首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
ABSTRACT

The present study investigated indoor and outdoor concentrations of two particulate matter size fractions (PM10 and PM2.5) and CO2 in 20 urban homes ventilated naturally and located in one congested residential and commercial area in the city of Alexandria, Egypt. The results indicate that the daily mean PM2.5 concentrations measured in the ambient air, living rooms, and kitchens of all sampling sites exceeded the WHO guideline by 100%, 65%, and 95%, respectively. The daily mean outdoor and indoor PM10 levels in all sampling sites were found to exceed the WHO guideline by 100% and 80%, respectively. The indoor PM10 and PM2.5 concentrations were significantly correlated with their corresponding outdoor levels, as natural ventilation through opening doors and windows allowed direct transfer of outdoor airborne particles into the indoor air. Most of the kitchens investigated had higher indoor concentrations of PM2.5 and CO2 than in living rooms. The elevated levels of PM2.5 and CO2 in domestic kitchens were probably related to inadequate ventilation. The current study attempted to understand the sources and the various indoor and outdoor factors that affect indoor PM10, PM2.5 and CO2 concentrations. Several domestic activities, such as smoking, cooking, and cleaning, were found to constitute important sources of indoor air pollution. The indoor pollution caused by PM2.5 was also found to be more serious in the domestic kitchens than in the living rooms and the results suggest that exposure to PM2.5 is high and highlights the need for more effective control measures.

Implications: Indoor air pollution is a complex problem that involves many determinant factors. Understanding the relationships and the influence of various indoor and outdoor factors on indoor air quality is very important to prioritize control measures and mitigation action plans. There is currently a lack of research studies in Egypt to investigate determinant factors controlling indoor air quality for urban homes. The present study characterizes the indoor and outdoor concentrations of PM10, PM2.5, and CO2 in residential buildings in Alexandria city. The study also determines the indoor and outdoor factors which influence the indoor PM and CO2 concentrations as well as it evaluates the potential indoor sources in the selected homes. This research will help in the development of future indoor air quality standards for Egypt.  相似文献   

2.
Extensive data on residential indoor and outdoor NO2 levels have been collected in a limited number of U.S. locations. To date, researchers have analyzed these data sets individually, but have not analyzed them in the aggregate. Results have not, therefore, been suitable for application in a nationwide exposure assessment. This paper presents an analysis of indoor and outdoor NO2 field measurements from five U.S. metropolitan areas for homes with gas-fueled ranges and discusses potential applications of the results. Using linear regression analysis, the relationship between indoor NO2 and various predictor variables was explored. Results indicated that ambient NO2 levels alone explain an estimated 37 percent of the variability in indoor NO2 levels, that the relationship between indoor and outdoor NO2 concentrations differs significantly from summer to winter months, and that homes with range pilot lights have indoor levels approximately 7 ppb greater than homes without pilot lights. A logistic regression model which predicts the distribution of indoor NO2 levels based on ambient NO2 concentrations was developed. Estimation and testing of the logistic model indicated good model performance. The model is particularly useful for addressing policy-oriented questions that involve the concept of "acceptable" threshold levels for human exposure to NO2.  相似文献   

3.
Previous studies have identified associations between traffic-related air pollution and adverse health effects. Most have used measurements from a few central ambient monitors and/or some measure of traffic as indicators of exposure, disregarding spatial variability and factors influencing personal exposure-ambient concentration relationships. This study seeks to utilize publicly available data (i.e., central site monitors, geographic information system, and property assessment data) and questionnaire responses to predict residential indoor concentrations of traffic-related air pollutants for lower socioeconomic status (SES) urban households.As part of a prospective birth cohort study in urban Boston, we collected indoor and outdoor 3–4 day samples of nitrogen dioxide (NO2) and fine particulate matter (PM2.5) in 43 low SES residences across multiple seasons from 2003 to 2005. Elemental carbon (EC) concentrations were determined via reflectance analysis. Multiple traffic indicators were derived using Massachusetts Highway Department data and traffic counts collected outside sampling homes. Home characteristics and occupant behaviors were collected via a standardized questionnaire. Additional housing information was collected through property tax records, and ambient concentrations were collected from a centrally located ambient monitor.The contributions of ambient concentrations, local traffic and indoor sources to indoor concentrations were quantified with regression analyses. PM2.5 was influenced less by local traffic but had significant indoor sources, while EC was associated with traffic and NO2 with both traffic and indoor sources. Comparing models based on covariate selection using p-values or a Bayesian approach yielded similar results, with traffic density within a 50 m buffer of a home and distance from a truck route as important contributors to indoor levels of NO2 and EC, respectively. The Bayesian approach also highlighted the uncertanity in the models. We conclude that by utilizing public databases and focused questionnaire data we can identify important predictors of indoor concentrations for multiple air pollutants in a high-risk population.  相似文献   

