首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Watershed land use effects on lake water quality in Denmark   总被引:5,自引:0,他引:5  
Mitigating nutrient losses from anthropogenic nonpoint sources is today of particular importance for improving the water quality of numerous freshwater lakes worldwide. Several empirical relationships between land use and in-lake water quality variables have been developed, but they are often weak, which can in part be attributed to lack of detailed information about land use activities or point sources. We examined a comprehensive data set comprising land use data, point-source information, and in-lake water quality for 414 Danish lakes. By excluding point-source-influenced lakes (n = 210), the strength in relationship (R2) between in-lake total nitrogen (TN) and total phosphorus (TP) concentrations and the proportion of agricultural land use in the watershed increased markedly, from 10-12% to 39-42% for deep lakes and from 10-12% to 21-23% for shallow lakes, with the highest increase for TN. Relationships between TP and agricultural land use were even stronger for lakes with rivers in their watershed (55%) compared to lakes without (28%), indicating that rivers mediate a stronger linkage between landscape activity and lake water quality by providing a "delivery" mechanism for excess nutrients in the watershed. When examining the effect of different near-freshwater land zones in contrast to the entire watershed, relationships generally improved with size of zone (25, 50, 100, 200, and 400 m from the edge of lake and streams) but were by far strongest using the entire watershed. The proportion of agricultural land use in the entire watershed was best in explaining lake water quality, both relative to estimated nutrient surplus at agricultural field level and near-lake land use, which somewhat contrasts typical strategies of management policies that mainly target agricultural nutrient applications and implementation of near-water buffer zones. This study suggests that transport mechanisms within the whole catchment are important for the nutrient export to lakes. Hence, the whole watershed should be considered when managing nutrient loadings to lakes, and future policies should ideally target measures that reduce the proportion of cultivated land in the watershed to successfully improve lake water quality.  相似文献   

2.
青海尕海盐湖初级生产力特点   总被引:1,自引:0,他引:1  
1997 年夏季对青海尕海盐湖的生态系统进行了初步研究. 初级生产力研究结果表明:(1) 水域毛初级产氧量平均值为3 .273g m -2d-1 ,其中底栖藻类占70.99% ,底栖藻类单位面积毛初级生产力是浮游植物的2.45倍.(2) 水域初级生产力构成格局为:由沿岸到湖心区,随着水深的逐步增大,底栖藻类初级生产力逐步减少,浮游植物初级生产力逐渐占主导地位. 前者所占的比例在0.55 m 水深时为97.72 % ,在大于13.0 m 水深后即降至0.0 % .(3)与国际有关文献相比,尕海盐湖初级生产力较低  相似文献   

3.
The Atlantic Slope Consortium (ASC) is a project designed to develop and test a set of indicators in coastal systems that are ecologically appropriate, economically reasonable, and relevant to society. The suite of indicators will produce integrated assessments of the condition, health and sustainability of aquatic ecosystems based on ecological and socioeconomic information compiled at the scale of estuarine segments and small watersheds. The research mandate of the ASC project is the following:
Using a universe of watersheds, covering a range of social choices, we ask two questions:
  • ? How “good” can the environment be, given those social choices?
  • ? What is the intellectual model of condition within those choices, i.e., what are the causes of condition and what are the steps for improvement?
As a basis for compiling ecological indicators, a watershed classification system was required for the experimental design. The goal was to develop approximately five categories of watersheds for each physiographic province, utilizing landscape and land use parameters that would be predictive of aquatic resource condition. All 14-digit Hydrologic Unit Code (HUC) watersheds in the Mid-Atlantic region would then be classified according to the regime. Five parameters were utilized for the classification: three land cover categories, consisting of forested, agricultural, and urban, median slope or median elevation, and total variance of land covers in 1-km-radius circles positioned on all stream convergence points in a specified 14-digit?HUC watershed. Cluster analysis utilizing these five parameters resulted in approximately five well-defined watershed classes per physiographic province. The distribution of all watersheds in the Mid-Atlantic region across these categories provides a unique report on the probable condition of watersheds in the region.  相似文献   

