首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 749 毫秒
1.
The influence of different fractions of soil organic matter on the retention of the herbicide isoproturon (IPU) has been evaluated. Water and methanol extractable residues of (14)C labeled isoproturon have been determined in two Moroccan soils by beta -counting-liquid chromatography. The quantification of bound residues in soil and in different fractions of soil humic substances has been performed using pyrolysis/scintillation-detected gas-chromatography. Microbial mineralization of the herbicide and soil organic matter has been also monitored. Retention of isoproturon residues after 30-days incubation ranged from 22% to 32% (non-extractable fraction). The radioactivity extracted in an aqueous environment was from 20% to 33% of the amount used for the treatment; meanwhile, methanol was able to extract another 48%. Both soils showed quantities of bound residues into the humin fraction higher than humic and fulvic acids. The total amount of residues retained into the organic matter of the soils was about 65 % of non-extractable fraction, and this percentage did not change with incubation time; on the contrary, the sorption rate of the retention reaction is mostly influenced by the clay fraction and organic content of the soil. Only a little part of the herbicide was mineralized during the experimental time.  相似文献   

2.
The influence of different fractions of soil organic matter on the retention of the herbicide isoproturon (IPU) has been evaluated. Water and methanol extractable residues of 14C labeled isoproturon have been determined in two Moroccan soils by β -counting–liquid chromatography. The quantification of bound residues in soil and in different fractions of soil humic substances has been performed using pyrolysis/scintillation-detected gas-chromatography. Microbial mineralization of the herbicide and soil organic matter has been also monitored. Retention of isoproturon residues after 30-days incubation ranged from 22% to 32% (non-extractable fraction). The radioactivity extracted in an aqueous environment was from 20% to 33% of the amount used for the treatment; meanwhile, methanol was able to extract another 48%. Both soils showed quantities of bound residues into the humin fraction higher than humic and fulvic acids. The total amount of residues retained into the organic matter of the soils was about 65 % of non-extractable fraction, and this percentage did not change with incubation time; on the contrary, the sorption rate of the retention reaction is mostly influenced by the clay fraction and organic content of the soil. Only a little part of the herbicide was mineralized during the experimental time.  相似文献   

3.
An unbalanced nested sampling design was used to investigate the spatial scale of soil and herbicide interactions at the field scale. A hierarchical analysis of variance based on residual maximum likelihood (REML) was used to analyse the data and provide a first estimate of the variogram. Soil samples were taken at 108 locations at a range of separating distances in a 9 ha field to explore small and medium scale spatial variation. Soil organic matter content, pH, particle size distribution, microbial biomass and the degradation and sorption of the herbicide, isoproturon, were determined for each soil sample. A large proportion of the spatial variation in isoproturon degradation and sorption occurred at sampling intervals less than 60 m, however, the sampling design did not resolve the variation present at scales greater than this. A sampling interval of 20-25 m should ensure that the main spatial structures are identified for isoproturon degradation rate and sorption without too great a loss of information in this field.  相似文献   

4.
Equilibrium measurements were carried out with the herbicide isoproturon on natural adsorbents (brown forest-, chernozem-, sandy soils and quartz) in different buffered media (pH 5, 7, 8 phosphate buffer). Adsorption isotherms were fitted by a multi-step adsorption equation providing numerical information used in the environmental propagation models and risk assessment works. In the adsorption of the slightly polar isoproturon the dissolved organic matter of the soil and the pH play an important role. At molecular level, results are interpreted by taking into consideration the hydrophobic interaction and the formation of hydrogen bonds between the surface and the solute. The observed adsorption behavior indicates that the organic matter content of the soils and its soluble fulvic acid, alkaline soluble humic acid and insoluble humin fractions were considerable different. The chernozem soil containing the highest amount of insoluble organic fraction proved to be a very efficient adsorbent. The brown forest and the sandy soils exhibit rather similar adsorbent properties but at pH 7 the latter containing more fulvic acid adsorbs less isoproturon due to the enhanced solubility of the soil organic matter. In alkaline conditions the negatively charged solute and the surface repel each other and the hydrophobic interactions are also weaker than in neutral media.  相似文献   

