首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reproduction and growth of the dominant copepods Calanus finmarchicus, C. glacialis, C. hyperboreus and Pseudocalanus minutus were studied on transects across the sea ice zone of the northern Barents Sea in May and June 1997. C. glacialis and C. finmarchicus were numerically dominant and also the largest component of the biomass. C. hyperboreus was rather rare. Moderate levels of phytoplankton and eventually high concentrations of ice algae supported maximum egg production rates of 53.6 and 48.5 eggs female–1 day–1 of C. glacialis in May and June, respectively. Results of incubation experiments were supported by a tremendous abundance of C. glacialis eggs in the water column ranging from 7×103 to 4.4×104 m–2 in May and from 9.8×103 to a maximum of 9.7×104 m–2 in June. In contrast, C. finmarchicus spawned only in the vicinity of the ice edge, at a maximum rate of 30 eggs female–1 day–1. Egg sacs of P. minutus were often observed in the preserved samples, but contained only few eggs, which may be due to loss during sampling. The presence of considerable concentrations of young stages in May and June indicated successful recruitment of C. glacialis and P. minutus. Back calculation using published stage duration estimates indicates March/April as the begin of the reproductive and growth period for these species under the first-year ice of the Barents Sea. Hence, secondary production in the study area starts at the same time as in open water regions and polynyas in the northern North Atlantic. Although the role of ice algae in the nutrition of copepods was not clarified here, the significant relationship between phytoplankton chlorophyll and egg production of C. glacialis suggests that high reproductive activity has already been achieved at moderate food concentrations.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

2.
Egg production rates of Calanus glacialis (Jaschnov) were measured in the laboratory (in 1985) and in the field (in 1983–1984). In the laboratory, daily egg production was studied over one month at alternating feeding and fasting conditions. Spawning ceased after 3 d of starvation and started as soon as females were reintroduced to food. Egg production increased stepwise at 3-d intervals. Females survived more than nine months in captivity. In the field, egg production was measured during PREMIZEX 1983 and MIZEX 1984 at 5 and 16 stations, respectively. High egg production was found in polynyas on the East Greenland Shelf, where melt water induced stratification which supported a spring bloom. Highest egg production was converted into 6.1% body carbon female-1 d-1. Under thick pack-ice no eggs were spawned. Spawning was induced in females from a station with low food abundance by feeding them on board ship. These results from both experiments and field studies show that egg production in C. glacialis is closely related to food availability. Thus, C. glacialis exhibits a reproductive behavior similar to that of C. finmarchicus, but not C. hyperboreus, the other two dominant species in this region.  相似文献   

3.
In situ egg production rates ofCalanus glacialis Jaschnov females caught under the ice cover of southeastern Hudson Bay, Canada, between early April and mid-June 1986 were measured by direct observations and by an egg-ratio method in order to investigate the role of ice microalgae and under-ice phytoplankton production in copepod reproduction. Egg production commenced, although at low rates, in early May, about 3 wk after the onset of measurable concentrations of ice microalgae at the ice-water interface. Egg production increased to about 12 eggs female–1 d–1 in early June, after the ice cover began to melt. The time taken by immature adult females to reach maturity in the field was estimated to be ca. 3 wk (between late April and mid-May) by visual evaluation of gonad maturity in preserved females. In the laboratory, females caught on 10 April and maintained in saturating concentrations of the diatomThalassiosira weissflogii took only a few days to produce eggs at high rates, indicatingC. glacialis was food-limited during the ice algal bloom at the interface. We suggest that ice algal grazing changes the timing, relative to high food concentrations in the water column, of reproduction inC. glacialis by promoting oogenesis and oocyte maturation.Contribution to the programme of GIROQ (Groupe interuniversitaire de recherches océanographiques du Québec)Please send all reprint requests to Dr. Runge at his current address: Institut Maurice-Lamontagne, Ministère des Pêches et Océans, C. P. 1000, Mont-Joli, Québec G5H 3Z4, Canada  相似文献   

