首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 59 毫秒
1.
Conventional fluorescence spectroscopy in the excitation, emission and synchronous scan modes and three-dimensional fluorescence spectroscopy in the form of an excitation-emission matrix (EEM) of fluorescence intensity as a function of excitation and emission wavelengths have been applied to the study of three humic acids (HAs) extracted from soil (SHA), peat (PHA) and compost (CHA) and their interaction products with Zn(II) and Ni(II) ions. Fluorescence spectra of HAs appear to be related to the nature and origin of the sample. A strong reduction of intensity of all peaks is observed in the spectra of HAs-metal complexes as compared to those of untreated HAs. Ni(II) exhibits greater quenching ability than Zn(II). Fluorescence quenching measured for complexes of HAs at increasing Ni(II) concentrations was linearly correlated with metal ion concentration. The different capacity to interact with metal ions showed by various HAs is attributed to their different molecular complexity.  相似文献   

2.
The present study aimed to establish the seasonal variations in the redox potential ranges of young Tibouchina pulchra plants growing in the Cubatão region (SE Brazil) under varying levels of oxidative stress caused by air pollutants. The plants were exposed to filtered air (FA) and non-filtered air (NFA) in open-top chambers installed next to an oil refinery in Cubatão during six exposure periods of 90 days each, which included the winter and summer seasons. After exposure, several analyses were performed, including the foliar concentrations of ascorbic acid and glutathione in its reduced (AsA and GSH), total (totAA and totG) and oxidized forms (DHA and GSSG); their ratios (AsA/totAA and GSH/totG); the enzymatic activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and glutathione reductase (GR); and the content of malondialdehyde (MDA). The range of antioxidant responses in T. pulchra plants varied seasonally and was stimulated by high or low air pollutant concentrations and/or air temperatures. Glutathione and APX were primarily responsible for increasing plant tolerance to oxidative stress originating from air pollution in the region. The high or low air temperatures mainly affected enzymatic activity. The content of MDA increased in response to increasing ozone concentration, thus indicating that the pro-oxidant/antioxidant balance may not have been reached.  相似文献   

3.
Time-dependent changes in enzymatic and non-enzymatic antioxidants, and lipid peroxidation were investigated in roots of rice (Oryza sativa) grown hydroponically with Cd, with or without pretreatment of salicylic acid (SA). Exposure to 50 microM Cd significantly decreased root growth, and activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD), but increased the concentrations of H(2)O(2), malondialdehyde (MDA), ascorbic acid (AsA), glutathione (GSH) and non-protein thiols (NPT). However, pretreatment with 10 microM SA enhanced the activities of antioxidant enzymes and the concentrations of non-enzymatic antioxidants, but lowered the concentrations of H(2)O(2) and MDA in the Cd-stressed rice compared with the Cd treatment alone. Pretreatment with SA alleviated the Cd-induced inhibition of root growth. The results showed that pretreatment with SA enhanced the antioxidant defense activities in Cd-stressed rice, thus alleviating Cd-induced oxidative damage and enhancing Cd tolerance. The possible mechanism of SA-induced H(2)O(2) signaling in mediating Cd tolerance was discussed.  相似文献   

4.
Brazilian soybean cultivars (Glycine max Sambaíba and Tracajá) routinely grown in Amazonian areas were exposed to filtered air (FA) and filtered air enriched with ozone (40 and 80 ppb, 6 h/day for 5 days) to assess their level of tolerance to this pollutant by measuring changes in key biochemical, physiological, and morphological indicators of injury and in enzymatic and non-enzymatic antioxidants. Sambaíba plants were more sensitive to ozone than Tracajá plants, as revealed by comparing indicator injury responses and antioxidant stimulations. Sambaíba exhibited higher visible leaf injury, higher stomatal conductance, and a severe decrease in the carbon assimilation rate. Higher ozone level (80 ppb) caused an increase in cell death in both cultivars. Levels of malondialdehyde and hydrogen peroxide also increased in Tracajá exposed under 80 ppb. Sambaíba plants exhibited decreases in ascorbate and glutathione levels and in enzymatic activities associated with these antioxidants. The higher tolerance of the Tracajá soybean appeared to be indicated by reduced physiological injuries and lower stomatal conductance, which might decrease the influx of ozone and enhance oxidation-reduction reactions involving catalase, ascorbate peroxidase, ascorbate, and glutathione, most likely stimulated by higher hydrogen peroxide.  相似文献   