5.
Atrazine and phenanthrene (Phen) sorption by nonhydrolyzable carbon (NHC), black carbon (BC), humic acid (HA) and whole sediment and soil samples was examined. Atrazine sorption isotherms were nearly linear. The single-point organic carbon (OC)-normalized distribution coefficients (KOC) of atrazine for the isolated HA1, NHC1 and BC1 from sediment 1 (ST1) were 36, 550, and 1470 times greater than that of ST1, respectively, indicating the importance of sediment organic matter, particularly the condensed fractions (NHC and BC). Similar sorption capacity of atrazine and Phen by NHC but different isotherm nonlinearity indicated different sorption domains due to their different structure and hydrophobicity. The positive relationship between (O + N)/C ratios of NHC and atrazine log KOC at low concentration suggests H-bonding interactions. This study shows that sediment is probably a less effective sorbent for atrazine than Phen, implying that atrazine applied in sediments or soils may be likely to leach into groundwater.  相似文献   

6.
This study was undertaken to determine sorption coefficients of eight herbicides (alachlor, amitrole, atrazine, simazine, dicamba, imazamox, imazethapyr, and pendimethalin) to seven agricultural soils from sites throughout Lithuania. The measured sorption coefficients were used to predict the susceptibility of these herbicides to leach to groundwater. Soil-water partitioning coefficients were measured in batch equilibrium studies using radiolabeled herbicides. In most soils, sorption followed the general trend pendimethalin > alachlor > atrazine approximately amitrole approximately simazine > imazethapyr > imazamox > dicamba, consistent with the trends in hydrophobicity (log K(ow)) except in the case of amitrole. For several herbicides, sorption coefficients and calculated retardation factors were lowest (predicted to be most susceptible to leaching) in a soil of intermediate organic carbon content and sand content. Calculated herbicide retardation factors were high for soils with high organic carbon contents. Estimated leaching times under saturated conditions, assuming no herbicide degradation and no preferential water flow, were more strongly affected by soil textural effects on predicted water flow than by herbicide sorption effects. All herbicides were predicted to be slowest to leach in soils with high clay and low sand contents, and fastest to leach in soils with high sand content and low organic matter content. Herbicide management is important to the continued increase in agricultural production and profitability in the Baltic region, and these results will be useful in identifying critical areas requiring improved management practices to reduce water contamination by pesticides.  相似文献   

7.
Atrazine and metolachlor were more strongly retained on earthworm (Lumbricus terrestris L.) castings than on soil, suggesting that earthworm castings at the surface or at depth can reduce herbicide movement in soil. Herbicide sorption by castings was related to the food source available to the earthworms. Both atrazine and metolachlor sorption increased with increasing organic carbon (C) content in castings, and Freundlich constants (Kf values) generally decreased in the order: soybean-fed > corn-fed > not-fed-earthworm-castings. The amount of atrazine or metolachlor sorbed per unit organic carbon (Koc values) was significantly greater for corn-castings compared with other castings, or soil, suggesting that the composition of organic matter in castings is also an important factor in determining the retention of herbicides in soils. Herbicide desorption was dependent on both the initial herbicide concentration, and the type of absorbent. At small equilibrium herbicide concentrations, atrazine desorption was significantly greater from soil than from any of the three casting treatments. At large equilibrium herbicide concentrations, however, the greater organic C content in castings had no significant effect on atrazine desorption, relative to soil. For metolachlor, regardless of the equilibrium herbicide concentration, desorption from soybean- and corn-castings treatments was always less than desorption from soil and not-fed earthworm castings treatments. The results of this study indicate that, under field conditions, the extent of herbicide retention on earthworm castings will tend to be related to crop and crop residue management practices.  相似文献   

8.
This study was undertaken to determine sorption coefficients of eight herbicides (alachlor, amitrole, atrazine, simazine, dicamba, imazamox, imazethapyr, and pendimethalin) to seven agricultural soils from sites throughout Lithuania. The measured sorption coefficients were used to predict the susceptibility of these herbicides to leach to groundwater. Soil-water partitioning coefficients were measured in batch equilibrium studies using radiolabeled herbicides. In most soils, sorption followed the general trend pendimethalin > alachlor > atrazine~ amitrole~ simazine > imazethapyr > imazamox > dicamba, consistent with the trends in hydrophobicity (log Kow) except in the case of amitrole. For several herbicides, sorption coefficients and calculated retardation factors were lowest (predicted to be most susceptible to leaching) in a soil of intermediate organic carbon content and sand content. Calculated herbicide retardation factors were high for soils with high organic carbon contents. Estimated leaching times under saturated conditions, assuming no herbicide degradation and no preferential water flow, were more strongly affected by soil textural effects on predicted water flow than by herbicide sorption effects. All herbicides were predicted to be slowest to leach in soils with high clay and low sand contents, and fastest to leach in soils with high sand content and low organic matter content. Herbicide management is important to the continued increase in agricultural production and profitability in the Baltic region, and these results will be useful in identifying critical areas requiring improved management practices to reduce water contamination by pesticides.  相似文献   

