首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The continuous and discontinuous release of petroleum hydrocarbons from an oil refinery in Alaska resulted in the contamination of an unconfined glacial outwash aquifer. Geologic conditions at the site allowed for the vertical migration of hydrocarbon product to the water table and subsequent formation of an areally extensive floating product layer. Since the petroleum hydrocarbon phase would provide a major source of BTX (benzene, toluene, xylene) contamination to the groundwater, interim product and groundwater recovery measures were initiated to limit aquifer degradation. Phase I remedial activities involved the operation of nine well pairs, with one well used for groundwater extraction and the other for product recovery. Phases II and III involved expansion of the recovery well network and use of a two-pump system. Petroleum product recovered was reprocessed at the refinery. Contaminated groundwater was initially treated using the refinery's wastewater treatment system, but treatment inefficiencies and continued system expansion necessitated use of a separate treatment unit. Performance evaluations indicate that the remedial phases have been successful in halting further contaminant migration and in recovering a significant volume of the released petroleum hydrocarbons.  相似文献   

2.
Industry and regulatory demands for rapid and cost-effective clean up of hydrocarbon and other contamination in soil and groundwater has prompted development and improvement of in-situ remediation technologies. In-situ technologies offer many advantages over ex-situ treatment alternatives, including lower initial capital and long-term operation and maintenance costs, less site disruption, no Resource Conservation and Recovery Act (RCRA) liability, and shorter treatment time necessary to achieve cleanup objectives. Fenton's reagent, a mixture of hydrogen peroxide and ferrous iron that generates a hydroxyl free radical as an oxidizing agent, is widely accepted for chemical oxidation of organic contaminants in the wastewater industry. In-situ implementation of Fenton's reagent for chemical oxidation of organic contaminants in soil and groundwater continues to grow in acceptance and application to a wide variety of environmental contaminants and hydrogeologic conditions (EPA, 1998).  相似文献   

3.
The direct application of surfactants to petroleum-contaminated soil has been proposed as a mechanism to increase the bioavailability of insoluble compounds. Solubilization of hydrophobic compounds into the aqueous phase appears to be a significant rate limiting factor in petroleum biodegradation in soil. Nonionic surfactants have been developed to solubilize a variety of compounds, thus increasing the desorption of contaminants from the soil. In this study, laboratory scale land treatment scenarios were used to monitor the bioremediation of petroleum contaminated soils. In efforts to achieve the lowest levels of residual petroleum hydrocarbons in the soil following biotreatment, 0.5 and 1.0% (volume/weight) surfactant was blended into soils under treatment. Two soil types were studied, a high clay content soil and a sandy, silty soil. In both cases, the addition of surfactant (Adsee 799®, a blend of ethoxylated fatty acids, Witco Corporation) stimulated biological activity as indicated by increased heterotropbic colony forming units per gram of soil. However, the increased activity was not correlated with removal of petroleum hydrocarbons. The results suggest that the application of surfactants directly to the soil for the purpose of solubilizing hydropbobic compounds was not successful in achieving greater levels of petroleum hydrocarbon removal.  相似文献   

4.
5.
Biological processes have been used to remediate petroleum hydrocarbons, pesticides, chlorinated solvents, and halogenated aromatic hydrocarbons. Biological treatment of contaminated soils may involve solid-phase, slurry-phase, or in situ treatment techniques. This article will review the general principle of solid-phase bioremediation and discuss the application of this technique for the cleanup of total petroleum hydrocarbons on two sites. These remedial programs will reduce total petroleum hydrocarbon contamination from the mean concentration of 2,660 ppm to under the 200-ppm cleanup criteria for soil and under the 15-ppm cleanup criteria for groundwater. Over 32,000 yards of soil have been treated by solid-phase treatment to date. The in situ system operation is effectively producing biodegradation in the subsurface. The project is approximately one-third complete.  相似文献   