4.
This study describes the annual reproductive cycles of the three dominant Calanus species, C. finmarchicus, C. glacialis and C. hyperboreus, in Disko Bay (West Greenland) in relation to seasonal phytoplankton development. Relative abundance of females, copepodite stage V (CV) and males, and the developmental stage of the female gonad were examined from plankton samples collected at weekly to monthly intervals from May 1996 to June 1997 with a WP2 net or a pump. During spring and summer, egg production rates were determined. Females of all three species were present year round. Maximum relative abundance was reached by C. hyperboreus females at the beginning of February, by C. glacialis in mid-February, and by C. finmarchicus in April. All three species reproduced successfully in Disko Bay. Their reproductive cycles were considerably different with respect to the timing of final gonad maturation and spawning, and hence in their relation to seasonal phytoplankton development. In all three species, early gonad development took place during winter, before living food became plentiful, suggesting that these processes were largely food independent. Final gonad maturation and spawning in C. finmarchicus was related to the phytoplankton concentration, reflecting that final gonad maturation processes are food dependent in this species. C. glacialis females matured and spawned prior to the spring bloom. Our results indicate that first internal lipid stores and later ice alga grazing supplied final gonad maturation and egg production. Maximum egg production rates of C. glacialis were found in spring and summer, when the chlorophyll a concentration was high. Mature female C. hyperboreus were found from February until mid-April, when the chlorophyll a concentration was still low. In this species, reproductive activity was decoupled from phytoplankton development, and final maturation processes and spawning were solely fuelled by internal energy stores.  相似文献   

5.
The populations of the copepod species Calanus finmarchicus, C. glacialis and C. hyperboreus were investigated in Disko Bay during a 14-month period in 1996-1997. The three species were predominant in the copepod community. The biomass reached a maximum at the beginning of June (127 mg C m-3). From the end of July until the end of April the following year, the biomass was <1-6 mg C m-3. All three species showed seasonal ontogenetic migration. The spring ascent for all three species was just prior to or in association with the break-up of sea ice and the development of the spring bloom, whereas descent occurred over a larger time span during summer. The main overwintering stages were CV for C. finmarchicus, CIV and CV for C. glacialis and C. hyperboreus. Peak abundance of juvenile copepodites, representing the new generation, was in August for C. finmarchicus, in July for C. glacialis and in May/June for C. hyperboreus. From the timing of reproduction and the population development, the life cycles were deduced to be 1 year for C. finmarchicus and at least 2 years for C. glacialis and C. hyperboreus. Secondary production and potential grazing impact of the Calanus community were estimated by two methods based on specific egg-production rates and temperature-dependent production. The Calanus community was not able to control the primary producers during the spring bloom but probably did during post-bloom. The estimates also indicated that grazing on ciliates and heterotrophic dinoflagellates contributes as an essential food source in the post-bloom period.  相似文献   

6.
Zooplankton was sampled in the Storfjord and ice-covered Barents Sea during March 2003. Environmental conditions represented a typical winter situation with low air temperatures, close pack ice, and extremely low chlorophyll concentrations. Polar water dominated the hydrographic regime in the upper layers. Zooplankton distribution reflected spatial variability of hydrography. The copepods Pseudocalanus spp., Oithona similis, Microsetella norvegica together with gastropod larvae were most numerous. Biomass averaged for the entire water column varied from 3.3 to 14.3 mg dry mass m−3, Calanus glacialis and Parasagitta elegans contributed most, followed by C. finmarchicus, Oithona similis, and Pseudocalanus spp. Various holoplankters showed reproductive activity, especially cyclopoid copepods and chaetognaths. A few C. glacialis females laid eggs in situ, but when fed diatom cultures rapidly increased their egg production. Meroplankton including larvae of nudibranchia, bivalvia, ophiuroida, polychaeta, and bryozoa were also present. Our data demonstrate that the pelagic community of the seasonally ice-covered Barents Sea was not in a “sleeping” state at the end of the winter, but in addition to dormant stages, a portion of mainly omnivorous and several carnivorous species was reproducing.  相似文献   

