fe(VI)O(4)(2-)) can be obtained. The high oxidation power of ferrate(VI) can be utilized in developing cleaner ("greener") technology for remediation processes. This paper demonstrates the unique property of ferrate(VI) to degrade almost completely the cationic surfactant, cetylpyridinium chloride (C(5)H(5)N(+)(CH(2))(15)CH(3).H(2)O Cl(-), CPC). The Rate law for the oxidation of CPC by ferrate(VI) at pH 9.2 was found to be: -d[Fe(VI)]/dt = k[Fe(VI)][CPC](2). Ferrate(VI) oxidizes CPC within minutes and molar consumption of ferrate(VI) was nearly equal to the oxidized CPC. The decrease in total organic carbon (TOC) from CPC was more than 95%; suggesting mineralization of CPC to carbon dioxide. Ammonium ion was the other product of the oxidation. This is the first report in which Fe(VI)O(4)(2-) ion opens the pyridine ring and mineralizes the aliphatic chain of the organic molecule giving inorganic ions.  相似文献   

6.
Aqueous wastes containing organic pollutants can be efficiently treated by wet air oxidation (WAO), i.e. oxidation by molecular oxygen in the liquid phase, under high temperature (200-325 degrees C) and pressure (up to 150 bar). However, organic nitrogen can be relatively resistant to oxidation and can be harmful to the environment. In the course of treatment, organic nitrogen (N-Org) is converted into ammonia (NH(3)), while organic carbon (C-Org) is converted mainly into carbon dioxide (CO(2)). This can be done without catalysts. In the presence of Mn/Ce composite oxides, it is possible to transform ammonia into molecular nitrogen at a temperature close to 260 degrees C. The direct conversion of organic nitrogen into molecular nitrogen also can be achieved using the same catalyst. This paper discusses the results obtained during the treatment of nitrogenous compounds like aniline, nitrophenol, beta-alanine and ammonia. Laboratory investigations were conducted in a stirred batch reactor with Mn/Ce composite oxides as catalysts. Very limited amounts of nitrites and nitrates were observed with amines, but more significant quantities were found with nitro-compounds. The kinetics of oxidation of ammonia, organic compounds, and more particularly aniline, were investigated. The treatment of a real waste (process wastewater) was also investigated. The dependence of the transformation rate on various parameters (amount of catalyst, temperature, etc.) was established. The rates of oxidation are described by first-order kinetic laws with respect to the various nitrogen species (aniline, NH(3)). Several parallel pathways are considered for the transformation of organic nitrogen, amongst which is an interaction with the catalyst surface. The orders with respect to oxygen and catalyst are established.  相似文献   

7.
Stable carbon isotope ratio (δ13C) data can provide important information regarding the sources and the processing of atmospheric organic carbon species. Formic, acetic and oxalic acid were collected from Zurich city in August–September 2002 and March 2003 in the gas and aerosol phase, and the corresponding δ13C analysis was performed using a wet oxidation method followed by isotope ratio mass spectrometry. In August, the δ13C values of gas phase formic acid showed a significant correlation with ozone (coefficient of determination (r2) = 0.63) due to the kinetic isotope effect (KIE). This indicates the presence of secondary sources (i.e. production of organic acids in the atmosphere) in addition to direct emission. In March, both gaseous formic and acetic acid exhibited similar δ13C values and did not show any correlation with ozone, indicating a predominantly primary origin. Even though oxalic acid is mainly produced by secondary processes, the δ13C value of particulate oxalic acid was not depleted and did not show any correlation with ozone, which may be due to the enrichment of 13C during the gas - aerosol partitioning.The concentrations and δ13C values of the different aerosol fractions (water soluble organic carbon, water insoluble organic carbon, carbonate and black carbon) collected during the same period were also determined. Water soluble organic carbon (WSOC) contributed about 60% to the total carbon and was enriched in 13C compared to other fractions indicating a possible effect of gas - aerosol partitioning on δ13C of carbonaceous aerosols. The carbonate fraction in general was very low (3% of the total carbon).  相似文献   

