首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 1987 Sand Creek Operable Unit 5 record of decision (ROD) identified soil washing as the selected technology to remediate soils contaminated with high levels of organochlorine pesticides, herbicides, and metals. Initial treatability tests conducted to assess the applicability of soil washing technology did not effectively evaluate the removal of the elevated contaminant concentrations that were found. To further evaluate the applicability of soil washing at this industrial site, a second more comprehensive pilot-scale treatability test was conducted. Twenty-three test runs were conducted over a two-week period in late September 1992, using a pilot-scale soil washing device called the volume reduction unit (VRU). The experimental design evaluated the effects of two wash temperatures, two pH levels, three surfactants, four surfactant concentrations, and two liquid-to-soil ratios on the contaminant removal efficiency of the soil washing process. Site soils from layers at three different depths were used in the study. Results from the pilot-scale treatability test indicated that the VRU could achieve contaminant reduction efficiencies of 97 percent for heptachlor and greater than 91 percent for dieldrin in the uppermost contaminated soils (surface to 1-ft. depth). Residual concentrations of heptachlor and dieldrin in the treated soil ranged from 50 ppm to less than 1.6 ppm, and 6.8 ppm to less than 1.6 ppm, respectively. However, the analytical method detection limit of 1.6 ppm was not low enough to provide residual concentration data at the risk-based action levels of 0.55 ppm for heptachlor and 0.15 ppm for dieldrin.  相似文献   

2.
Application of fungal‐based bioaugmentation was evaluated for the remediation of creosote‐contaminated soil at a wood‐preserving site in West Virginia. Soil at the site contained creosote‐range polycyclic aromatic hydrocarbons (PAHs) at concentrations in some areas that exceed industrial risk‐based levels. Two white‐rot fungi (Pleurotus ostreatus and Irpex lacteus) were evaluated for remediation effectiveness in a two‐month bench‐scale treatability test. Both fungi produced similar results, with up to 67.3 percent degradation of total PAHs in 56 days. Pilot‐scale testing was performed at the site using Pleurotus ostreatus grown on two local substrate mixtures. During the 276‐day field trial, total PAHs were degraded by up to 93.2 percent, with all individual PAHs except one achieving industrial risk‐based concentrations. It was recommended that fungal‐based remediation be applied to all contaminated soil at the site. © 2002 Wiley Periodicals, Inc.  相似文献   

3.
Chelate‐assisted metal uptake by plants has only recently been discovered in the remediation industry. The simultaneous accumulation of lead, arsenic, copper, and cadmium in plants after application of chelating agents to soil is a promising technology enhancement for phytoremediation. One of the most powerful and commonly used chelating agents is ethylene diamine tetra acetic acid (EDTA), which forms complexes with many of the metal contaminants within the natural environment. This study was conducted to determine the efficiency of an emergent wetland plant species Typha sp. and floating wetland macrophytes such as Pistia sp., Azolla sp., Lemna sp., Salvinia sp., and Eichhornia sp. in phytoremediation of various heavy metals with addition of a chelating agent such as EDTA. EDTA addition to the treatment systems increased the uptake of heavy metals by plants, which was much pronounced with lead and copper. However, the pattern of uptake by plants was similar as that of heavy metals without EDTA amendments. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
Previous greenhouse and field studies show that terrestrial and aquatic vegetation, including trees, grasses, and agricultural produce grown on perchlorate‐contaminated soil or with perchlorate‐contaminated irrigation water, accumulate perchlorate mainly in their leaf tissue. The phytoaccumulated perchlorate poses potential ecological risk by either contaminating the food chain of humans and animals or recycling in the ecosystem as leaf litter fall that accumulates on topsoil. In this study, the uptake and phytoaccumulation of perchlorate in terrestrial and aquatic vegetation growing at two perchlorate‐contaminated sites (the Longhorn Army Ammunition Plant [LHAAP] in Karnack, Texas, and the Las Vegas Wash [LVW], Nevada) was monitored during multiple growing seasons. The LHAAP site is located in a subhumid climate, while the LVW site is located in an arid climate. All vegetation species collected from both sites contained quantifiable levels of perchlorate. The detected concentrations varied with the type of plant species, amount of perchlorate concentration in soil, and season and stage of plant maturity. The highest perchlorate concentrations were measured in willows (Salix nigra), crabgrass (Digitaria spp.), and Bermuda grass (Cynodon dactylon) at the LHAAP, while salt cedar (Tamarix ramosissima) at the LVW phytoaccumulated the highest mass of perchlorate. The concentrations of perchlorate measured in plant leaves growing over contaminated soils at multiple LHAAP locations did not reveal the strong seasonal variability observed at the LVW site. The slow rate of phytodegradation of the perchlorate fraction taken up by plants during the growing season explained the detection of higher perchlorate concentrations in leaves collected later in the growing season (fall) and in senesced leaves compared to younger, live leaves. This proves that senesced plant leaves potentially recycle perchlorate back into the soil on which plant litter collects. To minimize the potential recycling of perchlorate during phytoremediation, it is recommended that senesced leaves be collected and composted or phytoremediation be designed to enhance rapid rhizodegradation (rhizoremediation). © 2007 Wiley Periodicals, Inc.  相似文献   