7.
In the spring of 1989, an experimental study of the spawning behaviour of Calanus finmarchicus was carried out in Malangen, northern Norway. Here, a single cohort of females reproduce from mid-March to May, approximately coinciding with the wax and wane of the spring phytoplankton bloom. An evaluation of population characteristics such as the proportion of adults, sex ratio, as well as gonad maturation and daily productivity of the females clearly reveals three phases within the population's reproductive period. In between incline and decline, the highest spawning rates (on average >20 eggs female-1 d-1, equivalent to 5.7% body C d-1) occur after the males have disappeared from the population and almost all females have mature gonads. During this period, the ratio of adults to copepodid Stage Vs changes from dominance of adults to that of CVs. Although first egg production was observed prior to the phytoplankton increase, it is suggested that the onset of the phytoplankton spring bloom in the first few days of April enhances the final maturation of ovaries in the females and therefore triggers the onset of the main spawning period. The clutch sizes (max. 95 eggs clutch-1) vary with the age of the females, while the spawning frequencies depend on the available food quantities. The overlap of an estimated minimal 4 wk spawning period for the individuals leads to a main reproductive phase for the population of ca. 3 wk, during which time mean clutch sizes and spawning frequencies are maximal (highest average clutch size: 70 eggs female-1 clutch-1, 100 to 60% of the females spawning). This period ends before the end of the phytoplankton bloom. Calculated by stepwise interpolation and summation of the mean daily egg production in the population, an average female produced ca. 600 eggs during the spring bloom in Malangen 1989. We suggest that reproduction and population development of C. finmarchicus in spring follows a reproducible pattern for a given temperature regime and non-limiting food conditions. In the case of clearly identifiable cohorts, it seems possible to trace the state of reproduction by evaluating population parameters.  相似文献   

8.
Abundance, stage composition and reproductive parameters (egg production, egg viability, proportion of spawning females) of the four copepod species Acartia clausi, Centropages hamatus, C. typicus and Temora longicornis were measured at the long term sampling station Helgoland Roads (German Bight, southern North Sea) from September 2003 to May 2004 to study their overwintering strategies. A. clausi was overwintering as females with arrested reproduction from November to January. T. longicornis, which is known to produce resting eggs in the North Sea, had a pelagic population with all developmental stages present during winter and reproductive rates closely related to food concentrations. Although their females produced eggs in response to ambient food conditions, both C. hamatus and C. typicus were rare in the pelagic. The C. hamatus population returned in May, probably from resting eggs, whereas C. typicus depended on advection. The Centropages species seemed to be less adapted to pelagic life in winter than A. clausi and T. longicornis. Sporadic occurrence of large numbers of nauplii and young copepodids of A. clausi and Centropages spp. pointed to different overwintering strategies or more successful survival in adjacent regions and advection of them into the waters around Helgoland island. While A. clausi was decoupled from environmental conditions in late autumn and winter, the other species were able to respond to variations in the food environment. Thus, egg production of T. longicornis increased during an unusual autumn diatom bloom.  相似文献   

9.
The reproductive strategies of two gammaridean amphipod species, Gammarus wilkitzkii and Apherusa glacialis, that permanently inhabit the Arctic sea ice were investigated. G. wilkitzkii reaches sexual maturity at an age of 2 years and produces 128 ± 54 eggs fem.−1 yr−1. Mating takes place during fall and winter, and the development of the large eggs (0.60 to 0.80 mm diam.) lasts 6 to 7 months. The sex ratio of G. wilkitzkii was dominated by males in a proportion of 1.5:1. In vivo studies showed that juveniles are released in batches from the brood pouches of the females during April and May. A. glacialis reaches sexual maturity at the age of 1 year and produces 555 ± 151 eggs fem.−1 yr−1. The eggs are between 0.18 and 0.23 mm in diameter, and are the smallest known for gammaridean amphipods. Eggs are kept in packages of two to eight in the brood pouches of females. The sex ratio of A. glacialis was dominated by females in a proportion of 3:1. The high fecundity of both amphipod species, the release of juveniles in batches over a period of time, a high proportion of females (A. glacialis), and an elongated life-span with multiple spawnings (G. wilkitzkii) are discussed as possible adaptations to the specific and highly variable conditions under Arctic sea ice. Received: 29 December 1999 / Accepted: 8 March 2000  相似文献   