4.
Thirty target volatile organic compounds (VOC) were analyzed in personal 48-h exposure samples and residential indoor, residential outdoor and workplace indoor microenvironment samples as a component of EXPOLIS-Helsinki, Finland. Geometric mean residential indoor concentrations were higher than geometric mean residential outdoor concentrations for all target compounds except hexane, which was detected in 40% of residential outdoor samples and 11% of residential indoor samples, respectively. Geometric mean residential indoor concentrations were significantly higher than personal exposure concentrations, which in turn were significantly higher than workplace concentrations for compounds that had strong residential indoor sources (d-limonene, alpha pinene, 3-carene, hexanal, 2-methyl-1-propanol and 1-butanol). 40% of participants in EXPOLIS-Helsinki reported personal exposure to environmental tobacco smoke (ETS). Participants in Helsinki that were exposed to ETS at any time during the 48-h sampling period had significantly higher personal exposures to benzene, toluene, styrene, m,p-xylene, o-xylene, ethylbenzene and trimethylbenzene. Geometric mean ETS-free workplace concentrations were higher than ETS-free personal exposure concentrations for styrene, hexane and cyclohexane. Geometric mean personal exposures of participants not exposed to ETS were approximately equivalent to time weighted ETS-free indoor and workplace concentrations, except for octanal and compounds associated with traffic, which showed higher geometric mean personal exposure concentrations than any microenvironment (o-xylene, ethylbenzene,benzene, undecane, nonane, decane, m,p-xylene, and trimethylbenzene). Considerable differences in personal exposure concentrations and residential levels of compounds with mainly indoor sources suggested differences in product types or the frequency of product use between Helsinki, Germany and the United States.  相似文献   

5.
In developed nations people spend about 90% of their time indoors. The relationship between indoor and outdoor air pollution levels is important for the understanding of the health effects of outdoor air pollution. Although other studies describe both the outdoor and indoor atmospheric environment, few excluded a priori major indoor sources, measured the air exchange rate, included more than one micro-environment and included the presence of human activity. PM2.5, soot, NO2 and the air exchange rate were measured during winter and summer indoors and outdoors at 18 homes (mostly apartments) of 18 children (6–11-years-old) and also at the six schools and 10 pre-schools that the children attended. The three types of indoor environments were free of environmental tobacco smoke and gas appliances, as the aim was to asses to what extent PM2.5, soot and NO2 infiltrate from outdoors to indoors. The median indoor and outdoor PM2.5 levels were 8.4 μg m?3 and 9.3 μg m?3, respectively. The median indoor levels for soot and NO2 were 0.66 m?1 × 10?5 and 10.0 μg m?3, respectively. The respective outdoor levels were 0.96 m?1 × 10?5 and 12.4 μg m?3. The median indoor/outdoor (I/O) ratios were 0.93, 0.76 and 0.92 for PM2.5, soot and NO2, respectively. Their infiltration factors were influenced by the micro-environment, ventilation type and air exchange rate, with aggregated values of 0.25, 0.55 and 0.64, respectively. Indoor and outdoor NO2 levels were strongly associated (R2 = 0.71), followed by soot (R2 = 0.50) and PM2.5 (R2 = 0.16). In Stockholm, the three major indoor environments occupied by children offer little protection against combustion-related particles and gases in the outdoor air. Outdoor PM2.5 seems to infiltrate less, but indoor sources compensate.  相似文献   