5.
Veterinary antimicrobials are emerging environmental contaminants of concern. In this study, the sorption of enrofloxacin (ENR) onto humic acids (HAs) extracted from three Brazilian soils was evaluated. HAs were characterized by elemental analysis and solid 13C nuclear magnetic resonance spectroscopy. The sorption of ENR onto HAs was at least 20-fold higher than onto the soils from which they were separated. Ionic and cation bridging are the primary interactions involved. The interactions driven by cation exchange are predominant on HAs, which appear to have abundant carboxylic groups and a relatively high proportion of H-bond donor moieties with carbohydrate-like structures. Interactions explained by cation bridging and/or surface complexation on HAs are facilitated by moieties containing conjugated ligands, significant content of oxygen-containing functional groups, such as phenolic-OH or lignin-like structures. HAs containing electron-donating phenolic moieties and carboxylic acid ligand groups exhibit a sorption mechanism that is primarily driven by strong metal binding, favoring the formation of ternary complexes between functional groups of the organic matter and drugs.  相似文献   

6.
Ahammed GJ  Yuan HL  Ogweno JO  Zhou YH  Xia XJ  Mao WH  Shi K  Yu JQ 《Chemosphere》2012,86(5):546-555
The present study was carried out to investigate the effects of exogenously applied 24-epibrassinolide (BR) on growth, gas exchange, chlorophyll fluorescence characteristics, lipid peroxidation and antioxidant systems of tomato seedlings grown under different levels (0, 10, 30, 100 and 300 μM) of phenanthrene (PHE) and pyrene (PYR) in hydroponics. A concentration-dependent decrease in growth, photosynthetic pigment contents, net photosynthetic rate (Pn), stomatal conductance (Gs), maximal quantum yield of PSII (Fv/Fm), effective quantum yield of PSII (ΦPSII), photochemical quenching coefficient (qP) has been observed following PHE and PYR exposure. By contrast, non-photochemical quenching coefficient (NPQ) was increased. PHE was found to induce higher stress than PYR. However, foliar or root application of BR (50 nM and 5 nM, respectively) alleviated all those depressions with a sharp improvement in the activity of photosynthetic machinery. The activities of guaicol peroxidase (GPOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) as well as content of malondialdehyde (MDA) were increased in a dose-dependent manner under PHE or PYR treatments. Compared with control the highest increments of GPOD, CAT, APX, GR and MDA by PHE/PYR alone treatments were observed following 300 μM concentration, which were 67%, 87%, 53%, 95% and 74% by PHE and 42%, 53%, 30%, 86% and 62% by PYR, respectively. In addition, both reduced glutathione (GSH) and oxidized glutathione (GSSG) were induced by PHE or PYR. Interestingly, BR application in either form further increased enzymatic and non enzymatic antioxidants in tomato roots treated with PHE or PYR. Our results suggest that BR has an anti-stress effect on tomato seedlings contaminated with PHE or PYR and this effect is mainly attributed by increased detoxification activity.  相似文献   

7.

Background, aim and scope

Lead (Pb) accumulation in soils affects plants primarily through their root systems. The aim of this study was to investigate early symptoms of the loss of membrane integrity and lipid peroxidation in root tissues and physiological adaptation mechanism to Pb in accumulating ecotypes (AE) and non-accumulating ecotypes (NAE) of Sedum alfredii under Pb stress in hydroponics.

