首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
ABSTRACT: Seventy to eighty percent of the water flowing in rivers in the United States originates as precipitation in forests. This project developed a synoptic picture of the patterns in water chemistry for over 300 streams in small, forested watersheds across the United States. Nitrate (NO3?) concentrations averaged 0.31 mg N/L, with some streams averaging ten times this level. Nitrate concentrations tended to be higher in the northeastern United States in watersheds dominated by hardwood forests (especially hardwoods other than oaks) and in recently harvested watersheds. Concentrations of dissolved organic N (mean 0.32 mg N/L) were similar to those of NO3~, whereas ammonium (NH4+) concentrations were much lower (mean 0.05 mg N/L). Nitrate dominated the N loads of streams draining hardwood forests, whereas dissolved organic N dominated the streams in coniferous forests. Concentrations of inorganic phosphate were typically much lower (mean 12 mg P/L) than dissolved organic phosphate (mean 84 mg P/L). The frequencies of chemical concentrations in streams in small, forested watersheds showed more streams with higher NO3? concentrations than the streams used in national monitoring programs of larger, mostly forested watersheds. At a local scale, no trend in nitrate concentration with stream order or basin size was consistent across studies.  相似文献   

2.
ABSTRACT: Two intermittent streams on oak-hickory watersheds in southern Illinois were gaged with a V-notch weir and sampled with an automatic water sampler. Baseline data was collected for a period of three years. Flow volume showed large variations between years and watersheds. Water samples were analyzed for Na, K, Ca, Mg, ortho-P, and NO3-N. Water quality was consistently high, but there were significant differences between the watersheds during the calibration period. One watershed was clearcut in November 1979. One year of postharvest data has been analyzed. Flow volume increased 95 percent, but there was no evidence of increased sedimentation. There were significant increases in the stream water concentrations of K, Mg, and NO3-N of 18 percent, 8 percent, and 274 percent, respectively. Nutrient budgets for the site were not adversely affected by the harvest. The clearcutting operation appears to have had a small impact on the watershed due to minimal disturbance during the logging and below normal precipitation the first year following the harvest.  相似文献   

3.
ABSTRACT: An extensive base of water quality information emphasizing the effects of land use and hydrology was obtained in the karstified Fountain Creek watershed of southwestern Illinois to help resolve local water quality issues. Agrichemicals dominate the loads of most water quality constituents in the streams and shallow karstic ground water. Only calcium (Ca), magnesium (Mg), Aluminum (A1), and sulfate (SO4) ions are predominantly derived from bedrock or soils, while agrichemicals contribute most of the sodium (Na), potassium (K), chlorine (Cl), nitrate (NO3), fluorine (F), phosphorus (P), and atrazine. Concentrations of individual ions correlate with discharge variations in karst springs and surface streams; highly soluble ions supplied by diffuse ground water are diluted by high flows, while less soluble ions increase with flow as they are mobilized from fields to karst conduits under storm conditions. Treated wastewater containing detergent residues dominates the boron load of streams and provides important subordinate loads of several other constituents, including atrazine derived from the Mississippi River via the public water supply. Average surface water concentrations at the watershed outlet closely approximate a 92:8 mixture of karst ground water and treated wastewater, demonstrating the dominance of ground water contributions to streams. Therefore the karst aquifer and watershed streams form a single water quality system that is also affected by wastewater effluent.  相似文献   

4.
Abstract: Autumn‐olive (Elaeagnus umbellata Thunb.) is an invasive, exotic shrub that has become naturalized in the eastern United States. Autumn‐olive fixes nitrogen (N) via a symbiotic relationship with the actinomycete Frankia. At the plot scale, the presence of autumn‐olive has been related to elevated soil water nitrate‐N (NO3?‐N) concentrations. This study examined the relationship between autumn‐olive cover in a watershed and stream water quality. Stream water nitrate‐N (NO3?‐N) and ammonium‐N (NH4+‐N) concentrations were measured in 12 first order ephemeral streams draining watersheds with mixed forest cover and a range of 0‐35% autumn‐olive cover. Percent autumn‐olive cover was positively correlated with mean stream NO3?‐N concentrations, but was not correlated with mean stream NH4+‐N concentrations. While other studies have demonstrated a significant relationship between native N‐fixers and stream NO3?‐N, this is the first study to document a relationship for an invasive, exotic N‐fixing species. Results suggest that this exotic species can be an additional source of NO3? in local and regional water bodies and demonstrates an additional negative ecosystem consequence of invasion beyond losses in biodiversity.  相似文献   