6.
As part of a larger program to investigate indoor sources of air pollution, an indoor/outdoor sampling program was carried out for NO, NO2, and CO In four private houses which had gas stoves. The four houses chosen for study represented different surrounding land use, life styles, and house age and layout. The pollutant gases were measured essentially simultaneously at three indoor locations and one outdoor location. The results of the program showed that indoor levels of NO and NO2 are directly related to stove use in the homes tested. Furthermore, these stoves often produced more NO2 than NO. In some instances, the levels of NO2 and CO in the kitchen exceeded the air quality standards for these pollutants if such outdoor standards were to be applied to indoors and the data for the sampling periods were typical of an entire year. A diffusion experiment conducted in one of the houses showed that the half-life for NO2 was less than one-third that for either NO or CO. Oxidation of NO to NO2 (based upon comparing the half-life of NO to CO) does not appear to occur to a significant degree indoors.  相似文献   

7.
Sources and concentrations of indoor air pollutants and aeroallergens were evaluated in the arid Southwest community of Tucson, Arizona. One major purpose was to appraise the interaction of indoor and outdoor human exposures. A rough time budget study showed that 74% of adults spent 75% or more of their time in some indoor environment. Outdoor and indoor concentrations of TSP, RSP, CO, O3 and aeroallergens were measured for 41 detached dwellings. Small area and basin monitoring occurred for TSP, CO, NO2, O3 and aeroallergens; ambient TSP frequently exceeds NAAQS and both CO and O3 do occasionally. Indoor TSP and RSP were lower than outdoors and were of a different composition. Outdoor infiltration falls rapidly for particles and pollen, related to distance Indoors. CO was low and O3 was very low indoors. TSP and RSP correlated significantly with tobacco smoking and CO correlated with gas stove usage. Temperature varied minimally indoors and relative humidity indoors was similar to outdoor readings In this climate. It was concluded that better particle characterization and better estimates of total exposure are required.  相似文献   

8.
Principal component analyses (varimax rotation) were used to identify common sources of 30 target volatile organic compounds (VOCs) in residential outdoor, residential indoor and workplace microenvironment and personal 48-h exposure samples, as a component of the EXPOLIS-Helsinki study. Variability in VOC concentrations in residential outdoor microenvironments was dominated by compounds associated with long-range transport of pollutants, followed by traffic emissions, emissions from trees and product emissions. Variability in VOC concentrations in environmental tobacco smoke (ETS) free residential indoor environments was dominated by compounds associated with indoor cleaning products, followed by compounds associated with traffic emissions, long-range transport of pollutants and product emissions. Median indoor/outdoor ratios for compounds typically associated with traffic emissions and long-range transport of pollutants exceeded 1, in some cases quite considerably, indicating substantial indoor source contributions. Changes in the median indoor/outdoor ratios during different seasons reflected different seasonal ventilation patterns as increased ventilation led to dilution of those VOC compounds in the indoor environment that had indoor sources. Variability in workplace VOC concentrations was dominated by compounds associated with traffic emissions followed by product emissions, long-range transport and air fresheners. Variability in VOC concentrations in ETS free personal exposure samples was dominated by compounds associated with traffic emissions, followed by long-range transport, cleaning products and product emissions. VOC sources in personal exposure samples reflected the times spent in different microenvironments, and personal exposure samples were not adequately represented by any one microenvironment, demonstrating the need for personal exposure sampling.  相似文献   

9.
A study has been conducted in Launceston, Australia, to determine within households with wood heaters the effect of leakage from the heater and flue on the indoor air concentrations of the pollutants: benzene, toluene, ethylbenzene and xylene (BTEX). The study involved three classes: 28 households without wood heaters, 19 households with wood heaters compliant with the relevant Australian Standard and 30 households with non-compliant wood heaters. Outdoor and indoor BTEX concentrations were measured in each household for 7 days during summer when there was little or no wood heater usage, and for 7 days during winter when there was widespread wood heater usage. Each participant kept a household activity diary throughout their sampling periods. For wintertime, there were no significant differences of the indoor BTEX concentrations between the three classes of households. Also there were no significant relationships between BTEX indoor concentrations within houses and several measures of the amount of wood heater use within these houses. For the households sampled in this study, the use of a wood heater within a house did not lead to BTEX release within that house and had no direct detectable influence on the concentrations of BTEX within the house. We propose that the pressure differences associated with the both the leakiness or permeability of the building envelope and the draught of the wood heater have key roles in determining whether there will be backflow of smoke from the wood heater into the house. For a leaky house with a well maintained wood heater there should be no backflow of smoke from the wood heater into the house. However backflow of smoke may occur in well sealed houses.The study also found that wood heater emissions raise the outdoor concentrations of BTEX in winter in Launceston and through the mixing of outdoor air through the building envelopes into the houses, these emissions contribute to increases in the indoor concentrations of BTEX in winter in all houses in Launceston.  相似文献   