5.
Arbuscular mycorrhizal fungi (AMF) are microscopic fungi that occur naturally in soil and form a symbiosis with plant roots. By colonizing the roots, the fungus increases plant growth by making soil essential elements like zinc and phosphorus more accessible. AMF can play a role in the phytoremediation of heavy metal–contaminated soil (mycorrhizoremediation). Two research experiments were conducted to evaluate the impact of AMF on the extraction of different heavy metals (arsenic, cadmium, lead, selenium, and zinc) in contaminated soil. A grass mixture composed of Festuca rubra, Festuca eliator, Agropyron repens, and Trifolium repens was used in the experiments, and four different types of AMF were investigated: Glomus intraradices, Glomus mosseae, Glomus etunicatum, and Gigaspora gigantea. The results of the study showed that heavy metal extraction by Glomus intraradices colonized plants was the highest of all four AMF tested and was generally higher than nonmycorrhizal plants, depending on the heavy metal concentration in soil and whether it interacted with other metals in soil. However, metal extraction by AMF colonized grasses reached a plateau after an approximately two‐month period showing no further phytoaccumulation. © 2006 Wiley Periodicals, Inc.  相似文献   

6.
An experiment was performed to examine the phytoremediation potential of Rhodes grass (Chloris gayana Kunth cv. ‘Pioneer’). The study sought to determine substrate tolerance, biomass production, and plant uptake of antimony (Sb), arsenic (As), cadmium (Cd), lead (Pb), silver (Ag), and zinc (Zn). The plants were grown on weight percent mixtures (5 percent, 15 percent, 25 percent, 35 percent, 50 percent) of a vertisol soil and base‐metal mine tailings (7–2,040 μg/g As, ≥ 30 μg/g Cd, 30–12,000 μg/g Pb, and 72–4,120 μg/g Zn). The 5 percent and 15 percent amendment of mine tailings increased the biomass production of Rhodes grass (from 0.1 g/plant to ≈ 3.5 g/plant) without appreciably elevating plant concentrations of the elements. Plant growth decreased by greater than 50 percent for the substrate containing greater than 25 percent tailings (3,023 μg/g Pb and 1,084 μg/g Zn). Reduced biomass production coincided with maximal Zn uptake by Rhodes grass (249.8 μg/g), indicating tailings induced phytotoxicity. The total concentrations of metals and metalloids tolerated by Rhodes grass in the plant‐growth medium indicated hypertolerance to elevated As, Pb, and Zn concentrations. Partial extraction of the plant‐growth medium determined that plant‐available Pb was ten times higher than Ag, As, Cd, and Zn availability. However, Rhodes grass accumulated low levels of Pb, in addition to As and Cd, over the experimental range, indicating low fodder toxicity risk to browsing livestock. This study concludes that if there are no invasive species issues associated with conservation land uses, Rhodes grass is well suited to metalliferous mined land revegetation and would therefore be highly effective for such programs in subtropical and tropical Australia. © 2005 Wiley Periodicals, Inc.  相似文献   