5.
Tile drainage significantly alters flow and nutrient pathways and reliable simulation at this scale is needed for effective planning of nutrient reduction strategies. The Soil and Water Assessment Tool (SWAT) has been widely utilized for prediction of flow and nutrient loads, but few applications have evaluated the model's ability to simulate pathway‐specific flow components or nitrate‐nitrogen (NO3‐N) concentrations in tile‐drained watersheds at the daily time step. The objectives of this study were to develop and calibrate SWAT models for small, tile‐drained watersheds, evaluate model performance for simulation of flow components and NO3‐N concentration at daily intervals, and evaluate simulated soil‐nitrogen dynamics. Model evaluation revealed that it is possible to meet accepted performance criteria for simulation of monthly total flow, subsurface flow (SSF), and NO3‐N loads while obtaining daily surface runoff (SURQ), SSF, and NO3‐N concentrations that are not satisfactory. This limits model utility for simulating best management practices (BMPs) and compliance with water quality standards. Although SWAT simulates the soil N‐cycle and most predicted fluxes were within ranges reported in agronomic studies, improvements to algorithms for soil‐N processes are needed. Variability in N fluxes is extreme and better parameterization and constraint, through use of more detailed agronomic data, would also improve NO3‐N simulation in SWAT. Editor's note : This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   

6.
Two intermittent streams on oak-hickory watersheds in southern Illinois were gaged with a V-notched weir and sampled with an automatic water sampler. For three years data were collected on flow volume and water quality. Flow volumes show large variations between years and watersheds. Samples were analyzed for Na+, K+, Ca++, Mg++, P, and NO-3. Water quality was consistently high, although there were significant differences between watersheds. A baseline for water quality has been established for comparison after one of the watersheds is clearcut at a later date.  相似文献   

7.
Abstract: The spatial scale and location of land whose development has the strongest influence on aquatic ecosystems must be known to support land use decisions that protect water resources in urbanizing watersheds. We explored impacts of urbanization on streams in the West River watershed, New Haven, Connecticut, to identify the spatial scale of watershed imperviousness that was most strongly related to water chemistry, macroinvertebrates, and physical habitat. A multiparameter water quality index was used to characterize regional urban nonpoint source pollution levels. We identified a critical level of 5% impervious cover, above which stream health declined. Conditions declined with increasing imperviousness and leveled off in a constant state of impairment at 10%. Instream variables were most correlated (0.77 ≤ |r| ≤ 0.92, p < 0.0125) to total impervious area (TIA) in the 100‐m buffer of local contributing areas (~5‐km2 drainage area immediately upstream of each study site). Water and habitat quality had a relatively consistent strong relationship with TIA across each of the spatial scales of investigation, whereas macroinvertebrate metrics produced noticeably weaker relationships at the larger scales. Our findings illustrate the need for multiscale watershed management of aquatic ecosystems in small streams flowing through the spatial hierarchies that comprise watersheds with forest‐urban land use gradients.  相似文献   