9.
Abstract

Atrazine and metolachlor were more strongly retained on earthworm (Lumbricus terrestris L.) castings than on soil, suggesting that earthworm castings at the surface or at depth can reduce herbicide movement in soil. Herbicide sorption by castings was related to the food source available to the earthworms. Both atrazine and metolachlor sorption increased with increasing organic carbon (C) content in castings, and Freundlich constants (Kf values) generally decreased in the order: soybean‐fed > corn‐fed > not‐fed‐earthworm‐castings. The amount of atrazine or metolachlor sorbed per unit organic carbon (Koc values) was significantly greater for corn‐castings compared with other castings, or soil, suggesting that the composition of organic matter in castings is also an important factor in determining the retention of herbicides in soils. Herbicide desorption was dependent on both the initial herbicide concentration, and the type of absorbent. At small equilibrium herbicide concentrations, atrazine desorption was significantly greater from soil than from any of the three casting treatments. At large equilibrium herbicide concentrations, however, the greater organic C content in castings had no significant effect on atrazine desorption, relative to soil. For metolachlor, regardless of the equilibrium herbicide concentration, desorption from soybean‐ and corn‐castings treatments was always less than desorption from soil and not‐fed earthworm castings treatments. The results of this study indicate that, under field conditions, the extent of herbicide retention on earthworm castings will tend to be related to crop and crop residue management practices.  相似文献   

10.
In this study, the effects of size of adsorbent, temperature, pH of solution, ionic strength, presence of inorganic substances such as calcium ion, magnesium ions, chloride ions, fertilizers and presence of organic substances such as dissolved organic matter, surfactant, other herbicides on sorption of 2,4-D and atrazine onto rubber granules were investigated. The removal efficiency was more for fine adsorbent particles. Temperature played an important role in sorption process. Temperature effect was endothermic for 2,4-D and exothermic for atrazine, respectively. The removals were maximum at pH 4 for 2,4-D and at pH 6 for atrazine. The presence of other herbicide (butachlor) reduced sorption capacity of rubber granules by approximately 10% for both 2,4-D and atrazine. All other factors had insignificant effect on sorption capacity. The mathematical expressions were developed for predicting the overall percentage removal of 2,4-D and atrazine on the basis of major four controlling factors viz. adsorbent size, temperature, pH and presence of other herbicide.  相似文献   

11.
He Y  Xu J  Wang H  Zhang Q  Muhammad A 《Chemosphere》2006,65(3):497-505
Sorption of pentachlorophenol (PCP) by pure minerals and humic acids were measured to obtain additional perspective on the potential contributions of both clay minerals and soil organic matter (SOM) to contaminants retention in soils. Four types of common soil minerals and two kinds of humic acids (HAs) were tested. The sorption affinity for PCP conformed to an order of HAs > K-montmorillonite > Ca-montmorillonite > goethite > kaolinite. Such a difference in sorption capacity could be attributed to the crucial control of HAs. Clay minerals also had their contribution, especially K-montmorillonite, which played an important, if not dominant, role in the controlling process of PCP sorption. By removing 80% (on average) of the organic carbon from the soils with H(2)O(2), the sorption decreased by an average of 50%. The sorption reversibility had been greatly favored as well. Considering the uncharged mineral fractions in soil before and after H(2)O(2)-treated, the main variation in sorption behavior of the soil might thus be related to the removed organic carbon and the reduced pH. This testified rightly the interactive effect of SOM and clay minerals on PCP sorption as a function of pH.  相似文献   

12.
Using the soil-water sorption partitioning coefficient (Kd), this study quantified the spatial variation of 2,4-D sorption by soil in an undulating-to-hummocky terrain landscape near Minnedosa, MB, Canada. Herbicide sorption was most strongly related to soil organic matter content and slope position, with greatest sorption occurring in lower landscape positions with greater soil organic matter content. The relation between sorption and slope position was more pronounced under conventional tillage (CT) than under long-term zero-tillage (ZT). Using multivariate regression and three independent variables (soil organic matter content, soil clay content and soil pH), the prediction of herbicide sorption by soil was very good for CT (R2 = 0.89) and adequately for ZT (R2 = 0.53).  相似文献   

