首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 359 毫秒
1.
导水裂隙带高度是水体下安全采煤的主要依据,本文通过数值计算、相似材料模拟、规程预测和工程类比等方法,对高头窑煤矿水多湖川和大哈他土沟河下浅埋煤层开采时导水裂隙带高度进行了预测研究,结果表明:几种方法预测结果有一定的误差,综合工程类比结果,高头窑煤矿水多湖川和大哈他土沟下采煤时裂采比定为15。由于高头窑煤矿2-3煤层上覆基岩段厚度较薄,根据三下开采规程,煤层开采需要进行安全限采控制,采高h≤H/19,以达到控制导水裂隙带高度的目的,实现河下采煤的安全开采。  相似文献   

2.
针对新建朝克乌拉煤矿承压水下安全开采问题,通过相似材料模拟实验,分析并得出了朝克乌拉煤矿2煤不同开采厚度下的"三带"发展形态和垮落带、导水裂隙带厚度。经与"三下"开采规程等经验公式计算作对比分析,结果表明,相似试验和经验公式预测2煤开采导水裂隙带高度的吻合性较好,确定"裂采比"为11.0。据此控制开采高度,以有效控制导水裂隙带发育高度,指导并实现承压水下煤层的安全开采。  相似文献   

3.
导水裂隙带高度的预测对煤矿安全开采有重要意义,而传统回归方法未考虑因素间相关系数对预测结果的影响。选取采深、煤层倾角、煤层厚度、煤层硬度、岩层结构、顶板岩石单轴抗压强度、开采厚度和采空区斜长作为预测导水裂隙带高度的影响因素,建立基于PCA-BP神经网络的导水裂隙带高度预测模型。测试结果表明,煤层厚度对导水裂隙带高度的影响最大,其余各因素对导水裂隙带高度的影响较大,采深和开采厚度对导水裂隙带高度的影响较小;PCA-BP神经网络模型的训练速度和预测效果均优于BP神经网络模型,且最大预测误差仅为5.58%。  相似文献   

4.
确定导水裂隙带高度是水下开采防水煤岩柱尺寸设计的关键。结合导水裂隙带形成机理和分布形态,选取采场采深、采厚、煤层倾角、覆岩单轴抗压强度和工作面斜长五个主要影响因素作为导水裂隙带高度的判别指标。利用24组样本数据,构建导水裂隙带高度的熵权属性测度预测模型。为检验模型的有效性,将其用于预测丁集煤矿1262(1)工作面导水裂隙带高度,结果为66.03m,与采用Midas/GTS-Flac3D耦合模拟得出64.63m的结论非常接近。研究结果表明,熵权属性测度模型预测的相对误差较小,可以在工程实际中推广应用。  相似文献   

5.
薄基岩厚松散含水层下综放开采安全性研究   总被引:1,自引:0,他引:1  
为研究薄基岩厚松散层含水层下综放开采的安全性,通过对赵家寨煤矿12采区东翼松散层地质特征分析,将其分为"一隔三含",并揭露其厚度和结构分布特征对煤炭开采的影响。采用经验公式计算不同采高下导水裂隙带高度,并建立UDEC数值模型模拟分析开采过程中上覆岩层变形破坏规律。基于导水裂隙带高度经验公式计算、数值模拟结果和相关实测资料,并结合12采区东翼的地质特征,引入"导水裂隙带高度调整系数n"概念,提出并验证该区域的导水裂隙带高度计算公式。结果表明,12采区东翼大部分区域可疏干新近系下部含水层后开采,研究内容可减小防水煤岩柱高度,提高煤炭采出率。  相似文献   

6.
回采工作面煤层被采出以后,上覆岩层产生离层、断裂、垮落等运动,形成的冒落带和裂隙带范围对煤矿安全生产影响极大.以顾桥煤矿1116(1)综采工作面为工程背景,采用数值模拟和井下电法测试技术,研究了淮南矿区11-2煤层开采时覆岩移动破坏的规律.结果表明:在垂直方向上,采空区上方覆岩破坏分区特征明显,由下而上依次为双拉应力破坏区、拉伸裂隙区、剪切破坏区和未破坏区域;冒落带最大高度11.5~14.5 m,裂隙带最大高度45~47.5 m;覆岩破坏最终形态类似于马鞍形,破坏在水平方向的范围要比开采区域大.  相似文献   