6.
7.
石油烃污染地下水原位修复技术研究进展   总被引:15,自引:2,他引:15  
王业耀  孟凡生 《化工环保》2005,25(2):117-120
概述了石油烃污染地下水原位修复技术的进展,包括原位化学氧化、原位电动修复、渗透反应格栅、冲洗、土壤气抽出、地下水曝气、生物修复,并对今后的研究发展趋势进行了展望。  相似文献   

8.
An alternative method of in-situ groundwater sparging, termed density-driven convection (patent pending), is presented. This method has been successfully used to remediate eight underground storage tank releases involving a wide distillation range of petroleum hydrocarbons (gasoline to waste oil) and in a variety of site soils (clay to sandy gravel). Application of the density-driven convection method is detailed in a case study. The system, installed to remediate a gasoline and diesel release from an underground storage tank, was operated and monitored for a period of one year. Monitoring data indicate reductions in total petroleum hydrocarbon concentrations in groundwater and in soil. Concentrations of aromatic hydrocarbons (benzene, toluene, ethylbenzene, xylenes, and naphthalene) also decreased in both media. Stimulation of natural biodegradation, the primary mechanism of removal, occurred rapidly. Natural biological activity gradually declined over the subsequent 150 days. After one year of operation, the sparging system has achieved or is rapidly approaching the regulatory cleanup goals for both soil and groundwater, including reduction of dissolved concentrations below maximum contaminant levels established under the Safe Drinking Water Act.  相似文献   

9.
Subgrade biogeochemical reactors (SBGRs) are an in situ remediation technology shown to be effective in treating contaminant source areas and groundwater hot spots, while being sustainable and economical. This technology has been applied for over a decade to treat chlorinated volatile organic compound source areas where groundwater is shallow (e.g., less than approximately 30 feet below ground surface [ft bgs]). However, this article provides three case studies describing innovative SBGR configurations recently developed and tested that are outside of this norm, which enable use of this technology under more challenging site conditions or for treatment of alternative contaminant classes. The first SBGR case study addresses a site with groundwater deeper than 30 ft bgs and limited space for construction, where an SBGR column configuration reduced the maximum trichloroethene (TCE) groundwater concentration from 9,900 micrograms per liter (μg/L) to <1 μg/L (nondetect) within approximately 15 months. The second SBGR is a recirculating trench configuration that is supporting remediation of a 5.7‐acre TCE plume, which has significant surface footprint constraints due to the presence of endangered species habitat. The third SBGR was constructed with a new amendment mixture and reduced groundwater contaminant concentrations in a petroleum hydrocarbon source area by over 97% within approximately 1 year. Additionally, a summary is provided for new SBGR configurations that are planned for treatment of additional classes of contaminants (e.g., hexavalent chromium, 1,4‐dioxane, dissolved explosives constituents, etc.). A discussion is also provided describing research being conducted to further understand and optimize treatment mechanisms within SBGRs, including a recently developed sampling approach called the aquifer matrix probe.  相似文献   

10.
Synthetic musk fragrances (SMFs) have been shown to be micropollutants in various aquatic and groundwater systems, often occurring at microgram per liter concentrations. Studies have shown that the most commonly detected SMFs in water are nitro musks and polycyclic musks. The SMFs are typically introduced into the environment in continuous streams such as from wastewater and land application of wastewater or sludge generated during wastewater treatment. Various studies for the treatment of SMFs have been undertaken for wastewater but studies for the treatment of SMFs in groundwater are limited, especially for in situ treatment. A pilot‐scale test was conducted to determine if the use of colloidal activated carbon (CAC) could effectively reduce dissolved concentrations of nitro and polycyclic synthetic musk compounds including musk xylene, musk ketone, galaxolide, and tonalide. The pilot test was carried out downgradient of a septic system in Central Canada where a series of nitrification and denitrification reactions are occurring in an unconfined aquifer. A 10‐weight percent CAC solution was injected into a series of temporary direct push injection points to target the synthetic musk plume. The plume contained galaxolide and tonalide concentrations up to 687 and 187 nanograms per liter (ng/L), respectively, while the concentrations of musk ketone and musk xylene were below the method detection limit (20 ng/L). A total of 13,950 liters of CAC solution was injected during one injection event. The pilot test results indicated that the CAC was effectively delivered to the target injection zone resulting in an increase in total organic carbon concentrations within the saturated soil greater than two orders of magnitude compared to the background concentrations. Analyses of the groundwater chemistry before and post‐injection indicated that the CAC had no detrimental impact on the groundwater quality while reducing the concentration of dissolved galaxolide and tonalide within the plume to below the method detection limits within 51 days of injection with the exception of two of the 14 wells monitored which had galaxolide and tonalide concentrations up to 78 and 35 ng/L. Within 6 months of application, the concentrations of galaxolide and tonalide had decreased to below the method detection limits. Subsequent monitoring of the groundwater quality over a one‐year period failed to detect galaxolide and tonalide, suggesting that the CAC was effective in attenuating the galaxolide and tonalide.  相似文献   