13.
Study of sorption kinetics of some ionic liquids on different soil types   总被引:1,自引:0,他引:1  
In the present contribution sorption kinetics experiments under static conditions were utilized in three selected ionic liquids cations (1-ethyl-3-methylimidazolium, 1-butyl-3-methylimidazolium, 1-hexyl-3-methylimidazolium chlorides) study with five type of soil, differing in total organic carbon (TOC) content. The experimental results indicate the sorption capacity growth with increase in TOC content and hydrophobicity of ionic liquid cation. The obtained kinetic sorption parameters as well as distribution coefficients (Kd) were used to estimate the sorption properties of the soil types towards the ionic liquids in question. The Gibbs free energy values indicate that ionic liquid cations sorption on soils could be generally considered as a physical adsorption with exothermic effect. But the values of −dG for studied cations sorption on soil with very high of TOC content in soil (45%) may testify to nature of chemical adsorption. Sorption of the analyzed compounds occurs probably by means of hydrogen bonds, electrostatic and π  π interaction with the organic matter and the clay minerals of the soils.  相似文献   

14.
The sorption-desorption of metolachlor [2-chloro-N-(ethyl-6-methyl phenyl)-N-(2-methoxy-1-methyl ethyl) acetamide], isoproturon [3-(4-isopropyl phenyl)-1,1-dimethyl urea] and terbuthylazine [N6-tert butyl-6-chloro-N4-ethyl-1,3,5-triazine-2,4-diamine] herbicides was studied in two German soils at 1:10 soil to water ratio by batch method. Equilibrium of herbicides between soil and water (0.01 M CaCl2) was attained in 2 h. Sorption data fitted very well to Freundlich equation, represented by very high correlation coefficient (r2 > 0.934). Comparison of Freundlich K values indicated that sorption of all the three herbicides was most pronounced in soil having higher organic carbon content. Koc values were as expected nearly identical for each herbicide in the two soils. The Freundlich constant (1/n) was about 1 for metolachlor and less than 1 for terbuthylazine and isoproturon indicating a L-type of sorption isotherms. Desorption of all the three herbicides showed hysteresis. Nearly equal amounts of metolachlor, isoproturon and terbuthylazine were desorbed from both soils. There was a good correlation between Koc and solubility.  相似文献   

15.
The use of organic amendments has been suggested as a method of controlling pesticide leaching through soils. The enarenados soils of the intensive horticulture of the Almeria province of southern Spain contain buried organic matter horizons above a soil layer amended with clay. This region is ideal for understanding the potential for and limitations of organic amendments in preventing pesticide pollution. This study measured the sorption and degradation potential of carbofuran in this soil system and the hydrological behaviour of the soil horizons. The sorption of carbofuran was controlled by the organic carbon content, the degradation was strongly pH-dependent and the acidic organic layer protected the sorbed carbofuran against degradation. Hydrologically, the soil system is dominated by ponding above an amended clay layer and by the presence of macropores that can transport water through this clay. A simple model is proposed on this basis and shows that although high levels of dissolved organic carbon can be released by buried organic horizons, the major control on re-release of sorbed pesticide is the potential for sorption hysteresis in this organic layer. A comparison of sorption and degradation data for carbamate insecticides used in the region with groundwater observations for these compounds shows that no amount of incorporated organic would protect against pollution from highly water-soluble compounds.  相似文献   

16.
Laboratory studies were conducted to determine the sorption behaviour of six commonly used pesticides (acetochlor, atrazine, carbendazim, diazinon, imidacloprid and isoproturon) on Hungarian brown forest soil with clay alluviation (Luvisol) using the batch equilibrium technique. The sorption isotherms could be described by the Freundlich equation in non-linear form (n < 1) for all compounds, however in case of diazinon using the extended Freundlich equation proved to be a better approach. The adsorption constant related soil organic carbon content (Koc) calculated from Freundlich equation were 314 for acetochlor, 133 for atrazine, 2805 for carbendazim, 1589 for diazinon, 210 for imidacloprid and 174 for isoproturon. The octanol-water partition coefficients (Pow), which can be a useful parameter to predict of adsorption behaviour of a chemical on soil, and dissociation coefficients of these pesticides were calculated based on the chemical structure of them using a computerized expert system. The octanol-water partition coefficients were determined experimentally from high performance liquid chromatographic parameters as well. Good agreement was observed between experimental and the computer expert system estimated data. Computer estimated log Pow values ranged 0.5 and 3.86 for the examined pesticides, with imidacloprid and diazinon being the least and most hydrophobic respectively. Experimentally determined logPow ranged between 0.92 and 3.81 with the same tendency. It can be concluded that the Freundlich adsorption constants (Kf) are slightly related to the octanol-water partition coefficients of investigated chemicals, nevertheless no close correlation could be established because of the influence of further characteristics of solutes and soil.  相似文献   