4.
Climate change is likely to impact terrestrial and aquatic ecosystems via numerous physical and biological mechanisms. This study outlines a framework for projecting potential impacts of climate change on lakes using linked environmental models. Impacts of climate drivers on catchment hydrology and thermal balance in Onondaga Lake (New York State) are simulated using mechanistic models HSPF and UFILS4. Outputs from these models are fed into a lake ecosystem model, developed in AQUATOX. Watershed simulations project increases in the magnitude of peak flows and consequent increases in catchment nutrient export as the magnitude of extreme precipitation events increases. This occurs concurrently with a decrease in annual stream discharge as a result of increased evapotranspiration. Simulated lake water temperatures increase by as much as 5 °C during the 2040-2069 time period, accompanied by a prolonging of the duration of summer stratification. Projected changes include shifts in the timing of nutrient cycling between lake sediments and water column. Plankton taxa projected to thrive under climate change include green algae and Bosmina longirostris. Responses for species at higher trophic levels are mixed. Benthic macroinvertebrates may either prosper (zebra mussels) or decline (chironomids), while fish (e.g., gizzard shad) exhibit high seasonal variability without any clear trend.  相似文献   

5.
We studied the effect of aquatic vegetation on the process of species sorting and community assembly of three functional groups of plankton organisms (phytoplankton, seston-feeding zooplankton, and substrate-dwelling zooplankton) along a primary productivity gradient. We performed an outdoor cattle tank experiment (n = 60) making an orthogonal combination of a primary productivity gradient (four nutrient addition levels: 0, 10, 100, and 1000 microg P/L; N/P ratio: 16) with a vegetation gradient (no macrophytes, artificial macrophytes, and real Elodea nuttallii). We used artificial plants to evaluate the mere effects of plant physical structure independently from other plant effects, such as competition for nutrients or allelopathy. The tanks were inoculated with species-rich mixtures of phytoplankton and zooplankton. Both productivity and macrophytes affected community structure and diversity of the three functional groups. Taxon richness declined with increasing plankton productivity in each functional group according to a nested subset pattern. We found no evidence for unimodal diversity-productivity relationships. The proportional abundance of Daphnia and of colonial Scenedesmus increased strongly with productivity. GLM analyses suggest that the decline in richness of seston feeders was due to competitive exclusion by Daphnia at high productivity. The decline in richness of phytoplankton was probably caused by high Daphnia grazing. However, partial analyses indicate that these explanations do not entirely explain the patterns. Possibly, environmental deterioration associated with high productivity (e.g., high pH) was also responsible for the observed richness decline. Macrophytes had positive effects on the taxon richness of all three functional plankton groups and interacted with the initial productivity gradient in determining their communities. Macrophytes affected the composition and diversity of the three functional groups both by their physical structure and through other mechanisms. Part of the macrophyte effect may be indirect via a reduction of phytoplankton production. Our results also indirectly suggest that the often reported unimodal relationship between primary productivity and diversity in nature may be partially mediated by the tendency of submerged macrophytes to be most abundant at intermediate productivity levels.  相似文献   

6.
Attached algae play a minor role in conceptual and empirical models of lake ecosystem function but paradoxically form the energetic base of food webs that support a wide variety of fishes. To explore the apparent mismatch between perceived limits on contributions of periphyton to whole-lake primary production and its importance to consumers, we modeled the contribution of periphyton to whole-ecosystem primary production across lake size, shape, and nutrient gradients. The distribution of available benthic habitat for periphyton is influenced by the ratio of mean depth to maximum depth (DR = z/ z(max)). We modeled total phytoplankton production from water-column nutrient availability, z, and light. Periphyton production was a function of light-saturated photosynthesis (BPmax) and light availability at depth. The model demonstrated that depth ratio (DR) and light attenuation strongly determined the maximum possible contribution of benthic algae to lake production, and the benthic proportion of whole-lake primary production (BPf) declined with increasing nutrients. Shallow lakes (z < or =5 m) were insensitive to DR and were dominated by either benthic or pelagic primary productivity depending on trophic status. Moderately deep oligotrophic lakes had substantial contributions by benthic primary productivity at low depth ratios and when maximum benthic photosynthesis was moderate or high. Extremely large, deep lakes always had low fractional contributions of benthic primary production. An analysis of the world's largest lakes showed that the shapes of natural lakes shift increasingly toward lower depth ratios with increasing depth, maximizing the potential importance of littoral primary production in large-lake food webs. The repeatedly demonstrated importance of periphyton to lake food webs may reflect the combination of low depth ratios and high light penetration characteristic of large, oligotrophic lakes that in turn lead to substantial contributions of periphyton to autochthonous production.  相似文献   