8.
Semi-volatile organic material (SVOM) in fine particles is not reliably measured with conventional semicontinuous carbon monitors because SVOM is lost from the collection media during sample collection. We have modified a Sunset Laboratory Carbon Aerosol Monitor to allow for the determination of SVOM. In a conventional Sunset monitor, gas-phase organic compounds are removed in the sampled airstream by a diffusion denuder employing charcoal-impregnated cellulose filter (CIF) surfaces. Subsequently, particles are collected on a quartz filter and the instrument then determines both the organic carbon and elemental carbon fractions of the aerosol using a thermal/optical method. However, some of the SVOM is lost from the filter during collection, and therefore is not determined. Because the interfering gas-phase organic compounds are removed before aerosol collection, the SVOM can be determined by filtering the particles at the instrument inlet and then replacing the quartz filter in the monitor with a charcoal-impregnated glass fiber filter (CIG), which retains the SVOM lost from particles collected on the inlet filter. The resulting collected SVOM is then determined in the analysis step by measurement of the carbonaceous material thermally evolved from the CIG filter. This concept was tested during field studies in February 2003 in Lindon, UT, and in July 2003 in Rubidoux, CA. The results obtained were validated by comparison with Particle Concentrator-Brigham Young University Organic Sampling System (PC-BOSS) results. The sum of nonvolatile organic material determined with a conventional Sunset monitor and SVOM determined with the modified Sunset monitor agree with the PC-BOSS results. Linear regression analysis of total carbon concentrations determined by the PC-BOSS and the Sunset resulted in a zero-intercept slope of 0.99 +/- 0.02 (R2 = 0.92) and a precision of sigma = +/- 1.5 microg C/m3 (8%).  相似文献   

9.
ABSTRACT

The investigation of an appropriate organic solvent removal apparatus for installation in a newly reconstructed print shop as a countermeasure for preventing the exhaust of organic solvents was conducted.

The selection of an organic solvent removal apparatus was made after bench-scale tests of the activated carbon adsorption method and the catalytic oxidation method, both of which are effective for the removal of organic solvents, were performed on the actual exhaust gas at the print shop. The results showed that both methods were efficient enough to be applied to the removal of organic solvents, but the activated carbon adsorption method had many drawbacks, such as the need for frequent replacement of activated carbon and complex maintenance. For the catalytic oxidation method, running costs are high, but there are many merits, such as that the catalysts do not have to be replaced as often and maintenance is simple. After considering these factors, a catalytic oxidation removal apparatus was installed at the new print shop. In the results of the substantiation test on the actual apparatus using mixed catalysts of platinum and manganese plus copper, the removal efficiency was 97.998.7% and the concentration of the outlet exhaust gas was about 10 ppm (the average concentration of the inlet exhaust gas was 528 ppm) at a space velocity of 30,000 hr-1 and a reaction temperature of 200 °C. The results of this study were substantiated.  相似文献   

10.
Catalytic wet air oxidation (CWAO) is classified as an advanced oxidation process, which proved to be highly efficient for the removal of emerging organic pollutant bisphenol A (BPA) from water. In this study, BPA was successfully removed in a batch-recycle trickle-bed reactor over bare titanate nanotube-based catalysts at very short space time of 0.6 min gCAT?g?1. The as-prepared titanate nanotubes, which underwent heat treatment at 600 °C, showed high activity for the removal of aqueous BPA. Liquid-phase recycling (5- or 10-fold recycle) enabled complete BPA conversion already at 200 °C, together with high conversion of total organic carbon (TOC), i.e., 73 and 98 %, respectively. The catalyst was chemically stable in the given range of operating conditions for 189 h on stream.  相似文献   