10.
Abstract

The impact of outdoor and indoor pollution sources on indoor air quality in Santiago, Chile was investigated. Toward this end, 16 homes were sampled in four sessions. Each session included an outdoor site and four homes using different unvented space heaters (electric or central heating, compressed natural gas, liquefied petroleum gas, and kerosene). Average outdoor fine particulate matter (PM2.5) concentrations were very high (55.9 μg·m-3), and a large fraction of these particles penetrated indoors. PM2.5 and several PM2.5 components (including sulfate, elemental carbon, organic carbon, metals, and polycyclic aromatic hydrocarbons) were elevated in homes using kerosene heaters. Nitrogen dioxide (NO2) and ultrafine particles (UFPs) were higher in homes with combustion heaters as compared with those with electric heaters or central heating. A regression model was used to assess the effect of heater use on continuous indoor PM2.5 concentrations when windows were closed. The model found an impact only for kerosene heaters (45.8 μg m-3).  相似文献   

11.
Fine particulate matter (PM2.5) air pollution has been linked to adverse health impacts, and combustion sources including residential wood-burning may play an important role in some regions. Recent evidence suggests that indoor air quality may improve in homes where older, non-certified wood stoves are exchanged for lower emissions EPA-certified alternatives. As part of a wood stove exchange program in northern British Columbia, Canada, we sampled outdoor and indoor air at 15 homes during 6-day sampling sessions both before and after non-certified wood stoves were exchanged. During each sampling session two consecutive 3-day PM2.5 samples were collected onto Teflon filters, which were weighed and analyzed for the wood smoke tracer levoglucosan. Residential PM2.5 infiltration efficiencies (Finf) were estimated from continuous light scattering measurements made with nephelometers, and estimates of Finf were used to calculate the outdoor- and indoor-generated contributions to indoor air. There was not a consistent relationship between stove technology and outdoor or indoor concentrations of PM2.5 or levoglucosan. Mean Finf estimates were low and similar during pre- and post-exchange periods (0.32 ± 0.17 and 0.33 ± 0.17, respectively). Indoor sources contributed the majority (~65%) of the indoor PM2.5 concentrations, independent of stove technology, although low indoor-outdoor levoglucosan ratios (median ≤ 0.19) and low indoor PM2.5-levoglucosan correlations (r ≤ 0.19) suggested that wood smoke was not a major indoor PM2.5 source in most of these homes. In summary, despite the potential for extensive wood stove exchange programs to reduce outdoor PM2.5 concentrations in wood smoke-impacted communities, we did not find a consistent relationship between stove technology upgrades and indoor air quality improvements in homes where stoves were exchanged.  相似文献   