10.
Marja Koski 《Marine Biology》2007,151(5):1785-1798
Feeding, egg production, hatching success and early naupliar development of Calanus finmarchicus were measured in three north Norwegian fjords during a spring bloom dominated by diatoms and the haptophyte Phaeocystis pouchetii. Majority of the copepod diet consisted of diatoms, mainly Thalassiosira spp. and Chaetoceros spp., with clearance rates up to 10 ml ind−1 h−1 for individual algae species/groups. Egg production rates were high, ranging from ca 40 up to 90 eggs f−1 d−1, with a hatching success of 70–85%, and fast naupliar development through the first non-feeding stages. There was no correlation between the egg or nauplii production and diatom abundance, but the hatching success was slightly negatively correlated with diatom biomass. However, the overall high reproductive rates suggested that the main food items were not harmful for C. finmarchicus reproduction in the area, although direct chemical measurements were not conducted. The high population egg production (>1,20,000 eggs m−2 d−1) indicated that a large part of the annual reproduction took place during the investigation, which stresses the importance of diatom-dominated spring phytoplankton bloom for population recruitment of C. finmarchicus in these northern ecosystems.  相似文献   

11.
The marine planktonic copepodsCalanus glacialis Jaschnov andPseudocalanus minutus (Kroyer) typically dominate the copepod biomass in spring under the ice in southeastern Hudson Bay, Canada. Females of both species exhibited significant diel feeding cycles, as measured by gut pigment content, throughout a bloom of ice algae at the ice-water interface in 1986. Periods of grazing correlated well with a nighttime vertical migration by females to within 0.2 m of the ice-water interface, suggesting that feeding took place at or just below the thermohaline boundary between seawater and the interfacial layer containing the ice algae. Seasonal melting of the ice bottom in mid-May resulted in freshening of the surface layer and release of the ice algae into the water column. FemaleC. glacialis andP. minutus responded by ceasing migration to the interface. Gut pigment content, and by reasonable assumption, feeding activity in the water column, increased substantially immediately after this event. In mid-May, the water column phytoplankton consisted of flagellates, sedimenting ice algal cells, and diatoms (Navicula pelagica andChaetoceros sp.) previously found at the interface and then growing in the water column. We conclude that algae growing at the ice-water interface, and sedimenting or actively growing algae derived from this interfacial layer, are a regular and principal source of nutrition for these pelagic copepods during and immediately after the ice algal bloom.  相似文献   

12.
The marine copepod Calanus hyperboreus accumulates large quantities of lipids and essential fatty acids during summer months in Northern oceans. However, few data exist regarding their winter fatty acid profiles, which could be informative regarding the use of lipids by C. hyperboreus to successfully survive and reproduce during times of ice-cover and limited food. The present study compared fatty acids of C. hyperboreus between summer (August 2007 and 2008) and winter (early April 2008 and 2009) in Cumberland Sound, Canada. Summer samples from both years had significantly higher ∑polyunsaturated fatty acids and unsaturation indices (based on μg fatty acid mg dry tissue−1) than winter samples and separated on a principal component analysis due to higher 18:2n-6, 18:4n-3, and 20:5n-3, consistent with phytoplankton consumption. Winter C. hyperboreus had significantly higher ∑monounsaturated fatty acids (MUFA) versus summer samples and separated on the principal component analysis due to higher proportions of 16:1n-7, 20:1n-9, and 22:1n-9, suggesting they were not actively feeding. Based on the seasonal fatty acid comparison, C. hyperboreus was catabolizing specific fatty acids (e.g. 20:5n-3), conserving others (e.g. 22:6n-3), and maintaining or increasing biosynthesis of certain MUFA (e.g. 18:1n-9) during winter. These findings provide insight into the seasonal strategy of acquisition (summer) and utilization (winter) of specific fatty acids by a key Arctic organism and could become important for monitoring changes in fatty acids associated with decreased ice-cover duration due to climate warming.  相似文献   