8.
ABSTRACT: Turfgrass systems are one of the most intensively managed land uses in the United States. Establishment and maintenance of high quality turfgrass usually implies substantial inputs of water, nutrients, and pesticides. The focus of this work was to quantify the concentration and loading of a typically maintained municipal turfgrass environment on surface water. Water quantity and quality data were collected from a golf course in Austin, Texas, and analyzed for a 13‐month period from March 20, 1998, to April 30, 1999. Twenty‐two precipitation events totaling 722 mm, produced an estimated 98 mm of runoff. Nutrient analysis of surface runoff exiting the course exhibited a statistically significant (p < 0.05) increase in median nitrate plus nitrite nitrogen (NO3+NO2‐N) concentration compared to runoff entering the course, a statistically significant decrease in ammonia nitrogen (NH4‐N), but no difference in orthophosphate (PO4‐P). During the 13‐month period, storm runoff contributed an estimated 2.3 kg/ha of NO3+NO2‐N and 0.33 kg/ha of PO4‐P to the stream. Storm flow accounted for the attenuation of 0.12 kg/ha of NH4‐N. Baseflow nutrient analysis showed a statistically significant increase in median NO3+NO2‐N, a significant reduction in NH4‐N, and no change in PO4‐P. Estimated NO3+NO2‐N mass in the baseflow was calculated as 4.7 kg/ha. PO4‐P losses were estimated at 0.06 kg/ha, while 0.8 kg/ha of NH4‐N were attenuated in baseflow over the study period. Even though nutrient concentrations exiting the system rarely exceeded nutrient screening levels, this turfgrass environment did contribute increased NO3+NO2‐N and PO4‐P loads to the stream. This emphasizes the need for parallel studies where management intensity, soil, and climate differ from this study and for golf course managers to utilize an integrated management program to protect water quality while maintaining healthy turfgrass systems.  相似文献   

9.
Riparian seeps have been recognized for their contributions to stream flow in headwater catchments, but there is limited data on how seeps affect stream water quality. The objective of this study was to examine the effect of seeps on the variability of stream NO3‐N concentrations in FD36 and RS, two agricultural catchments in Pennsylvania. Stream samples were collected at 10‐m intervals over reaches of 550 (FD36) and 490 m (RS) on 21 occasions between April 2009 and January 2012. Semi‐variogram analysis was used to quantify longitudinal patterns in stream NO3‐N concentration. Seep water was collected at 14 sites in FD36 and 7 in RS, but the number of flowing seeps depended on antecedent conditions. Seep NO3‐N concentrations were variable (0.1‐29.5 mg/l) and were often greater downslope of cropped fields compared to other land uses. During base flow, longitudinal variability in stream NO3‐N concentrations increased as the number of flowing seeps increased. The influence of seeps on the variability of stream NO3‐N concentrations was less during storm flow compared to the variability of base flow NO3‐N concentrations. However, 24 h after a storm in FD36, an increase in the number of flowing seeps and decreasing streamflow resulted in the greatest longitudinal variability in stream NO3‐N concentrations recorded. Results indicate seeps are important areas of NO3‐N delivery to streams where targeted adoption of mitigation measures may substantially improve stream water quality.  相似文献   

10.
ABSTRACT: Resolution of the input GIS data used to parameterize distributed‐parameter hydrologic/water quality models may affect uncertainty in model outputs and impact the subsequent application of model results in watershed management. In this study we evaluated the impact of varying spatial resolutions of DEM, land use, and soil data (30 × 30 m, 100 × 100 m, 150 × 150 m, 200 × 200 m, 300 × 300 m, 500 × 500 m, and 1,000 × 1,000 m) on the uncertainty of SWAT predicted flow, sediment, NO3‐N, and TP transport. Inputs included measured hydrologic, meteorological, and watershed characteristics as well as water quality data from the Moores Creek watershed in Washington County, Arkansas. The SWAT model output was most affected by input DEM data resolution. A coarser DEM data resolution resulted in decreased representation of watershed area and slope and increased slope length. Distribution of pasture, forest, and urban areas within the watershed was significantly affected at coarser resolution of land use and resulted in significant uncertainty in predicted sediment, NO3‐N, and TP output. Soils data resolution had no significant effect on flow and NO3‐N predictions; however, sediment was overpredicted by 26 percent, and TP was underpredicted by 26 percent at 1,000 m resolution. This may be due to change in relative distribution of various hydrologic soils groups (HSGs) in the watershed. Minimum resolution for input GIS data to achieve less than 10 percent model output error depended upon the output variable of interest. For flow, sediment, NO3‐N, and TP predictions, minimum DEM data resolution should range from 30 to 300 m, whereas minimum land use and soils data resolution should range from 300 to 500 m.  相似文献   