12.
This paper reports findings from a case study designed to investigate indoor and outdoor air quality in homes near the United States–Mexico border. During the field study, size-resolved continuous particulate matter (PM) concentrations were measured in six homes, while outdoor PM was simultaneously monitored at the same location in Nogales, Sonora, Mexico, during March 14–30, 2009. The purpose of the experiment was to compare PM in homes using different fuels for cooking, gas versus biomass, and to obtain a spatial distribution of outdoor PM in a region where local sources vary significantly (e.g., highway, border crossing, unpaved roads, industry). Continuous PM data were collected every 6 seconds using a valve switching system to sample indoor and outdoor air at each home location. This paper presents the indoor PM data from each home, including the relationship between indoor and outdoor PM. The meteorological conditions associated with elevated ambient PM events in the region are also discussed. Results indicate that indoor air pollution has a strong dependence on cooking fuel, with gas stoves having hourly averaged median PM3 concentrations in the range of 134 to 157 μg m?3 and biomass stoves 163 to 504 μg m?3. Outdoor PM also indicates a large spatial heterogeneity due to the presence of microscale sources and meteorological influences (median PM3: 130 to 770 μg m?3). The former is evident in the median and range of daytime PM values (median PM3: 250 μg m?3, maximum: 9411 μg m?3), while the meteorological influences appear to be dominant during nighttime periods (median PM3: 251 μg m?3, maximum: 10,846 μg m?3). The atmospheric stability is quantified for three nighttime temperature inversion episodes, which were associated with an order of magnitude increase in PM10 at the regulatory monitor in Nogales, AZ (maximum increase: 12 to 474 μg m?3).
Implications:Regulatory air quality standards are based on outdoor ambient air measurements. However, a large fraction of time is typically spent indoors where a variety of activities including cooking, heating, tobacco smoking, and cleaning can lead to elevated PM concentrations. This study investigates the influence of meteorology, outdoor PM, and indoor activities on indoor air pollution (IAP) levels in the United States–Mexico border region. Results indicate that cooking fuel type and meteorology greatly influence the IAP in homes, with biomass fuel use causing the largest increase in PM concentration.  相似文献   

13.
This analysis provides the initial summary of PM2.5 mass concentrations relationships for all seasons and participants for a general population in the Detroit Exposure and Aerosol Research Study (DEARS). The summary presented highlights the utility of the new methodologies applied, in addition to summarizing the particulate matter (PM) data.Results include the requirement to adjust the exposure data for monitor wearing compliance and measured environmental tobacco smoke (ETS) levels, even though the study design specified a non-smoking household. A 40% wearing compliance acceptance level was suggested as necessary to balance minimizing exposure misclassification (from poor compliance) and having sufficient data to conduct robust statistical analyses. An ETS threshold level equivalent to adding more than 1.5 μg m?3 to the collected sample was found to be necessary to detect changes in the personal exposure factor (Fpex). It is not completely clear why such a large threshold level was necessary.Statistically significant spatial PM2.5 gradients were identified in three of the six DEARS neighborhoods in Wayne County. These were expected, given the number of strong, localized PM sources in the Detroit (Michigan) metro area. Some residential outdoor bias levels compared with the central site at Allen Park exceeded 15%. After adjusting for ETS biases, the outdoor contributions to the personal exposure were typically larger by factors from 1.75 to 2.2 compared with those of the non-outdoor sources. The outdoor contribution was larger in the summer than in the winter, which is consistent with the fractions of time spent outdoors in the summer vs. the winter (6.7% vs. 1.1% of the time).Mean personal PM2.5 cloud levels for the general population DEARS cohort ranged from 1.5 to 3.8 (after ETS adjustment) and were comparable to those reported previously. The personal exposure collections indoors were typically at least 13 times greater than those contributed outdoors.  相似文献   

14.
Abstract

An ozone (O3) exposure assessment study was conducted in Toronto, Ontario, Canada during the winter and summer of 1992. A new passive O3 sampler developed by Harvard was used to measure indoor, outdoor, and personal O3 concentrations. Measurements were taken weekly and daily during the winter and summer, respectively. Indoor samples were collected at a total of 50 homes and workplaces of study participants. Outdoor O3 concentrations were measured both at home sites using the passive sampler and at 20 ambient monitoring sites with continuous monitors. Personal O3 measurements were collected from 123 participants, who also completed detailed time-activity diaries. A total of 2,274 O3 samples were collected. In addition, weekly air exchange rates of homes were measured.

This study demonstrates the performance of our O3 sampler for exposure assessment. The data obtained are further used to examine the relationships between personal, indoor (home and workplace), and outdoor O3 concentrations, and to investigate outdoor and indoor spatial variations in O3 concentrations. Based on home outdoor and indoor, workplace, and ambient O3 concentrations measured at the Ontario Ministry of the Environment (MOE) sites, the traditional microenvironmental model predicts 72% of the variability in measured personal exposures. An alternative personal O3 exposure model based on outdoor measurements and time-activity information is able to predict the mean personal exposures in a large population, with the highest R2 value of 0.41.  相似文献   