7.
The importance of airborne allochthonous litter to the carbon and nutrient budgets of lakes has been seldom studied. We complied data on the input of terrestrial litter to develop a simple and speculative model to predict the potential consequences of riparian deforestation on one aspect of lake metabolism, specifically the balance between phytoplankton production and plankton respiration. During the autumn of 1992, 56 litter traps were deployed around the littoral zones of four oligotrophic lakes in a densely forested region of northwestern Ontario, Canada. The airborne litter input was estimated to be 32 g dry weight per meter of forested shoreline per year. Allochthonous litter input per unit offshore distance was related to the size of riparian trees, their proximity to the shoreline, and the elevation of their canopy. Combining our data with those from other studies suggests that terrestrial litter can contribute up to 15% of the total carbon supply to oligotrophic lakes and up to 10% of the total phosphorus supply to lakes with a large surface area relative to that of their drainage basin. These results were incorporated into a simple model that predicts that removal of shoreline trees could increase the ratio of plankton production to respiration in oligotrophic lakes situated within small drainage basins. Such lakes may therefore shift from allotrophy to increasing autotropy (energy self-sustenance) following riparian deforestation.  相似文献   

8.
加拿大最佳管理措施流域评价项目评述   总被引:1,自引:0,他引:1  
可持续农业的目的是在保持良好环境质量的同时获得较高的农业生产率。最佳管理措施(BMPs)在世界范围内已得到广泛应用,以减少农业污染物对水环境的影响。自2004年以来,加拿大农业部实施了最佳管理措施流域评价(WEBs)项目,在全国各地选择了有代表性的9个小流域,对BMPs的环境和经济效益进行评价。笔者对过去几年来WEBs项目的进展、研究方法及主要成果进行简要的回顾,并对在中国开展类似项目的必要性和启示进行了探讨。  相似文献   

9.
Concentrations of Fe, Mn, Cu, dissolved organic matter (DOM), and pH were synthesized from 30 publications to determine the factors regulating concentrations and behavior of metals in freshwater systems. Results from the review suggest that contrasting watershed land use can directly (erosion and runoff) and indirectly (in-lake processes including metal–DOM–pH interactions) affect the metal concentrations in freshwater systems. Among the watershed land uses considered here, concentrations of Fe, Mn, and Cu were observed in the following order: arctic lakes < forested < agricultural < urbanized < mined. A drastic difference in mean metal concentrations has been observed when undisturbed or low impact watersheds (arctic and forested) were changed by agricultural, urban, and mining developments. Relationships between metal concentrations and pH revealed that metals precipitate at high pH (pH > 5). Additionally, at pH < 5, metal concentrations were significantly correlated with DOM due to metal–DOM complexation. High ratios of metal: DOM occur only at low DOM concentrations. Collectively, two general conclusions can be drawn from this review. First, lakes, rivers, and streams with urbanized watersheds are the most susceptible to increased concentrations of metals. Secondly, these results also suggest that regardless of high or low DOM in the water column, pH would affect metal concentrations in freshwater systems. Nonetheless, free metal ions would be higher in freshwater systems with acidic water and low DOM.  相似文献   

10.
The elemental composition of solutes transported by rivers reflects combined influences of surrounding watersheds and transformations within stream networks, yet comparatively little is known about downstream changes in effects of watershed loading vs. in-channel processes. In the forested watershed of a river under a mediterranean hydrologic regime, we examined the influence of longitudinal changes in environmental conditions on water-column nutrient composition during summer base flow across a network of sites ranging from strongly heterotrophic headwater streams to larger, more autotrophic sites downstream. Small streams (0.1-10 km2 watershed area) had longitudinally similar nutrient concentration and composition with low (approximately 2) dissolved nitrogen (N) to phosphorus (P) ratios. Abrupt deviations from this pattern were observed in larger streams with watershed areas > 100 km2 where insolation and algal abundance and production rapidly increased. Downstream, phosphorus and silica concentrations decreased by > 50% compared to headwater streams, and dissolved organic carbon and nitrogen increased by approximately 3-6 times. Decreasing dissolved P and increasing dissolved N raised stream-water N:P to 46 at the most downstream sites, suggesting a transition from N limitation in headwaters to potential P limitation in larger channels. We hypothesize that these changes were mediated by increasing algal photosynthesis and N fixation by benthic algal assemblages, which, in response to increasing light availability, strongly altered stream-water nutrient concentration and stoichiometry in larger streams and rivers.  相似文献   