13.
Oh  C.-W.  Hartnoll  R. G. 《Marine Biology》2004,144(2):303-316
Aspects of the reproductive biology of the common shrimp Crangon crangon (L.) were studied in Port Erin Bay, Isle of Man, Irish Sea. Size at sexual maturity was determined from the proportions of ovigerous females and of females with maturing ovaries. The size at which 50% of females are mature is estimated (±95% confidence intervals) as 12.5±0.48 mm carapace length. Based on the proportions of ovigerous females and of mature females, the main breeding season was from January to June. Mean ovarian dry weights indicated two broods (winter and summer), with females bearing winter broods (WB) having higher gonad indices than those with summer broods (SB). WB females with non-eyed eggs and with eyed eggs differed in the regression of ovarian dry weight on carapace length, indicating preparation for laying a second brood. In both broods the moult stages of berried females were related to egg stage. Moulting will occur following the release of the brood. During embryonic development, mean egg length and egg volume were larger in all stages, and the mean dry weight of individual eggs of all stages heavier, in WB than in SB; there was no difference in egg number, however. Consequently, reproductive investment, the proportion of female weight devoted to egg production, was 67% higher in WB (0.20±0.04) than in SB (0.12±0.03). There is a significant effect of egg volume on brood weight, but not on egg number. In both broods, egg number was a negatively allometric function of female body size in non-eyed eggs and an isometric function of female body size in eyed eggs. Brood mortality during incubation was higher in SB (17%) than WB (10%). Differences in the reproductive variables and investment between the two broods of C. crangon are discussed in the light of reproductive strategies and life history.Communicated by J.P. Thorpe, Port Erin  相似文献   

14.
The seasonal abundance, distribution, maturity, growth and population dynamics of the euphausiidsThysanoessa raschi (M. Sars, 1864),T. inermis (Krøyer, 1846) andMeganyctiphanes norvegica (M. Sars, 1857) were studied in Ísafjord-deep, a fjord in northwest Iceland, from February 1987 to February 1988. Sampling was made at nine stations along the length of the fjord at approximately monthly intervals, along with hydrographic measurements and water sampling for nutrient analysis and measurements of chlorophylla concentrations. Spring warming of the water began in late May and maximum temperatures (8° to 10°C) were observed in late July–September. The phytoplankton spring-bloom started in early April, and the highest chlorophylla levels were measured in early May (7.0 mg m–3). A small increase was observed in the chlorophylla content in August. The greatest abundance of juveniles and males and females of all three species was observed during January and February 1988, during which period the euphausiids were concentrated in the middle and inner parts of the fjord. Euphausiid eggs were first recorded in the plankton in mid-May, and the greatest abundance ofThysanoessa spp. larvae occurred at the end of May. Larvae ofM. norvegica were not observed in Ísafjord-deep, indicating that recruitment of this species was occurring from outside the fjord.T. raschi andT. inermis had a life span of just over 2 yr; the life span ofM. norvegica was more difficult to determine. Almost all femaleT. raschi were mature at the age of 1 yr, while mostT. inermis females appeared not to mature until 2 yr of age. Most males of both species took part in breeding at 1 yr of age. The maximum carapace length ofT. raschi andT. inermis was 8 to 9 and 9 to 10 mm, respectively. The largestM. norvegica had a carapace length of 9 to 10 mm. The spawning of the euphausiids in Ísafjord-deep appeared to be closely related to the phytoplankton spring bloom; water temperature appeared to have no influence on spawning.  相似文献   