7.
A considerable number of contaminated mining sites in Europe and other parts of the world pose environmental hazards. Given the multifaceted benefits of phytoremediation, screening of plant communities grown in contaminated areas is being conducted to identify hyperaccumulating plant species. A few arsenic (As) hyperaccumulating plants are found in tropical countries; however, generally, they are not grown in contaminated mining sites of cold and temperate countries (Europe and other parts of the world). The transgenic plants identified to date are not believed to be suitable for commercial use of phytoremediation. A few tolerant plant species in mining sites that are found to have elevated As levels primarily concentrate As in their roots. The remediation potential of many of these tolerant plants is limited because of their slow growth and low biomass. Therefore, phytostabilization of contaminated mining sites using tolerant plant species with high biomass and a more extensive root system is the only solution to date in Europe and some other parts of the world. © 2010 Wiley Periodicals, Inc.  相似文献   

8.
This study evaluated the effectiveness of gypsum and three proprietary products to remediate brine‐contaminated soil. The research objective was to determine if additives could increase plant cover germination in soils without costly prior soil‐washing or dilution techniques. The soil was shredded using a soil shredder equipped with a spray bar to apply the individual treatments of DeSalt Plus, SoilTech, Chlor*rid, and calcium sulfate (gypsum). Treatments were placed in 40‐mm high‐density polyethylene cells and small drainage systems were installed to allow removal of excess water. An initial 10‐point soil composite was taken from bulk untreated soils at a depth of more than 2.5 cm. Five‐point composite samples were collected from the same depth at weekly intervals and analyzed for: electrical conductivity, sodium adsorption ratio, cation exchange capacity, sodium, calcium, magnesium, potassium, chlorides, and pH. The Gapon selectivity coefficient was calculated and utilized to quantify the affinity for binding between ionic alkali salt constituent groups Na+, Ca ++, and Mg ++. Soil analysis indicated product‐related improvements in and bioavailability of salts. The nature of the products requires some prior treatment such as soil washing or dilution using clean soil to lower electroconductivity levels and allow the site to vegetate.  相似文献   

9.
COGNIS TERRAMET® soil leaching and Bescorp soil washing systems have been successfully combined to remediate an ammunition test burn area at the Twin Cities Army Ammunition Plant (TCAAP), New Brighton, Minnesota. This cleanup is the first in the country to successfully combine these two technologies, and it offers a permanent solution to heavy metal remediation. Over 20,000 tons of soil were treated in the project. The cleaned soil remained on-site, and the heavy metal contaminants were removed, recovered, and recycled. Eight heavy metals were removed from the contaminated soil achieving the very stringent cleanup criteria of <175 ppm for residual lead and achieving background concentrations for seven other project metals (antimony, cadmium, chromium, copper, mercury, nickel, and silver). Initial contaminant levels were measured as high as 86,000 ppm lead and 100,000 ppm copper, with average concentrations over 1,600 ppm each. In addition, both live and spent ordnance were removed in the soil treatment plant to meet the cleanup criteria. By combining soil washing and leaching, COGNIS and Bescorp were able to assemble a process which effectively treats all the soil fractions so that all soil material can be returned on-site, no wastewater is generated, and the heavy metals are recovered and recycled. No hazardous waste requiring landfill disposal was generated during the entire remedial operation.  相似文献   

10.
The present work undertaken in the environmental context aims to study the distribution of heavy metals in plants that grow naturally around uncontrolled landfills. The study's goal was to identify plants that can be used to remediate contaminated soils. For this purpose, 14 plants species and their rhizospheric soil samples were collected and analyzed for arsenic, cadmium, cobalt, chromium, copper, lead, nickel, and zinc by inductively coupled plasma‐atomic emission spectrometry. The results showed the presence of elevated metal concentrations in soil, many exceeding the regulatory values, and that many species exhibited an ability to accumulate multiple metals in their shoots and roots without sustaining toxicity. This was confirmed by bioconcentration and translocation factors generally higher than 1.  相似文献   