11.
12.
利用农田系统中源汇型景观组合控制面源磷污染   总被引:3,自引:0,他引:3  
通过田间调查、采样分析和小区试验,研究浙江省农田系统中源汇型景观组合及其控制面源磷污染的效果.调查表明,浙江省农田系统中源、汇配置的景观类型主要有:蔬菜地 - 稻田系统、蔬菜地 - 茭白田系统、桑园地 -稻田系统、旱地 - 稻田系统、高施肥稻田 - 低施肥稻田系统、农地(稻田、旱地) - 多塘系统、农地(稻田、旱地) - 植草水道(泥质排水沟)等.不同利用方式农田排水中磷含量有较大的差异,总磷平均含量为桑园>蔬菜地>稻田、小麦田、油菜田>休闲地>茭白田.小区试验表明,利用蔬菜地(旱地) - 稻田 - 茭白系统、蔬菜 - 稻田系统、桑园 - 稻田系统和蔬菜地 - (多)水塘系统可明显降低磷流失.建议对某些养分流失严重的农业流域,通过调整土地利用方式和增加养分汇型景观面积来控制农业面源污染.  相似文献   

13.
N2 fixation can be an important source of N to limnetic ecosystems and can influence the structure of phytoplankton communities. However, watershed-scale conditions that favor N2 fixation in lakes and reservoirs have not been well studied. We measured N2 fixation and lacustrine variables monthly over a 19-month period in Waco Reservoir, Texas, USA, and linked these data with nutrient-loading estimates from a physically based watershed model. Readily available topographic, soil, land cover, effluent discharge, and climate data were used in the Soil and Water Assessment Tool (SWAT) to derive watershed nutrient-loading estimates. Categorical and regression tree (CART) analysis revealed that lacustrine and watershed correlates of N2 fixation were hierarchically structured. Lacustrine conditions showed greater predictive capability temporally. For instance, low NO3(-) concentration (<25 microg N/L) and high water temperatures (>27 degrees C) in the reservoir were correlated with the initiation of N2 fixation seasonally. When lacustrine conditions were favorable for N2 fixation, watershed conditions appeared to influence spatial patterns of N2 fixation within the reservoir. For example, spatially explicit patterns of N2 fixation were correlated with the ratio of N:P in nutrient loadings and the N loading rate, which were driven by anthropogenic activity in the watershed and periods of low stream flow, respectively. Although N2 fixation contributed <5% of the annual N load to the reservoir, 37% of the N load was derived from atmospheric N2 fixation during summertime when stream flow in the watershed was low. This study provides evidence that watershed anthropogenic activity can exert control on planktonic N2 fixation, but that temporality is controlled by lacustrine conditions. Furthermore, this study also supports suggestions that reduced inflows may increase the propensity of N2-fixing cyanobacterial blooms in receiving waters of anthropogenically modified landscapes.  相似文献   

14.
Although regional and global models of nitrogen (N) cycling typically focus on nitrate, dissolved organic nitrogen (DON) is the dominant form of nitrogen export from many watersheds and thus the dominant form of dissolved N in many streams. Our understanding of the processes controlling DON export from temperate forests is poor. In pristine systems, where biological N limitation is common, N contained in recalcitrant organic matter (OM) can dominate watershed N losses. This recalcitrant OM often has moderately constrained carbon:nitrogen (C:N) molar ratios (approximately 25-55) and therefore, greater DON losses should be observed in sites where there is greater total dissolved organic carbon (DOC) loss. In regions where anthropogenic N pollution is high, it has been suggested that increased inorganic N availability can reduce biological demand for organic N and therefore increase watershed DON losses. This would result in a positive correlation between inorganic and organic N concentrations across sites with varying N availability. In four repeated synoptic surveys of stream water chemistry from forested watersheds along an N loading gradient in the southern Appalachians, we found surprisingly little correlation between DON and DOC concentrations. Further, we found that DON concentrations were always significantly correlated with watershed N loading and stream water [NO3-] but that the direction of this relationship was negative in three of the four surveys. The C:N molar ratio of dissolved organic matter (DOM) in streams draining watersheds with high N deposition was very high relative to other freshwaters. This finding, together with results from bioavailability assays in which we directly manipulated C and N availabilities, suggests that heterotrophic demand for labile C can increase as a result of dissolved inorganic N (DIN) loading, and that heterotrophs can preferentially remove N-rich molecules from DOM. These results are inconsistent with the two prevailing hypotheses that dominate interpretations of watershed DON loss. Therefore, we propose a new hypothesis, the indirect carbon control hypothesis, which recognizes that heterotrophic demand for N-rich DOM can keep stream water DON concentrations low when N is not limiting and heterotrophic demand for labile C is high.  相似文献   