15.
Egg production and development rates of Centropages typicus (Krøyer) were studied in the laboratory under carying food and temperature conditions. Egg production rates in the laboratory ranged from 0 to 124 eggs female-1 d-1 and increased with food concentration up to a critical food concentration (Pc) above which egg production was constant. Egg production rates were influenced by temperature, with more eggs being produced at 15°C than at 10°C. Thalassiosira weisflogii and Prorocentrum micans were determined to be equally capable of supporting egg production at concentrations above Pc at 15°C. Rate of egg production was independent of adult female size when food and temperature were constant. Egg production rates of freshly captured females ranged from 0 to 188 eggs female-1 d-1 and were higher in April and May than in June or July. Hatching rates of eggs increased with increased temperature; 95% of the eggs at 15°C hatched within 48 h, while only 8% of the eggs at 10°C hatched within 48 h. Development rates, determined at 10°C in excess concentrations of T. weisflogii, were 23.0 d from egg release to copepodid state I, 27.0 d to stage II, 29.5 d to stage III, 32.2 d to stage IV, 38.5 d to stage V and 49 d to adulthood based on the average time required for 50% of the organisms in an experiment to attain a given stage. Adult males were usually observed 2 to 4 d before adult females, and therefore have a slightly faster rate of development. The effects of temperature, food type and food concentration on egg production and the seasonal appearances of diatoms in the New York Bight may account for the observed seasonal cycles in abundance of C. typicus in these coastal waters.  相似文献   

16.
Reproductive activity and production of the calanoid copepods Calanus helgolandicus and Calanoides carinatus were measured during a summer upwelling event off the coast of NW Spain. The upwelling pattern affected the distribution and fecundity of both species in the study area. The demographic composition of both populations and the stage of gonad maturation (e.g. the high abundance of fertilised females with mature ova) indicated active reproduction. C. carinatus, a highly fecund species associated with the African upwelling zones and considered as an upwelling specialist, showed low production rates (overall means of 15 eggs female–1 day–1 and 3% body C day–1), despite the fact that the food conditions (high phytoplankton biomass dominated by diatoms) seemed to be optimal for this species. By contrast, C. helgolandicus, a temperate species that shows a strong link between spring phytoplankton blooms and reproduction time, seems to be flexible enough to take full advantage of shorter-term, enhanced feeding conditions associated with the pulsed nature of the summer coastal upwelling. Both the egg and carbon-specific production rates attained by this species (overall means of 26 eggs female–1 day–1 and 12% body C day–1) were similar to values reported for a spring bloom situation. This high production would imply a long spring–summer recruitment event of C. helgolandicus in these waters. For both species the stage of gonad maturation was significantly correlated with their egg production rates and likely influenced by the food conditions; a species-specific nutritional requirement for final oogenesis is suggested. The carbon condition factor (carbon weight/prosome volume) of C. carinatus females was higher than that of C. helgolandicus, suggesting differential use of the carbon ingested; C. helgolandicus seems to use all ingested carbon to produce eggs at a high rates, whereas C. carinatus seems to store part of the ingested carbon as lipid reserves to ensure female survival and to support production during subsequent unfavourable food conditions.Communicated by S.A. Poulet, Roscoff  相似文献   

17.
Natural feeding rates of Copepodite Stages IV and V, and adult female Calanus glacialis (Jaschnov) and Copepodite Stage V and adult female C. finmarchicus (Gunnerus) were estimated using fluorescence analysis of gut contents. Measurements were made on copepods sampled from arctic waters east of Svalbard (Barents Sea) during the spring phytoplankton increase, in the period from 27 May to 13 June, 1983. Observations on Copepodite Stages IV and V and adult female C. glacialis suggest that the gastric evacuation rate is independent of developmental stage, whereas C. finmarchicus Copepodite Stage V showed a lower gastric evacuation rate than adult females. Gut fullness displayed a low correlation with the ambient chlorophyll concentrations. Ingestion rates calculated for C. glacialis were 0.3, 2.3, and 11.0 g C h-1 for Copepodite Stages IV and V and adult females, respectively. Copepodite Stage V and adult female C. finmarchicus ingested 0.9 and 1.1 g C h-1 at a temperature of ca.-1.0°C. The maximum ingestion rate in terms of percent body carbon d-1 was higher for adult female C. glacialis and C. finmarchicus than for the respective Copepodite Stage V's. The results are discussed both in relation to the physiological state of the species and to the environmental conditions.  相似文献   