7.
复合顶板综放面覆岩破坏及裂隙演化相似模拟试验   总被引:1,自引:0,他引:1  
煤层回采过程中,覆岩破坏特征以及裂隙演化规律对于矿井水、瓦斯防治具有重要意义。采用相似模拟试验对某煤矿复合顶板大采高综放工作面覆岩破坏及裂隙演化规律进行研究。研究结果表明:复合顶板大采高综放开采垮落带高度为32.6m,裂隙带高度为64.6m;煤层回采过程中对顶板覆岩支承压力的影响,近煤层大,远煤层小;覆岩采动裂隙倾角以中角度,宽度以中宽度为主,且裂隙数量随着远离煤层而逐渐减少;采动过程中,近距离煤层覆岩为采动裂隙聚集区,覆岩裂隙密度曲线呈现为"波浪"型。  相似文献   

8.
目前保护层开采卸压效果考察多以现场打钻测试被保护层瓦斯参数变化为主,为了更加系统、方便地掌握保护层开采过程中上覆被保护层裂隙发育、应力状态、膨胀变形及渗透特性变化情况,可综合运用试验手段对保护层开采卸压效果进行多指标评判。因此,基于常规相似材料模拟平台,应用渗流力学理论,开发出被保护层渗透特性测试系统,并以长平煤矿保护层开采为工程对象进行研究。结果表明:长平矿主采3#煤层作为被保护煤层,处于下保护层8#煤层开采所产生的裂隙带顶部,具备卸压增透的初始条件;伴随着8#煤层工作面的开采,上覆岩层次生裂隙经历了起裂、发育、张开、闭合等过程,3#煤层均经过增压区、卸压膨胀区、恢复区的转变,其膨胀变形量曲线大体呈"M"型分布,最大膨胀变形率约为0.774%,平均膨胀变形率约0.60%,大于0.30%;3#煤层渗透率同样经历动态发展过程,其原始渗透率为0.034×10~(-14)m~2,卸压区内最大渗透率1.125×10~(-14)m~2,为原始状态的33倍,增压区内渗透率有所下降,但仍远大于原始渗透率。因此,长平矿保护层开采使被保护煤层具备良好的卸压增透效果,进而为3#煤层卸压瓦斯渗流-运移规律及卸压瓦斯抽采钻孔设计提供了依据。  相似文献   

9.
确定开采下限,对高突危险水体上煤层的安全开采具有十分重要的意义。本文基于肥城矿区地质条件,用FLAC3D软件,对开采煤层下伏岩层移动变形规律进行了深入研究,对煤层底板三带范围进行了初步确定;同时,从不同方面对煤层底板开采破坏深度进行了理论计算。根据突水系数、导水带深度、导升带高度和经验数据,确定出正常条件下带压开采的下限(-720m)以及安全措施条件下(底板预注浆处理等)的带压开采下限(-850m)。依据开采下限,对带压开采条件进行了分析,初步形成了高突危险水体上煤层带压开采的分区分类,划分了"开采相对安全区(安全开采区、次安全开采区、条件安全开采区)、深部突水危险区、构造突水危险区",为确定安全开采技术与工艺奠定了理论基础。  相似文献   

10.
针对程潮铁矿开展工程地质调查,采用离散元分析软件UDEC建立其二维地质剖面模型,在假设其上部水平矿房未开采的条件下,模拟了程潮铁矿无底柱分段崩落法开采-480 m、-500 m相邻分段的过程,研究单一分段及相邻分段开采导致的围岩“冒落带、导水裂隙带”的分布规律及范围,探索程潮铁矿单分段矿房开采时其上覆岩体形成的导水裂隙带高度范围y随采长x的变化函数,分析无底柱分段崩落法不同分段矿房开采对于上覆岩体变形及影响机理,为类似开采技术条件矿山安全生产提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号