11.
Phytoextraction is the plant‐based removal of inorganic contaminants from the soil by root absorption and subsequent translocation to harvestable plant parts. The efficiency of this technique is limited by the phytoavailability of these contaminants in the soil and the root‐to‐shoot transport. To enhance the phytoextraction efficiency, the use of soil amendments has been widely investigated. Potential risks such as increased ecotoxicological effects and leaching of mobilized contaminants caution against the use of persistent mobilizing agents. The potential use of foliar amendments to enhance mineral absorption and/or translocation offers prospects for complementing or substituting soil amendments for enhanced phytoextraction purposes. This study presents an explorative screening to evaluate the feasibility of this approach. Helianthus annuus giganteus plants were grown in moderately contaminated dredged sediment for ten weeks, with daily foliar treatments from week six onward: (1) distilled water (control), (2) magnesium‐ethylenediaminetetraacetic acid (Mg‐EDTA), (3) diethylenetriaminepentaacetic acid (DTPA), (4) nitrilotriacetic acid (NTA), (5) citric acid, (6) oxalic acid, (7) calcium acetate, (8) ammonium thiocyanate (NH4SCN), and (9) cystein. Applied doses varied between treatments based on plant tolerance: 15 μmol per plant for cystein, 60 μmol per plant for DTPA and NH4SCN, 180 μmol per plant for Mg‐EDTA and NTA and 400 μmol per plant for the organic acids. At the end of the experiment, shoot accumulation of cadmium, chromium, copper, iron, manganese, nickel, lead, and zinc was evaluated. © 2004 Wiley Periodicals, Inc.  相似文献   

12.
In-situ biological solid-phase (or land) treatment was cost-effectively used to remediate 1,500 cubic yards (1,100 m3) of contaminated soil within three months of field operation following spillage of an estimated 12,000 gallons (45,000 L) of vinyl acetate from a railroad tank car onto surface soil. The vinyl acetate rapidly hydrolyzed to acetate and acetaldehyde with concentrations ranging up to 22,000 and 3,000 mg/kg, respectively. Ethanol, a metabolic intermediate, was found to accumulate in soil to concentrations as high as 280 mg/kg. The estimate for excavation, transportation, and disposal of the contaminated soil as a special waste, and for backfilling of the excavated area, was $850,000. The cost for biological remediation of the contaminated soil was $400,000, which was less than half the cost of excavation. In-situ biological treatments have been used to readily remove contaminants, such as acrylonitrile, styrene, butylcellosolve, ethylacrylate, and n-butylacrylate, at other sites involving railroad incidents.  相似文献   

13.
To facilitate field surveys for identifying areas of incineration residue-derived soil contamination, a simple and convenient method with a soil electrical conductivity meter was examined. First, the leaching test specified by Notification No. 13 of the Ministry of the Environment, 1973, was conducted on 506 samples of 11 types of wastes and compost, and the relationship between the concentrations of toxic elements [total Hg (T-Hg), Cd, Pb, Cr6+, and As] and values of electrical conductivity (EC) was examined. The results showed that bottom ash and fly ash were wastes with high EC values and that these wastes indicated higher levels of toxic elements. Second, an estimation method for the soil EC value of contaminated soil (ECc) was proposed based on the EC values of noncontaminated soil, and its usefulness was examined. The results of field surveys conducted at sites whose soils were suspected of contamination by dioxins and other pollutants derived from incineration residues showed that the contaminated spots and areas were identified by using ECc values. Moreover, comparison of the elemental contents of soils in terms of Cr, Ni, Zn, Na, K, Ca, Fe, Mn, and others, in addition to the above-mentioned toxic elements (excluding Cr6+), with those of the potential sources of pollution was verified to be effective for identifying the source of soil contamination.  相似文献   