11.
ABSTRACT: We analyzed data from riffle and snag habitats for 39 small cold water streams with different levels of watershed urbanization in Wisconsin and Minnesota to evaluate the influences of urban land use and instream habitat on macroinvertebrate communities. Multivariate analysis indicated that stream temperature and amount of urban land use in the watersheds were the most influential factors determining macroinvertebrate assemblages. The amount of watershed urbanization was nonlinearly and negatively correlated with percentages of Ephemeroptera‐Plecoptera‐Trichoptera (EPT) abundance, EPT taxa, filterers, and scrapers and positively correlated with Hilsenhoff biotic index. High quality macroinvertebrate index values were possible if effective imperviousness was less than 7 percent of the watershed area. Beyond this level of imperviousness, index values tended to be consistently poor. Land uses in the riparian area were equal or more influential relative to land use elsewhere in the watershed, although riparian area consisted of only a small portion of the entire watershed area. Our study implies that it is extremely important to restrict watershed impervious land use and protect stream riparian areas for reducing human degradation on stream quality in low level urbanizing watersheds. Stream temperature may be one of the major factors through which human activities degrade cold‐water streams, and management efforts that can maintain a natural thermal regime will help preserve stream quality.  相似文献   

12.
Urea‐N is a component of bioavailable dissolved organic nitrogen (DON) that contributes to coastal eutrophication. In this study, we assessed urea‐N in baseflow across land cover gradients and seasons in the Manokin River Basin on the Delmarva Peninsula. From March 2010 to June 2011, we conducted monthly sampling of 11 streams (4 tidal and 7 nontidal), 2 wastewater treatment plants, an agricultural drainage ditch, and groundwater underlying a cropped field. At each site, we measured urea‐N, DON, dissolved organic carbon (DOC), total dissolved nitrogen (TDN), NO3?‐N, and NH4+‐N. In general, urea‐N comprised between 1% and 6% of TDN, with the highest urea‐N levels in drainage ditches (0.054 mg N/L) and wetland‐dominated streams (0.035–0.045 mg N/L). While urea‐N did not vary seasonally in tidal rivers, nontidal streams saw distinct urea‐N peaks in summer (0.038 mg N/L) that occurred several months after cropland fertilization in spring. Notably, the proportion of wetlands explained 78% of the variance in baseflow urea‐N levels across the Manokin watershed. In wetland‐dominated basins, we found urea‐N was positively related to water temperature and negatively related to DOC:DON ratios, indicating short‐term urea‐N dynamics at baseflow were more likely influenced by instream and wetland‐driven processes than by recent agricultural urea‐N inputs. Findings demonstrate important controls of wetlands on baseflow urea‐N concentrations in mixed land‐use basins.  相似文献   

13.
The goal of this study was to develop a methodology for generating storm hydrographs at a watershed scale based on daily runoff estimates from a field scale model. The methodology was evaluated on a small agricultural watershed using the ADAPT field scale process model. A comparison of observed and predicted peak flows for 11 of the largest events that occurred in a three year period gave r2 values of 0.84, 0.82, and 0.81 when the watershed was subdivided into 1, 5, and 10 sub watersheds. However, all other statistical measures improved when the watershed was subdivided into at least five sub watersheds. Guidelines need to be developed on the use of the procedure but it first needs to be evaluated on several watersheds that exhibit a range in sizes, land uses, slopes, and soil properties.  相似文献   

14.
Boosted regression tree (BRT) models were developed to quantify the nonlinear relationships between landscape variables and nutrient concentrations in a mesoscale mixed land cover watershed during base‐flow conditions. Factors that affect instream biological components, based on the Index of Biotic Integrity (IBI), were also analyzed. Seasonal BRT models at two spatial scales (watershed and riparian buffered area [RBA]) for nitrite‐nitrate (NO2‐NO3), total Kjeldahl nitrogen, and total phosphorus (TP) and annual models for the IBI score were developed. Two primary factors — location within the watershed (i.e., geographic position, stream order, and distance to a downstream confluence) and percentage of urban land cover (both scales) — emerged as important predictor variables. Latitude and longitude interacted with other factors to explain the variability in summer NO2‐NO3 concentrations and IBI scores. BRT results also suggested that location might be associated with indicators of sources (e.g., land cover), runoff potential (e.g., soil and topographic factors), and processes not easily represented by spatial data indicators. Runoff indicators (e.g., Hydrological Soil Group D and Topographic Wetness Indices) explained a substantial portion of the variability in nutrient concentrations as did point sources for TP in the summer months. The results from our BRT approach can help prioritize areas for nutrient management in mixed‐use and heavily impacted watersheds.  相似文献   