11.
Traditional bioremediation approaches have been used to treat petroleum source contamination in readily accessible soils and sludges. Contamination under existing structures is a greater challenge. Options to deal with this problem have usually been in the extreme (i.e., to dismantle the facility and excavate to an acceptable regulated residual, or to pump and treat for an inordinately long period of time). The excavated material must be further remediated and cleanfill must be added to close the excavation. If site assessments were too conservative or incomplete, new contamination adulterating fill soils may result in additional excavation at some later date. Innovative, cost-efficient technologies must be developed to remove preexisting wastes under structures and to reduce future remediation episodes. An innovative soil bioremediation treatment method was developed and evaluated in petroleum hydrocarbon contaminated (PHC) soils at compressor stations of a natural gas pipeline running through Louisiana. The in-situ protocol was developed for remediating significant acreage subjected to contamination by petroleum-based lubricants and other PHC products resulting from a chronic leakage of lubricating oil used to maintain the pipeline itself. Initial total petroleum hydrocarbon (TPH) measurements revealed values of up to 12,000 mg/kg soil dry weight. The aim of the remediation project was to reduce TPH concentration in the contaminated soils to a level of <200 mg/kg soil dry weight, a level negotiated to be acceptable to state and federal regulators. After monitoring the system for 122 days, all sites showed greater than 99-percent reduction in TPH concentration.  相似文献   

12.
Deep drainage technique utilised for flood mitigation in low-land coastal areas of Australia during the late 1960s has resulted in the generation of sulphuric acid in soil by the oxidation of pyritic materials. Further degradation of the subsurface environment with widespread contamination of the underlying soil and groundwater presents a major and challenging environmental issue in acid sulphate soil (ASS) terrains. Although several ASS remediation techniques recently implemented in the floodplain of Southeast Australia including operation of gates, tidal buffering and lime injections could significantly control the pyrite oxidation, they could not improve the long-term water quality. More recently, permeable reactive barriers (PRBs) filled with waste concrete aggregates have received considerable attention as an innovative, cost-effective technology for passive in situ clean up of groundwater contamination. However, long-term efficiency of these PRBs for treating acidic groundwater has not been established. This study analyses and evaluates the performance of a field PRB for treating the acidic water over 2.5 years. The pilot-scale alkaline PRB consisting of recycled concrete was installed in October 2006 at a farm of southeast New South Wales for treating ASS-impacted groundwater. Monitoring data of groundwater quality over a 30 month period were assessed to evaluate the long-term performance of the PRB. Higher pH value (~pH 7) of the groundwater immediately downstream of the PRB and higher rates of iron (Fe) and aluminium (Al) removal efficiency (>95%) over this study period indicates that recycled concrete could successfully treat acidic groundwater. However, the overall pH neutralising capacity of the materials within the barrier declined with time from an initial pH 10.2 to pH 7.3. The decline in the performance with time was possibly due to the armouring of the reactive material surface by the mineral precipitates in the form of iron and aluminium hydroxides and oxyhydroxides as indicated by geochemical modelling.  相似文献   