15.
Spatial and temporal variations and the factors influencing primary production have been studied in three different mangrove waters (Pichavaram, Ennore Creek and Adyar Estuary) of South India characterised by different anthropogenic impacts. the gross primary productivity in the unpolluted Pichavaram mangrove was 113 g Cm-2yr-1 exhibiting natural variability with the environmental forcing factors. Human activities have elevated primary productivity in the Ennore Creek mangrove (157g Cm-2yr-1) primarily through the direct discharge of fertilizer effluents. By contrast, a combination of domestic and industrial effluent discharges into the Adyar Estuary mangrove has considerably reduced phytoplankton primary productivity 83g Cm-2yr-1 the Redfield N: P ratio varies from 0.96 N: 1P at Ennore Creek, 1.75N: 1P at Adyar Estuary to 15.2 N: 1P at Pichavaram mangroves. This suggests that the Pichavaram mangroves represent a well equilibrated ecosystem with N: P ratio close to steady-state values in contrast to the anthropogenically altered mangrove ecosystems studied. Results show a significant temporal variability in nutrient concentration in the three mangrove areas. Distinct differences in nutrient concentrations between the dry and the wet seasons have been observed.  相似文献   

16.
The rate and extent of deforestation determine the timing and magnitude of disturbance to both terrestrial and aquatic ecosystems. Rapid change can lead to transient impacts to hydrology and biogeochemistry, while complete and permanent conversion to other land uses can lead to chronic changes. A large population of watershed boundaries (N=4788) and a time series of Landsat TM imagery (1975-1999) in the southwestern Amazon Basin showed that even small watersheds (2.5-15 km2) were deforested relatively slowly over 7-21 years. Less than 1% of all small watersheds were more than 50% cleared in a single year, and clearing rates averaged 5.6%/yr during active clearing. A large proportion (26%) of the small watersheds had a cumulative deforestation extent of more than 75%. The cumulative deforestation extent was highly spatially autocorrelated up to a 100-150 km lag due to the geometry of the agricultural zone and road network, so watersheds as large as approximately 40000 km2 were more than 50% deforested by 1999. The rate of deforestation had minimal spatial autocorrelation beyond a lag of approximately 30 km, and the mean rate decreased rapidly with increasing area. Approximately 85% of the cleared area remained in pasture, so deforestation in watersheds of Rond?nia was a relatively slow, permanent, and complete transition to pasture, rather than a rapid, transient, and partial cutting with regrowth. Given the observed landcover transitions, the regional stream biogeochemical response is likely to resemble the chronic changes observed in streams draining established pastures, rather than a temporary pulse from slash-and-burn.  相似文献   

17.
This study was aimed at determining microbial biomass at land water interface and the role it plays in regulating ecosystem properties of a fresh water dry tropical woodland lake. Four microbial variables namely biomass-C (Cmic), fumigated CO2-C, substrate induced respiration (SIR) and basal respiration (BR) were measured in humus samples collected from land water interface over a period of one year Microbial biomass (Cmic) was maximum during February (718 micorg CO2-C g(-1)). Similar was the case of fumigated CO2-C (560 microg CO2-C g(-1) 10 d(-1)), SIR (2900 microg CO2-C g(-1)) and BR (480 microg CO2-C g(-1)). Humus-N appeared maximum (1.60%) during November and phenolics (204 microg g(-1)) during December Gross primary productivity (GPP) was found maximum (3.30 g Cm(-2)d(-1)) during March. Almost similar trend appeared for chlorophyll and phytoplankton density. Variation in microbial biomass at land water interface can be explained by seasonality and the quality of substrate material. Asynchrony in the peaks of microbial variables with phytoplankton pulsation and GPP suggested that the microbial biomass through nutrient mineralization regulates ecosystem functioning of a fresh water woodland lake. This has relevance for evaluating the nature of anthropogenic perturbations and for maintenance of fresh water lakes void of human disturbances.  相似文献   