15.
ABSTRACT: During an autumn runoff event we sampled 48 streams with predominantly forested watersheds and igneous bedrock in the Oregon Coast Range. The streams had acid neutralizing capacities (ANC) > 90 μeq/L and pH > 6.4. Streamwater Na +, Ca2 +, and Mg2 + concentrations were greater than K + concentrations. Anion concentrations generally followed the order of Cl- > NO3- > SO42-. Chloride and Na + concentrations were highest in samples collected in streams near the Pacific Ocean and decreased markedly as distance from the coast increased. Sea salt exerted no discernible influence on stream water acid-base status during the sampling period. Nitrate concentrations in the study streams were remarkably variable, ranging from below detection to 172 μeq/L. We hypothesize that forest vegetation is the primary control of spatial variability of the NO3- concentrations in Oregon Coast Range streams. We believe that symbiotic N fixation by red alder in pure or mixed stands is the primary source of N to forested watersheds in the Oregon Coast Range.  相似文献   

16.
Abstract: More than 85% of NO3? losses from watersheds in the northeastern United States are exported during winter months (October 1 to May 30). Interannual variability in NO3? loads to individual streams is closely related to interannual climatic variations, particularly during the winter. The objective of our study was to understand how climatic and hydrogeological factors influence NO3? dynamics in small watersheds during the winter. Physical parameters including snow depth, soil temperature, stream discharge, and water table elevation were monitored during the 2007‐2008 winter in two small catchments in the Adirondack Mountains, New York State. Snowpack persisted from mid‐December to mid‐April, insulating soils such that only two isolated instances of soil frost were observed during the study period. NO3? export during a mid‐winter rain‐on‐snowmelt event comprised between 8 and 16% of the total stream NO3? load for the four‐month winter study period. This can be compared with the NO3? exported during the final spring melt, which comprised between 38 and 45% of the total four‐month winter NO3? load. Our findings indicate that minor melt events were detectable with changes in soil temperature, streamflow, groundwater level, and snow depth. But, based on loading, these events were relatively minor contributors to winter NO3? loss. A warmer climate and fluctuating snowpack may result in more major mid‐winter melt events and greater NO3? export to surface waters.  相似文献   

17.
Headwater Influences on Downstream Water Quality   总被引:2,自引:0,他引:2  
We investigated the influence of riparian and whole watershed land use as a function of stream size on surface water chemistry and assessed regional variation in these relationships. Sixty-eight watersheds in four level III U.S. EPA ecoregions in eastern Kansas were selected as study sites. Riparian land cover and watershed land use were quantified for the entire watershed, and by Strahler order. Multiple regression analyses using riparian land cover classifications as independent variables explained among-site variation in water chemistry parameters, particularly total nitrogen (41%), nitrate (61%), and total phosphorus (63%) concentrations. Whole watershed land use explained slightly less variance, but riparian and whole watershed land use were so tightly correlated that it was difficult to separate their effects. Water chemistry parameters sampled in downstream reaches were most closely correlated with riparian land cover adjacent to the smallest (first-order) streams of watersheds or land use in the entire watershed, with riparian zones immediately upstream of sampling sites offering less explanatory power as stream size increased. Interestingly, headwater effects were evident even at times when these small streams were unlikely to be flowing. Relationships were similar among ecoregions, indicating that land use characteristics were most responsible for water quality variation among watersheds. These findings suggest that nonpoint pollution control strategies should consider the influence of small upland streams and protection of downstream riparian zones alone is not sufficient to protect water quality.  相似文献   