15.
A dynamic multi-compartment computer model has been developed to describe the physical processes determining indoor pollutant concentrations as a function of outdoor concentrations, indoor emission rates and building characteristics. The model has been parameterised for typical UK homes and workplaces and linked to a time-activity model to calculate exposures for a representative homemaker, schoolchild and office worker, with respect to NO2. The estimates of population exposures, for selected urban and rural sites, are expressed in terms of annual means and frequency of hours in which air quality standards are exceeded. The annual mean exposures are estimated to fall within the range of 5–21 ppb for homes with no source, and 21–27 ppb for homes with gas cooking, varying across sites and population groups. The contribution of outdoor exposure to annual mean NO2 exposure varied from 5 to 24%, that of indoor penetration of outdoor air from 17 to 86% and that of gas cooking from 0 to 78%. The frequency of exposure to 1 h mean concentrations above 150 ppb was very low, except for people cooking with gas.  相似文献   

16.
The present work investigated the levels of total volatile organic compounds (TVOC) and benzene, toluene, ethylbenzene, m/p-xylene, and o-xylene (BTEX) in different microenvironments in the library of Jawaharlal Nehru University in summer and winter during 2011–2012. Carcinogenic and non-carcinogenic health risks due to organic compounds were also evaluated using US Environmental Protection Agency (USEPA) conventional approaches. Real-time monitoring was done for TVOC using a data-logging photo-ionization detector. For BTEX measurements, the National Institute for Occupational Safety and Health (NIOSH) standard method which consists of active sampling of air through activated charcoal, followed by analysis with gas chromatography, was performed. Simultaneously, outdoor measurements for TVOC and BTEX were carried out. Indoor concentrations of TVOC and BTEX (except benzene) were higher as compared to the outdoor for both seasons. Toluene and m/p-xylene were the most abundant organic contaminant observed in this study. Indoor to outdoor (I/O) ratios of BTEX compounds were generally greater than unity and ranged from 0.2 to 8.7 and 0.2 to 4.3 in winter and summer, respectively. Statistical analysis and I/O ratios showed that the dominant pollution sources mainly came from indoors. The observed mean concentrations of TVOC lie within the second group of the Molhave criteria of indoor air quality, indicating a multifactorial exposure range. The estimated lifetime cancer risk (LCR) due to benzene in this study exceeded the value of 1?×?10?6 recommended by USEPA, and the hazard quotient (HQ) of non-cancer risk came under an acceptable range.  相似文献   

17.
This study evaluates effects of good burning practice and correct installation and management of wood heaters on indoor air pollution in an Italian rural area. The same study attests the role of education in mitigating wood smoke pollution. In August 2007 and winters of 2007 and 2008, in a little mountain village of Liguria Apennines (Italy), indoor and outdoor benzene, toluene, ethylbenzene, and xylene (BTEX) concentrations were measured in nine wood-heated houses. During the first sampling, several mistakes in heating plant installations and management were found in all houses. Indoor BTEX concentrations increased during use of wood burning. Low toluene/benzene ratios were in agreement with wood smoke as main indoor and outdoor pollution source. Other BTEX sources were identified as the indoor use of solvents and paints and incense burning. Results obtained during 2007 were presented and discussed with homeowners. Following this preventive intervention, in the second winter sampling all indoor BTEX concentrations decreased, in spite of the colder outdoor air temperatures. Information provided to families has induced the adoption of effective good practices in stoves and fire management. These results highlight the importance of education, supported by reliable data on air pollution, as an effective method to reduce wood smoke exposures.
Implications:Information about burning practices and correct installation and management of wood heaters, supported by reliable data on indoor and outdoor pollution, may help to identify and remove indoor pollution sources. This can be an effective strategy in mitigate wood smoke pollution.  相似文献   