11.
Costanza J  Pennell KD 《Chemosphere》2008,71(11):2060-2067
The rates of hydrolysis reported for tetrachloroethylene (PCE) and trichloroethylene (TCE) at elevated temperatures range over two orders-of-magnitude, where some of the variability may be due to the presence of a gas phase. Recent studies suggest that volatile organic analysis (VOA) vials provide a low-cost and readily available zero headspace system for measuring aqueous-phase hydrolysis rates. This work involved measuring rates of PCE and TCE disappearance and the corresponding appearance of dechlorination products in water-filled VOA vials and flame-sealed ampules incubated at 21 and 55 °C for up to 95.5 days. While PCE and TCE concentrations readily decreased in the VOA vials to yield first-order half lives of 11.2 days for PCE and 21.1 days for TCE at 55 °C, concentrations of anticipated dechlorination products, including chloride, remained constant or were not detected. The rate of PCE disappearance was 34 times faster in VOA vials at 55 °C compared to values obtained with flame-sealed ampules containing PCE-contaminated water. In addition, the concentration of TCE increased slightly in flame-sealed ampules incubated at 55 °C, while a decrease in TCE levels was observed in the VOA vials. The observed losses of PCE and TCE in the VOA vials were attributed to diffusion and sorption in the septa, rather than to dechlorination. These findings demonstrate that VOA vials are not suitable for measuring rates of volatile organic compound hydrolysis at elevated temperatures.  相似文献   

12.
The chemo-thermal oxidation method at 375 °C (CTO-375) has been widely used to quantify black carbon (BC) in sediments. In the present study, CTO-375 was tested and adapted for application to soil, accounting for some matrix specific properties like high organic carbon (≤39%) and carbonate (≤37%) content. Average recoveries of standard reference material SRM-2975 ranged from 25 to 86% for nine representative Swiss and Indian samples, which is similar to literature data for sediments. The adapted method was applied to selected samples of the Swiss soil monitoring network (NABO). BC content exhibited different patterns in three soil profiles while contribution of BC to TOC was found maximum below the topsoil at all three sites, however at different depths (60-130 cm). Six different NABO sites exhibited largely constant BC concentrations over the last 25 years, with short-term (6 months) prevailing over long-term (5 years) temporal fluctuations.  相似文献   

13.
Goslan EH  Gurses F  Banks J  Parsons SA 《Chemosphere》2006,65(7):1113-1119
A comparison of four treatment technologies for reduction of natural organic matter (NOM) in a reservoir water was made. The work presented here is a laboratory based evaluation of NOM treatment by UV-C photolysis, UV/H(2)O(2), Fenton's reagent (FR) and photo-Fenton's reagent (PFR). The work investigated ways of reducing the organic load on water treatment works (WTWs) with a view to treating 'in-reservoir' or 'in-pipe' before the water reaches the WTW. The efficiency of each process in terms of NOM removal was determined by measuring UV absorbance at 254 nm (UV(254)) and dissolved organic carbon (DOC). In terms of DOC reduction PFR was the most effective (88% removal after 1 min) however there were interferences when measuring UV(254) which was reduced to a lesser extent (31% after 1 min). In the literature, pH 3 is reported to be the optimal pH for oxidation with FR but here the reduction of UV(254) and DOC was found to be insensitive to pH in the range 3-7. The treatment that was identified as the most effective in terms of NOM reduction and cost effectiveness was PFR.  相似文献   

14.
Briois C  Visez N  Baillet C  Sawerysyn JP 《Chemosphere》2006,62(11):1806-1816
The thermal oxidation of 2-chlorophenol (2-CP) in air was investigated using a perfectly stirred reactor at 1 atm over the temperature range 450–900 °C. The relative concentration of 2-CP was 1000 ppmV (equivalence ratio Φ = 0.03). About fifty organic products were identified as trace species. The concentration profiles of 2-CP, carbon oxides as well as those of seventeen major organic intermediates and six non-to-lower chlorinated dioxins and furans were presented as a function of temperature for a residence time of 2 s. The most abundant intermediate products were carbon monoxide, 2 H-pyran-2-one, chlorobenzene, 4-cyclopenten-1,3-dione, phenol, benzofuran, 2-chlorohydroquinone and 2-indanone. These concentration profiles have revealed that temperatures of at least 900 °C were needed to completely oxidize 2-CP, CO and all other organic byproducts to carbon dioxide. Reaction pathways accounting for the formation of most observed products are proposed.  相似文献   