18.
The U.S. Geological Survey's New Jersey and Iowa Water Science Centers deployed ultraviolet‐visible spectrophotometric sensors at water‐quality monitoring sites on the Passaic and Pompton Rivers at Two Bridges, New Jersey, on Toms River at Toms River, New Jersey, and on the North Raccoon River near Jefferson, Iowa to continuously measure in‐stream nitrate plus nitrite as nitrogen (NO3 + NO2) concentrations in conjunction with continuous stream flow measurements. Statistical analysis of NO3 + NO2 vs. stream discharge during storm events found statistically significant links between land use types and sampling site with the normalized area and rotational direction of NO3 + NO2‐stream discharge (N‐Q) hysteresis patterns. Statistically significant relations were also found between the normalized area of a hysteresis pattern and several flow parameters as well as the normalized area adjusted for rotational direction and minimum NO3 + NO2 concentrations. The mean normalized hysteresis area for forested land use was smaller than that of urban and agricultural land uses. The hysteresis rotational direction of the agricultural land use was opposite of that of the urban and undeveloped land uses. An r2 of 0.81 for the relation between the minimum normalized NO3 + NO2 concentration during a storm vs. the normalized NO3 + NO2 concentration at peak flow suggested that dilution was the dominant process controlling NO3 + NO2 concentrations over the course of most storm events.  相似文献   

19.
Abstract: This article describes the development of a calibrated hydrologic model for the Blue River watershed (867 km2) in Summit County, Colorado. This watershed provides drinking water to over a third of Colorado’s population. However, more research on model calibration and development for small mountain watersheds is needed. This work required integration of subsurface and surface hydrology using GIS data, and included aspects unique to mountain watersheds such as snow hydrology, high ground‐water gradients, and large differences in climate between the headwaters and outlet. Given the importance of this particular watershed as a major urban drinking‐water source, the rapid development occurring in small mountain watersheds, and the importance of Rocky Mountain water in the arid and semiarid West, it is useful to describe calibrated watershed modeling efforts in this watershed. The model used was Soil and Water Assessment Tool (SWAT). An accurate model of the hydrologic cycle required incorporation of mountain hydrology‐specific processes. Snowmelt and snow formation parameters, as well as several ground‐water parameters, were the most important calibration factors. Comparison of simulated and observed streamflow hydrographs at two U.S. Geological Survey gaging stations resulted in good fits to average monthly values (0.71 Nash‐Sutcliffe coefficient). With this capability, future assessments of point‐source and nonpoint‐source pollutant transport are possible.  相似文献   

20.
ABSTRACT: Land use and surface water data for nitrogen and pesticides (1995 to 1997) are reported for the Walnut Creek Watershed Monitoring Project, Jasper County Iowa. The Walnut Creek project was established in 1995 as a nonpoint source monitoring program in relation to watershed habitat restoration and agricultural management changes implemented at the Neal Smith National Wildlife Refuge by the U.S. Fish and Wildlife Service. The monitoring project utilizes a paired‐watershed approach (Walnut and Squaw creeks) as well as upstream/downstream comparisons on Walnut for analysis and tracking of trends. From 1992 to 1997, 13.4 percent of the watershed was converted from row crop to native prairie in the Walnut Creek watershed. Including another 6 percent of watershed farmed on a cash‐rent basis, land use changes have been implemented on 19.4 percent of the watershed by the USFWS. Nitrogen and pesticide applications were reduced an estimated 18 percent and 28 percent in the watershed from land use changes. Atrazine was detected most often in surface water with frequencies of detection ranging from 76–86 percent. No significant differences were noted in atrazine concentrations between Walnut and Squaw Creek. Nitrate‐N concentrations measured in both watersheds were similar; both basins showed a similar pattern of detection and an overall reduction in nitrate‐N concentrations from upstream to downstream monitoring sites. Water quality improvements are suggested by nitrate‐N and chloride ratios less than one in the Walnut Creek watershed and low nitrate‐N concentrations measured in the subbasin of Walnut Creek containing the greatest amount of land use changes. Atrazine and nitrate‐N concentrations from the lower portion of the Walnut Creek watershed (including the prairie restoration area) may be decreasing in relation to the upstream untreated component of the watershed. The frequencies of pesticide detections and mean nitrate‐N concentrations appear related to the percentage of row crop in the basins and subbasins. Although some results are encouraging, definitive water quality improvements have not been observed during the first three years of monitoring. Possible reasons include: (1) more time is needed to adequately detect changes; (2) the size of the watershed is too large to detect improvements; (3) land use changes are not located in the area of the watershed where they would have greatest effect; or (4) water quality improvements have occurred but have been missed by the project monitoring design. Longer‐term monitoring will allow better evaluation of the impact of restoration activities on water quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号