14.
Phytoremediation is an emerging technique that can be used to economically remediate sites contaminated with trace elements and/or man‐made organic contaminants. This technique was used on Pearl Harbor (Oahu, Hawaii) dredged material (PHDM) containing polycyclic aromatic hydrocarbons (PAHs) and some heavy metals. The dredged material was first amended with a high‐calcium soil (Waialua Mollisol) and a biosolids‐based compost at different proportions to yield varying salinity levels. A mixture that yielded an electrical conductivity (EC, a measure of salinity) of the saturated paste extract of 15 to 20 dS/m was identified and used to evaluate the salt tolerance of five plant species. Relative germination and one‐month‐old biomass indicated that common bermuda grass (Cynodon dactylon), seashore paspalum (Paspalum vaginatum), beach pea (Vigna marina), and cow pea (Vigna unguiculata) can produce at least 40 percent of biomass of the control at an EC of approximately 18 dS/m, suggesting the four plants are relatively salt tolerant. In contrast, Desmodium intortum either did not germinate or died within two weeks after germination at the same salinity level. A subsequent greenhouse experiment, using mixtures of the PHDM (0 or 25 percent dry weight), organic amendments (10 percent leucaena green manure or biosolids‐based compost), and a Mollisol (65 or 90 percent dry weight) in 6‐liter pots containing 4 kilograms of material yielded the following results: (1) A combination of transplanted seashore paspalum, seeded bermuda grass, and seeded beach pea was effective in taking up sodium (Na), thereby reducing salinity and making the medium more amenable to diversified microbes and plants, which may be effective PAH degraders; (2) total PAH concentration was reduced by about 30 percent after three months of active plant growth, but degradation of individual PAH members varied significantly, however; (3) leguminous green manure, as a soil amendment, was more effective than compost for use in bio‐ and/or phytoremediations; and (4) soil amendments, when applicable, could supplement living plants in reducing organic contaminants, such as PAHs. © 2002 Wiley Periodicals, Inc.  相似文献   

15.
Column experiments were performed to examine (a) the potential for leachate from construction and demolition (C&D) debris landfills to mobilize naturally-occurring iron and arsenic from soils underlying such facilities and (b) the ability of crushed limestone to remove these aqueous phase pollutants. In duplicate columns, water was added to a 30-cm layer of synthetic C&D debris, with the resulting leachate serially passed through a 30-cm soil layer containing iron and arsenic and a 30-cm crushed limestone layer. This experiment was conducted for two different soil types (one high in iron (10,400mg/kg) and the second high in iron (5400mg/kg) and arsenic (70mg/kg)); also monitored were control columns for both soil types with water infiltration alone. Despite low iron concentrations in the simulated C&D debris leachate, elevated iron concentrations were observed when leachate passed through the soils; reductive dissolution was concluded to be the cause of iron mobilization. In the soil containing elevated arsenic, increased iron mobilization from the soil was accompanied by a similar but delayed arsenic mobilization. Since arsenic sorbs to oxidized iron soil minerals, reductive dissolution of these minerals results in arsenic mobilization. Crushed limestone significantly reduced iron (to values below the detection limit of 0.01mg/L in most cases); however, arsenic was not removed to any significant extent.  相似文献   

16.
Naturally occurring and anthropogenic arsenic concentrations in soils, in conjunction with the current knowledge of its potential risk to human health, demonstrate a critical environmental and public health issue. These widespread arsenic concentrations potentially affect large human populations. There are locations worldwide where naturally occurring arsenic is considered to be and documented as a potential human health risk through the use of established risk assessment calculation approaches or as demonstrated by clearly measurable health or agricultural effects. This natural arsenic, exposed due to human activity and coupled with anthropogenic contributions, may be the number‐one soil contact environmental health issue in the world. Considering the relatively high natural arsenic concentrations in some New England locations, and with the advantage of access to a large soil arsenic database, this issue has been addressed as described herein for the Boston Basin and related areas. The article provides a summary of some large natural and anthropogenic arsenic data sets with comparison between them and a derivation of the natural and anthropogenic components in the Boston Basin. © 2010 Wiley Periodicals, Inc.  相似文献   