15.
Chromium species behaviour in the activated sludge process   总被引:3,自引:0,他引:3  
The purpose of this research was to compare trivalent chromium (Cr(III)) and hexavalent chromium (Cr(VI)) removal by activated sludge and to investigate whether Cr(VI) reduction and/or Cr(III) oxidation occurs in a wastewater treatment system. Chromium removal by sludge harvested from sequencing batch reactors, determined by a series of batch experiments, generally followed a Freundlich isotherm model. Almost 90% of Cr(III) was adsorbed on the suspended solids while the rest was precipitated at pH 7.0. On the contrary, removal of Cr(VI) was minor and did not exceed 15% in all experiments under the same conditions. Increase of sludge age reduces Cr(III) removal, possibly because of Cr(III) sorption on slime polymers. Moreover, the decrease of suspended solids concentration and the acclimatization of biomass to Cr(VI) reduced the removal efficiency of Cr(III). Batch experiments showed that Cr(III) cannot be oxidized to Cr(VI) by activated sludge. On the contrary, Cr(VI) reduction is possible and is affected mainly by the initial concentration of organic substrate, which acts as electron donor for Cr(VI) reduction. Initial organic substrate concentration equal to or higher than 1000 mgl(-1) chemical oxygen demand permitted the nearly complete reduction of 5 mgl(-1) Cr(VI) in a 24-h batch experiment. Moreover, higher Cr(VI) reduction rates were obtained with higher Cr(VI) initial concentrations, expressed in mg Cr(VI) g(-1) VSS, while decrease of suspended solids concentration enhanced the specific Cr(VI) reduction rate.  相似文献   

16.
Water-soluble organic carbon (WSOC) and atmospheric humic-like substances (HULIS) were investigated for urban PM2.5-fraction aerosol samples, which were collected with the tandem filter method on quartz fibre filters over a non-heating spring season. Sampling artefacts were of importance for all organic chemical fractions, and the back-to-front-filter concentration ratios were on average 28% for WSOC and 17% for HULIS and organic carbon (OC). The difference in the ratios indicates that the water-soluble organics play a more important role in adsorptive artefacts than the organic matter (OM) in general. The results emphasize the need for an appropriate sampling and/or correction method for measuring particulate organic substances in urban environments. The corrected atmospheric concentration of HULIS, obtained by subtracting the back-filter from the front-filter data, was on average 2 μg m−3; which represented 6% of the mean PM2.5 particulate mass, and it made up 45% of the secondary OC. The HULIS carbon accounted for 20% of the OC and 62% of the WSOC, while WSOC made up 32% of OC. The major element composition of HULIS, expressed in molar ratios, was C:H:O:N=22:32:10:1. The molar H/C ratio of 1.49 implies the presence of unsaturated organic compounds, although these were depleted in comparison with rural aerosol or standard fulvic acids. The molar O/C ratio of 0.47 indicates the existence of oxygenated functional groups; comparison to rural aerosol suggests that the (fresh) urban-type aerosol is less oxidized (and, therefore, less water soluble as well) than the rural one. The OM/OC mass conversion factor for the isolated (water-soluble) HULIS was derived to be 1.81. It was inferred from comparisons with published data that there are substantial differences in abundance and chemical composition of HULIS for different environments.  相似文献   

17.
The oxidation of a reactive dye, Reactive Blue 4, RB4, (C.I. 61205), widely used in the textile industries to color natural fibers, was studied by electrochemical techniques. The oxidation on glassy carbon electrode and reticulated vitreous carbon electrode occurs in only one step at 2.0 < pH < 12 involving a two-electron transfer to the amine group leading to the imide derivative. Dye solution was not decolorized effectively in this electrolysis process. Nevertheless, the oxidation of this dye on Ti/SnO2/SbO(x) (3% mol)/RuO2 (1% mol) electrode showed 100% of decolorization and 60% of total organic carbon removal in Na2SO4 0.2 M at pH 2.2 and potential of +2.4V. Experiments on degradation photoelectrocatalytic were also carried out for RB4 degradation in Na2SO4 0.1 M, pH 12, using a Ti/TiO2 photoanode biased at +1.0 V and UV light. After 1h of electrolysis the results indicated total color removal and 37% of mineralization.  相似文献   