18.
Diagnostic morphological characteristics of copepods of the genus Calanus are restricted largely to minor variations in secondary sex characteristics. This presents a persistent problem in the identification of individuals to species level, especially for immature stages. We have developed a simple molecular technique to distinguish between the North Atlantic Calanus species (C. helgolandicus, C. finmarchicus, C. glacialis and C. hyperboreus) at any life stage. Using the polymerase chain-reaction (PCR), the mitochodrial large subunit (16S) ribosomal RNA (rRNA) gene was amplified from individual copepods preserved in ethanol. Subsequent digestion of the amplified products with the restriction enzymes DdeI and VspI, followed by electrophoretic separation in 2% agarose (Metaphor, FMC Ltd), produced a characteristic pattern for each species. The versatility of the method is demonstrated by the unambiguous identification to species of any life stage, from egg to adult, and of individual body parts. Received: 11 May 1998 / Accepted: 5 August 1998  相似文献   

19.
The vertical distribution and migration (seasonal, diel and ontogenetic) of Calanus helgolandicus are described from the shallow (100 m) shelf-seas to the south-west of the British Isles. In 1978 and 1979, the overwintering population of C. helgolandicus consisted primarily of Stage V copepodites and adults. By late winter/early spring the copepodites had moulted to adult females (>90%), which matured and bred the first cohorts of the year, prior to onset of the spring phytoplankton bloom in April/May. C. helgolandicus reached a peak of numerical abundance in August of 20x103 copepodites m-2 (over the depth range sampled -0 to 70 m), which was 200 times the population in winter. The seasonal peak of abundance occurred 4 mo after the peak of the bloom of phytoplankton in spring. The yearly development of the copepod was not always out of phase with the diatom bloom, as seen when the data from 1978 was placed in the context of a longer time-series collected at 10 m over 22 yr (1960–1981, inclusive). Large vertical migrations were observed in the younger copepodites (CI and II) in May from below to above the thermocline. In the remainder of the year, the CI and CII stages behaved differently and were located above the thermocline within the euphotic zone. The largest vertical displacements of biomass were seen in the summer months due to the migrations of the CV stages and adults, which had developed from the spring cohorts. It was contended that the seasonal and vertical migrations of C. helgolandicus are part of a more complex pattern of inherent behavior than has been reported previously and that, however difficult this is to discern in the natural populations, it always expresses itself.  相似文献   

20.
The potential effects of sucralose on the Arctic copepods Calanus finmarchicus and Calanus glacialis were studied in Disko Bay, Greenland. Sucralose is a non-calorie sweetener and chlorine derivate of sucrose containing three chlorine atoms. Scandinavian screening studies of sucralose in 2007, revealed sucralose in all effluent samples. To investigate whether sucralose is harmful to the Arctic aquatic ecosystems, possible short-term effects were investigated on egg production, hatching rate, food intake and mortality of two species of Arctic copepods. The copepods were exposed to six different concentrations (0–50,000 ng · L?1) of sucralose, which spans the range of concentrations found in the screening studies. Exposure led to no mortality among the copepods. Food intake by C. glacialis increased with increasing concentrations of sucralose. In C. finmarchicus, food intake did not differ with increasing concentrations. No effect of sucralose was observed on egg production of C. finmarchicus. Despite increased food intake with increasing concentrations of sucralose, C. glacialis did not increase its egg production. The results show that both species responded weakly to sucralose, but with C. glacialis being possibly slightly more sensitive to sucralose than C. finmarchicus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号