17.
Endosulfan is an economically important insecticide and widespread environmental pollutant, originating from a wide range of agricultural activities. The major implication from the feasibility study described was that endosulfan I can be remediated by natural attenuation processes in cotton-farming soil, in which concentrations were relatively low, as well as heavily contaminated soil, from an agricultural chemical waste (evaporation) pit. Endosulfan I, the major isomer of endosulfan, was present in agricultural soils with low (2.2 mg/kg) and high (417 mg/kg) concentrations of technical-grade endosulfan. The half-lives of the major isomer of endosulfan were 94 and greater than 350 days in the low-level (cotton farming soil) and high-level (contaminated soil), respectively. Even under conditions of minimal intervention, as in the current study, endosulfan concentrations in contaminated soils can be substantially reduced. The nonbiological process of soil binding was predominantly responsible for the natural attenuation of endosulfan I in both soils. Low levels of mineralization of the chlorinated ring 14C-labelled carbons were also reported, but mineralization did not play an important role in natural attenuation of endosulfan I in either soil studied.  相似文献   

18.
以某废弃铅锌矿区重金属污染土壤为研究对象,采用无患子皂苷与柠檬酸(CA)协同洗脱污染土壤中的Cd和Pb。以无患子果皮投加量为20 g/L所得水浸提液和浓度为0.3 mol/L的CA配制复配淋洗剂。在浸提液中添加CA后,能有效提高对土壤中Pb的去除率。在浸提液和CA的体积比为1∶3、淋洗剂pH为5、淋洗时间为12.0 h的条件下,复配淋洗剂对Cd和Pb的去除率分别为75.2%和41.6%。双常数方程和Elovich方程均可较好描述复配淋洗剂对污染土壤中Cd和Pb的淋洗过程,表明Cd和Pb的解吸主要为非均相扩散过程。复合淋洗剂能有效降低土壤中Cd的可交换态和Pb的铁锰氧化态含量,并可促进重金属形态的转变。  相似文献   

19.
Over the past few years, there has been a greater study and understanding of the application of phytoremediation to remediate contaminated soil. The enhancement of phytoaccumulation of heavy metals—zinc (Zn), cadmium (Cd), arsenic (As), and selenium (Se)—in plants has been shown by inoculation of roots using arbuscular mycorrhizal fungi (AMF). This article presents the results of in vitro lab experiments conducted to verify the effects of AMF ( Glomus intraradices) hyphae on speciation of essential Zn and nonessential Cd heavy metals in order to change these metals from a water‐ insoluble carbonate to a soluble and phytoavailable form. Results show that in the presence of heavy metals in a nonavailable form to plants, endomycorrhizal hyphae can change the metal from carbonate to a water‐ soluble species. This phenomenon is more apparent with a nonessential (Cd) than with an essential metal (Zn). Zn saturation is reached in the G. intraradices colonized roots at around 400 ppm, independently of initial ZnCO3 concentrations. Cd saturation is not reached; in the lower Cd treatment, the plant/media metal ratio is 3:1, and in the higher treatment, the ratio is 1:1. © 2005 Wiley Periodicals, Inc.  相似文献   

20.
Soil respiration is a large C flux which is of primary importance in determining C sequestration. Here we ask how it is altered by atmospheric CO2 concentration and N additions. Swards of Lolium perenne L. were grown in a Eutric cambisol under controlled conditions with and without the addition of 200 kg NO? 3 ?N ha?1, at either 350 ppm or 700 ppm CO2, for 3 months. Soil respiration and net canopy photosynthesis were both increased by added N and elevated CO2, but soil respiration increased proportionately less than fixation by photosynthesis. Thus, both elevated CO2 and N appeared to increase potential C sequestration, although adding N at elevated CO2 reduced the C sequestered as a proportion of that fixed relative to elevated CO2 alone. Across all treatments below-ground respiratory C losses were predicted by root biomass, but not by soil solution C and N concentrations. Specific root-dependent respiration was increased by elevated CO2, such that below-ground respiration per unit biomass and per unit plant N was increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号