13.
Remediation of a large separate‐phase hydrocarbon product and associated dissolved‐phase gasoline plume was accelerated by coupling multiphase extraction with in situ microbial stimulation. At the beginning of remediation activities, the separate‐phase hydrocarbon plume extended an estimated seven acres with product thickness measuring up to 2.1 feet thick. Within 18 months after beginning extraction, reduction of gasoline constituents in groundwater became asymptotic and measureable product disappeared from the upgradient source area. At that time, the remediation team initiated a program of limited in situ anaerobic bioremediation with the goal of stimulating production of natural surfactants from native microbes to release petroleum from the soil matrix. Groundwater concentrations of gasoline constituents increased gradually over the next three years, improving recovery without biofouling the pump‐and‐treat infrastructure. Using this approach, the groundwater component of the remedy was completed in less than five years, substantially less than the 10 years to 15 years predicted by modeling. This strategy demonstrated a more sustainable approach to remediation, reducing electrical usage by an estimated 800 megawatt hours, reducing infrastructure requirements, and preserving an estimated 150 million gallons of groundwater for this arid agricultural area. © 2014 Wiley Periodicals, Inc.  相似文献   

14.
A pilot field study evaluated whether adding solid peroxygen materials during land treatment could cost effectively accelerate cleanup at a site contaminated with petroleum-related compounds. Five test cells were constructed containing approximately five cubic yards of soil contaminated with 300–400 mg/kg of total petroleum hydrocarbons (TPH). Three cells received treatment with solid peroxygen materials (either MgO2 or CaO2), while the other two cells served as controls (no peroxygen amendment). Adding solid peroxygen compounds effectively reduced the hydrocarbon contamination in the soils and decreased the treatment time. During this time, the concentration of TPH in soil in the three treatment cells decreased. In contrast, there was little loss of TPH from the two control cells simulating traditional land treatment. Adding the solid peroxygen materials reduced the total site remediation time, thereby reducing the overall costs.  相似文献   

15.
Arctic Foundations, Inc. (AFI), of Anchorage, Alaska, has developed a freeze barrier system designed to hydraulically isolate a contaminant source area. The system can be used for long‐term or temporary containment of groundwater until appropriate remediation techniques can be applied. The technology was evaluated under the United States Environmental Protection Agency's (EPA's) Superfund Innovative Technology Evaluation (SITE) program at the United States Department of Energy's (DOE's) Oak Ridge National Laboratory (ORNL) facility in Oak Ridge, Tennessee. For the demonstration, an array of freeze pipes called “thermoprobes” was installed to a depth of 30 feet below ground surface around a former waste collection pond and keyed into bedrock. The system was used to establish an impermeable frozen soil barrier to hydraulically isolate the pond. Demonstration personnel collected independent data to evaluate the technology's performance. A variety of evaluation tools were used—including a groundwater dye tracing investigation, groundwater elevation measurements, and subsurface soil temperature data—to determine the effectiveness of the freeze barrier system in preventing horizontal groundwater flow beyond the limits of the frozen soil barrier. Data collected during the demonstration provided evidence that the frozen soil barrier was effective in hydraulically isolating the pond.  相似文献   

16.
Partly due to the complex and variable composition of oily sludge generated by the petroleum industry, cost-effective treatment and proper disposal pose considerable challenges worldwide. In this study, an extended component-based analysis of the oily sludge from a flocculation-flotation unit of a wastewater treatment system in a refinery in Sweden was carried out over 1 year. The heterogeneity of the oily sludge is illustrated by the wide ranges of concentrations found for different chemical components, particularly metals. Among the petroleum hydrocarbons, the most abundant compounds were nonpolar aliphatic hydrocarbons (63.7 ± 16.7 g kg−1); from the benzene, toluene, ethylbenzene, and xylene group, xylenes (91–240 mg kg−1) were most abundant; and among polycyclic aromatic hydrocarbons, naphthalene (25.7 ± 21.4), fluorene (27.25 ± 10.0), and phenanthrene (43.8 ± 18.4 mg kg−1) were most abundant (all results in terms of dry matter). Based on the EU guidelines and the mean concentration values for metals found in the oily sludge, e.g., Pb (135.4 ± 125.8), Cu (105.2 ± 79.1), Hg (42.8 ± 31.3), Ni (320 ± 267.4), and Zn (1321.7 ± 529.9 mg kg−1), disposal of oily sludge even in landfills for hazardous waste is not allowed. The organic content of the sludge can be reduced through biotreatment, but not the metal content. A multistep component-based treatment scheme is therefore needed.  相似文献   