18.
Humanity's future depends on the preservation of natural ecosystems that supply resources and absorb pollutants. Rural and urban productions are currently based on chemical products made from petroleum, which are responsible for high negative impacts on the Biosphere. In order to prevent those impacts, efficient public policies seeking for sustainable development are necessary. Aiming to assess the load on the environment (considering the gratuitous contributions of natural systems—a donor's perspective) due to human-dominated process, a scientific tool called Emergy Evaluation has been applied in different production systems, including crops and farms. However, there is still a lack of emergy studies in the context of watersheds, probably due to the difficulty of collecting raw data. The present work aims to carry out an assessment of Mogi-Guaçu and Pardo watershed, through the combined use of Emergy Evaluation and Geographical Information System. The agricultural and natural land uses were considered, while urban areas were excluded. Emergy flows (expressed in seJ ha−1 yr−1) obtained for all agricultural and natural land uses were expanded for the whole watershed and the emergy indices were calculated. The results show that the watershed has: low renewability (%R = 32%); low capture of natural resources through high external economic investment (EYR = 1.86); low dependence on natural resources (EIR = 1.16); and moderate load on the environment (ELR = 2.08). Considering a scenario where sugar-cane crops, orchards and pasture areas are converted from conventional to organic management, watershed's emergy performance improved, reaching a new renewability of 38%, but it is still not enough to be considered sustainable.  相似文献   

19.
Alternative stable states in shallow lakes are typically characterized by submerged macrophyte (clear-water state) or phytoplankton (turbid state) dominance. However, a clear-water state may occur in eutrophic lakes even when macrophytes are absent. To test whether sediment algae could cause a regime shift in the absence of macrophytes, we developed a model of benthic (periphyton) and planktonic (phytoplankton) primary production using parameters derived from a shallow macrophyte-free lake that shifted from a turbid to a clear-water state following fish removal (biomanipulation). The model includes a negative feedback effect of periphyton on phosphorus (P) release from sediments. This in turn induces a positive feedback between phytoplankton production and P release. Scenarios incorporating a gradient of external P loading rates revealed that (1) periphyton and phytoplankton both contributed substantially to whole-lake production over a broad range of external P loading in a clear-water state; (2) during the clear-water state, the loss of benthic production was gradually replaced by phytoplankton production, leaving whole-lake production largely unchanged; (3) the responses of lakes to biomanipulation and increased external P loading were both dependent on lake morphometry; and (4) the capacity of periphyton to buffer the effects of increased external P loading and maintain a clear-water state was highly sensitive to relationships between light availability at the sediment surface and the of P release. Our model suggests a mechanism for the persistence of alternative states in shallow macrophyte-free lakes and demonstrates that regime shifts may trigger profound changes in ecosystem structure and function.  相似文献   

20.
The United States' use of coal results in many environmental alterations. In the Appalachian coal belt region, one widespread alteration is conversion of forest to reclaimed mineland. The goal of this study was to quantify the changes to ecosystem structure and function associated with a conversion from forest to reclaimed mine grassland by comparing a small watershed containing a 15-year-old reclaimed mine with a forested, reference watershed in western Maryland. Major differences were apparent between the two watersheds in terms of biogeochemistry. Total C, N, and P pools were all substantially lower at the mined site, mainly due to the removal of woody biomass but also, in the case of P, to reductions in soil pools. Mineral soil C, N, and P pools were 96%, 79%, and 69% of native soils, respectively. Although annual runoff from the watersheds was similar, the mined watershed exhibited taller, narrower storm peaks as a result of a higher soil bulk density and decreased infiltration rates. Stream export of N was much lower in the mined watershed due to lower net nitrification rates and nitrate concentrations in soil. However, stream export of sediment and P and summer stream temperature were much higher. Stream leaf decomposition was reduced and macroinvertebrate community structure was altered as a result of these changes to the stream environment. This land use change leads to substantial, long-term changes in ecosystem capital and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号