18.
The Windsor, Ontario Exposure Assessment Study evaluated the contribution of ambient air pollutants to personal and indoor exposures of adults and asthmatic children living in Windsor, Ontario, Canada. In addition, the role of personal, indoor, and outdoor air pollution exposures upon asthmatic children's respiratory health was assessed. Several active and passive sampling methods were applied, or adapted, for personal, indoor, and outdoor residential monitoring of nitrogen dioxide, volatile organic compounds, particulate matter (PM; PM-2.5 pm [PM2.5] and < or =10 microm [PM10] in aerodynamic diameter), elemental carbon, ultrafine particles, ozone, air exchange rates, allergens in settled dust, and particulate-associated metals. Participants completed five consecutive days of monitoring during the winter and summer of 2005 and 2006. During 2006, in addition to undertaking the air pollution measurements, asthmatic children completed respiratory health measurements (including peak flow meter tests and exhaled breath condensate) and tracked respiratory symptoms in a diary. Extensive quality assurance and quality control steps were implemented, including the collocation of instruments at the National Air Pollution Surveillance site operated by Environment Canada and at the Michigan Department of Environmental Quality site in Allen Park, Detroit, MI. During field sampling, duplicate and blank samples were also completed and these data are reported. In total, 50 adults and 51 asthmatic children were recruited to participate, resulting in 922 participant days of data. When comparing the methods used in the study with standard reference methods, field blanks were low and bias was acceptable, with most methods being within 20% of reference methods. Duplicates were typically within less than 10% of each other, indicating that study results can be used with confidence. This paper covers study design, recruitment, methodology, time activity diary, surveys, and quality assurance and control results for the different methods used.  相似文献   

19.
Abstract

Particle infiltration is a key determinant of the indoor concentrations of ambient particles. Few studies have examined the influence of particle composition on infiltration, particularly in areas with high concentrations of volatile particles, such as ammonium nitrate (NH4NO3). A comprehensive indoor monitoring study was conducted in 17 Los Angeles–area homes. As part of this study, indoor/outdoor concentration ratios during overnight (nonindoor source) periods were used to estimate the fraction of ambient particles remaining airborne indoors, or the particle infiltration factor (FINF), for fine particles (PM2.5), its nonvolatile (i.e., black carbon [BC]) and volatile (i.e., nitrate [NO3 ?]) components, and particle sizes ranging between 0.02 and 10 μm. FINF was highest for BC (median = 0.84) and lowest for NO3 ? (median = 0.18). The low FINF for NO3 ? was likely because of volatilization of NO3 ? particles once indoors, in addition to depositional losses upon building entry. The FINF for PM2.5 (median = 0.48) fell between those for BC and NO3 ?, reflecting the contributions of both particle components to PM2.5. FINF varied with particle size, air-exchange rate, and outdoor NO3 ? concentrations. The FINF for particles between 0.7 and 2 μm in size was considerably lower during periods of high as compared with low outdoor NO3 ? concentrations, suggesting that outdoor NO3 ? particles were of this size. This study demonstrates that infiltration of PM2.5 varies by particle component and is lowest for volatile species, such as NH4NO3. Our results suggest that volatile particle components may influence the ability for outdoor PM concentrations to represent indoor and, thus, personal exposures to particles of ambient origin, because volatilization of these particles causes the composition of PM2.5 to differ indoors and outdoors. Consequently, particle composition likely influences observed epidemiologic relationships based on outdoor PM concentrations, especially in areas with high concentrations of NH4NO3 and other volatile particles.  相似文献   

20.
Personal exposures, residential indoor, outdoor and workplace levels of nitrogen dioxide (NO2) were measured for 262 urban adult (25–55 years) participants in three EXPOLIS centres (Basel; Switzerland, Helsinki; Finland, and Prague; Czech Republic) using passive samplers for 48-h sampling periods during 1996–1997. The average residential outdoor and indoor NO2 levels were lowest in Helsinki (24±12 and 18±11 μg m−3, respectively), highest in Prague (61±20 and 43±23 μg m−3), with Basel in between (36±13 and 27±13 μg m−3). Average workplace NO2 levels, however, were highest in Basel (36±24 μg m−3), lowest in Helsinki (27±15 μg m−3), with Prague in between (30±18 μg m−3). A time-weighted microenvironmental exposure model explained 74% of the personal NO2 exposure variation in all centres and in average 88% of the exposures. Log-linear regression models, using residential outdoor measurements (fixed site monitoring) combined with residential and work characteristics (i.e. work location, using gas appliances and keeping windows open), explained 48% (37%) of the personal NO2 exposure variation. Regression models based on ambient fixed site concentrations alone explained only 11–19% of personal NO2 exposure variation. Thus, ambient fixed site monitoring alone was a poor predictor for personal NO2 exposure variation, but adding personal questionnaire information can significantly improve the predicting power.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号