18.
Park D  Yun YS  Ahn CK  Park JM 《Chemosphere》2007,66(5):939-946
The dead biomass of the brown seaweed, Ecklonia sp., is capable of reducing toxic Cr(VI) into less toxic or nontoxic Cr(III). However, little is known about the mechanism of Cr(VI) reduction by the biomass. The objective of this work was to develop a kinetic model for Cr(VI) biosorption, for supporting our mechanism. The reduction rate of Cr(VI) increased with increasing total chromate concentration, [Cr(VI)], and equivalent concentration of organic compounds, [OCs], and decreasing solution pH. It was found that the reduction rate of Cr(VI) was proportional to [Cr(VI)] and [OCs], suggesting the simple kinetic equation -d[Cr(VI)]/dt=k[Cr(VI)][OCs]. When considering the consumption of organic compounds due to the oxidation by Cr(VI), an average rate coefficient of 9.33 (+/-0.65)microM(-1)h(-1) was determined, at pH 2. Although the function of the pH could not be expressed in a mechanistic manner, an empirical model able to describe the pH dependence was obtained. It is expected that the developed rate equation could likely be used for design and performance predictions of biosorption processes for treating chromate wastewaters.  相似文献   

19.
Recent (<7 years old) cave sediments in Speedwell Cavern, Derbyshire, show an approximately exponential decay of organic carbon with depth. This phenomenon was thought to be due to one of two causes: (i) changing agricultural practice within the catchment feeding the cave, especially the increased use of sewage sludge and animal slurry as fertilizer; (ii) a relatively constant organic carbon concentration over time in the input sediment, with subsequent carbon mineralization during diagenesis. Carbon isotope composition of the organic material and the evolution of H/C ratio with depth indicate that the latter hypothesis is correct and that the profiles result from microbial diagenesis, not increased organic carbon inputs. By comparison with sediment of known (7 years) age, temporal decay constants for organic matter can be derived; these lie between rates previously determined for organic matter decomposition in marine sediments and soils. The H/C ratio of organic matter can be modelled as a function of time and proceeds in a similar fashion to soil organic material.  相似文献   

20.
Valdés H  Zaror CA 《Chemosphere》2006,65(7):1131-1136
Ozone oxidation combined with activated carbon adsorption (O(3)/AC) has recently started to be developed as a single process for water and wastewater treatment. While a number of aspects of aqueous ozone decomposition are well understood, the importance and relationship between aqueous ozone decomposition and organic contaminant degradation in the presence of activated carbon is still not clear. This study focuses on determining the contribution of homogeneous and heterogeneous reactions to organic contaminants removal in O(3)/AC system. Benzothiazole (BT) was selected as a target organic pollutant due to its environmental concern. A reactor system based on a differential circular flow reactor composed by a 19 cm(3) activated carbon fixed bed column and 1 dm(3) storage tank was used. Ozone was produced from pure and dry oxygen using an Ozocav ozone generator rated at 5 g O(3)h(-1). Experimental results show that BT removal rate was proportional to activated carbon dosage. Activated carbon surface contribution to BT oxidation reactions with ozone, increased with pH in absence of radical scavengers. The radical reaction contribution within the pH range 2-11 accounted for 67-83% for BT removal in O(3)/AC simultaneous treatment. Results suggest that at pH higher than the pH of the point of zero charge of the activated carbon dissociated acid groups such as carboxylic acid anhydrides and carboxylic acids present on activated carbon surface could be responsible for the observed increase in the ozone decomposition reaction rate. A simplified mechanism and a kinetic scheme representing the contribution of homogeneous and heterogeneous reactions on BT ozonation in the presence of activated carbon is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号