17.
This study quantified 2,4-D [(2,4-dichlorophenoxy)acetic acid] sorption and mineralization rates in five soils as influenced by soil characteristics and nutrient contents. Results indicated that 2.4-D was weakly sorbed by soil, with Freundlich distribution coefficients ranging from 0.81 to 2.89 microg(1 - 1/n) g(-1) mL(1/n). First-order mineralization rate constants varied from 0.03 to 0.26, corresponding to calculated mineralization half-lives of 3 and 22 days, respectively. Herbicide sorption generally increased with increasing soil organic carbon content, but the extent of 2,4-D sorption per unit organic carbon varied among the soils due to differences in soil pH, clay content and/or organic matter quality. Herbicide mineralization rates were greater in soils that sorbed more 2,4-D per unit organic carbon, and that had greater soil nitrogen contents. We conclude that the effect of sorption on herbicide degradation cannot be generalized without a better understanding of the effects of soil characteristics and nutrient content on herbicide behavior in soil.  相似文献   

18.
Rhamnolipids produced by Pseudomonas aeruginosa have been proposed as soil washing agents for enhanced removal of metal and organic contaminants from soil. A potential limitation for the application of rhamnolipids is sorption by soil matrix components. The objective of this study is to empirically determine the contribution of representative soil constituents (clays, metal oxides, and organic matter) to sorption of the rhamnolipid form most efficient at metal complexation (monorhamnolipid). Sorption studies show that monorhamnolipid (R1) sorption is concentration dependent. At low R1 concentrations that are relevant for enhancing organic contaminant biodegradation, R1 sorption followed the order: hematite (Fe(2)O(3))>kaolinite>MnO(2) approximately illite approximately Ca-montmorillonite>gibbsite (Al(OH)(3))>humic acid-coated silica. At high R1 concentrations, relevant for use in complexation/removal of metals or organics, R1 sorption followed the order: illite>humic acid-coated silica>Ca-montmorillonite>hematite>MnO(2)>gibbsite approximately kaolinite. These results allowed prediction of R1 sorption by a series of six soils. Finally, a comparison of R1 and R2 (dirhamnolipid) shows that the R1 form sorbs more strongly alone than when in a mixture of both the R1 and R2 forms. The information presented can be used to estimate, on an individual soil basis, the extent of rhamnolipid sorption. This is important for determining: (1) whether rhamnolipid addition is a feasible remediation option and (2) the amount of rhamnolipid required to efficiently remove the contaminant.  相似文献   

19.
Organic matter has long been recognized as the main sorbent phase in soils for hydrophobic organic compounds (HOCs). In recent times, there has been an increasing realization that not only the amount, but also the chemical composition, of organic matter can influence the sorption properties of a soil. Here, we show that the organic carbon-normalized sorption coefficient (K(OC)) for diuron is 27-81% higher in 10 A11 horizons than in 10 matching A12 horizons for soils collected from a small (2ha) field. K(OC) was generally greater for the deeper (B) horizons, although these values may be inflated by sorption of diuron to clays. Organic matter chemistry of the A11 and A12 horizons was determined using solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. K(OC) was positively correlated with aryl C (r2=0.59, significance level 0.001) and negatively correlated with O-alkyl C (r2=0.84, significance level <0.001). This is only the second report of correlations between whole soil K(OC) and NMR-derived measures of organic matter chemistry. We suggest that this success may be a consequence of limiting this study to a very small area (a single field). There is growing evidence that interactions between organic matter and clay minerals strongly affect K(OC). However, because the soil mineralogy varies little across the field, the influence of these interactions is greatly diminished, allowing the effect of organic matter chemistry on K(OC) to be seen clearly. This study in some way reconciles studies that show strong correlations between K(OC) and the chemistry of purified organic materials and the general lack of such correlations for whole soils.  相似文献   

20.
Adding sludge to agricultural soil results in added organic matter, nutrients and metallic and/or organic pollutants. These components may modify the behaviour of pesticides in the soil. We monitored possible changes in the degradation of the herbicide isoproturon (production of CO2 and degradation products) in soil amended with sludge, heavy metals or nitrogen and phosphorus. The treated and control soils were incubated under controlled conditions for 60 days. The nitrogen and phosphorus had the greatest effect on isoproturon degradation, independent of the presence of pollutants. Mineralisation of the herbicide to CO2 was slow and seemed to be linked to a fast degradation and to the accumulation of a complex degradation product that was neither catabolized nor adsorbed, 4,4'-diisopropylazobenzene. This degradation pathway also produced smaller amounts of non-extractable residues. Sewage sludge had no significant effect on isoproturon degradation, despite a large increase of organic matter mineralisation (factor 2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号