17.
李援  王亭  王岽  郦和生 《化工环保》2018,38(3):344-347
采用原位修复法处理石油烃污染土壤,考察了土壤中石油烃的自然降解情况,研究了土壤改良剂和生物营养剂对石油烃降解的促进作用。实验结果表明:将总石油烃含量约为5 g/kg的实验土样降解30 d,自然降解时总石油烃降解率为7.8%;当单独加入1.0%(w)的土壤改良剂时,总石油烃降解率达36.0%;当单独加入1.0 g/kg的生物营养剂时,总石油烃降解率为51.6%;最佳促进剂配方为土壤改良剂加入量1.0%(w),生物营养剂加入量1.0 g/kg,此条件下总石油烃降解率为80.1%。  相似文献   

18.
This article describes the design, implementation, and operating results for an ex situ ultraviolet/hydrogen peroxide (UVP) system to treat methyl tert‐butyl ether (MTBE) in extracted groundwater. The UVP modification was designed to reduce the operation and maintenance costs of an existing groundwater pump‐and‐treat treatment system that relied on air stripping and carbon adsorption. The UVP system is relatively inexpensive and can easily be scaled to cope with different groundwater extraction rates up to 80 gpm by adding UV lamps in series or in parallel at the higher groundwater extraction rates. The MTBE concentration in the effluent from the UVP system to the carbon vessels decreased from an average of 590 μg/L to approximately 2 μg/L on average over 33 months of operation of the UVP. Incorporation of this UVP modification as a second‐stage treatment to the groundwater pump‐and‐treat/soil vapor extraction system, after the air stripper and prior to the carbon vessels, significantly increased the usable life of the carbon (from two months previously to about two years after installation) and completely resolved the issue of frequent MTBE breakthroughs of the carbon that had plagued the remediation system since its inception. © 2006 Wiley Periodicals, Inc.  相似文献   

19.
This work evaluates filtration followed by expression characteristics of oil-containing sludge from a dissolved-air-flotation unit of a petroleum refinery plant at a mechanical pressure of 2000 psi. Although slightly but finitely enhancing the deliquoring rate, cationic polyelectrolyte conditioning cannot significantly reduce the residual liquor content after expression. In contrast, freeze/thaw treatment can significantly improve the sludge's deliquorability and markedly reduce the bound liquor content. Closely examining the freezing time and the required cost revealed that freeze/thaw technique is a feasible means of treating oily sludge from a petroleum refinery plant.  相似文献   

20.
The aim of this paper is to evaluate the performance of the low-flow filtration system (LFFS) that Kogarah Municipal Council developed for treating and reusing the highly polluted first-flush stormwater (FFSW) while allowing the cleaner subsequent major stormwater flows to be directed to the major street drainage. The LFFS was evaluated through laboratory investigations using columns packed with different filter media to test the removal efficiency of pollutants such as zinc (Zn), total phosphorus (TP), total nitrogen (TN), total organic content, total petroleum hydrocarbons (TPH), and turbidity. The findings from this study demonstrate the effectiveness of the LFFS to largely reduce turbidity, TPH, and trace metals from the FFSW. The LFFS also partially removes dissolved organics, TP and TN. These pollutants are more commonly and effectively removed in subsequent processes of a stormwater treatment train. Further this paper highlights the importance of regular maintenance of the LFFS especially as it is only associated in removing the high pollutant loads during a storm event. Due to this first flush, a thick oily crust-formed layer requires monthly removal, and an entire replacement of the exhausted filter media is required quarterly. However considering the labor required to service the crust formed layer within the LFFS, it is more cost effective to replace the entire depth of filter media monthly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号