Methods and results

Histochemical in situ analyses, fluorescence imaging, and normal physiological analysis were used in this study. Pb accumulation in roots of both AE and NAE increased linearly with increasing Pb levels (0?C200???M), and a significant difference between both ecotypes was noted. Both loss of plasma membrane integrity and lipid peroxidation in root tissues became serious with increasing Pb levels, maximum tolerable Pb level was 25 and 100???M for NAE and AE, respectively. Pb supplied at a toxic level caused a burst of reactive oxygen species (ROS) in root cells in both ecotypes. However, the root cells of AE had inherently higher activities of superoxide dismutase (SOD), guaiacol peroxidase (POD), and lipoxygenase (LOX) in control plants, and the induction response of these antioxidant enzymes occurred at lower Pb level in AE than NAE. AE plants maintained higher ascorbic acid and H2O2 concentrations in root cells than NAE when exposed to different Pb levels, and Pb induced more increase in dehydroascorbate (DHA), catalase (CAT), and ascorbate peroxidase (APX) in AE than NAE roots.

Discussion and conclusion

Results indicate that histochemical in situ analyses of root cell death and lipid peroxidation under Pb short-term stress was sensitive, reliable, and fast. Higher tolerance in roots of accumulating ecotype under Pb stress did depend on effective free oxygen scavenging by making complex function of both constitutively higher activities and sensitive induction of key antioxidant enzymes in root cells of S. alfredii.  相似文献   

8.
Biochemical responses on the bases of activities of antioxidant enzymes; peroxidase, catalase, superoxide dismutase and glutathione reductase as well as estimations of total protein, lipid peroxidation and thiols in the form of protein, non-protein, glutathione and phytochelatin measured in growing seedlings of barley, Hordeum vulgare L., from Day 2 through 8 were compared following treatment of seeds for 2 h with oxidative agents, paraquat 5 x 10(-5), 10(-4), 10(-3) M, H2O2 10(-3), 5 x 10(-3), 10(-2) M and a metal salt, CdSO4 10(-5), 10(-4), 10(-3) M. A significant induction of all antioxidant enzymes along with an increase in the levels of protein, lipid peroxidation and glutathione was noted in response to oxidative stress, CdSO4 induced significant peroxidase and catalase activities but not superoxide dismutase. In a marked contrast from oxidative stress, CdSO4 decreased glutathione reductase activity as well as glutathione levels but increased phytochelatin level. The differential biochemical responses thus underlined the crucial involvement of glutathione and phytochelatin in the oxidative and metal-induced adaptive responses, respectively.  相似文献   

9.
Foliar antioxidants were measured in adult individuals of holm oak (Quercus ilex L.) and white oak (Q. pubescens Willd.) growing in the field either within the vicinity of natural CO2 springs or at a nearby control site under ambient CO2, which had been previously exposed to either daily irrigation or no irrigation. In oak trees permanently exposed to elevated CO2 the activities of antioxidant enzymes tended to be lower and the ascorbate pool was larger and more in reduced form, suggesting an attenuation of the oxidative risk in the CO2-enriched trees. In the enriched individuals of both species. the imposition of water shortage significantly increased the size of the glutathione pool and the total superoxide dismutase activity in a species-specific manner. Moreover, water-stressed trees exposed to elevated CO2 tended to have higher catalase and ascorbate peroxidase activities than water-stressed control trees. Such changes may reflect the need for an enhanced compensatory effort when trees acclimated to elevated CO2 are exposed to oxidative stress-promoting environmental factors, such as water shortage.  相似文献   

10.
The effects of two humic acids (HAs) of different origins on the photodegradation of the chloroacetanilide herbicides acetochlor, propisochlor and butachlor were investigated in this study. One of the tested HAs was a standard sample that was purchased from a commercial source, and the other was isolated from the black soil of Northeast China. The photolysis of all three herbicides followed pseudo-first-order kinetics under ultraviolet (UV) irradiation conditions, regardless of whether HAs were present or not. Both HAs improved the photolysis rates of acetochlor in a dose-reversed way, whereas they inhibited butachlor degradation under all experimental concentrations. The two HAs differed in their effects on propisochlor photolysis, changing from enhancement to inhibition, depending on the origin and concentration of HAs. Element and Fourier Transform Infrared spectroscopy analyses showed that the isolated HAs had more polysaccharides and less aliphatic groups than the commercial HAs, and it was indicated that some characteristic radicals (C═O, O─H and phenolic hydroxyls) in HAs were involved in the photolysis of the herbicides. Gas chromatography/mass spectrometry (GC/MS) analyses indicated that the presence of HAs had no effects on the photolysis pathway and photoproduct species of the three herbicides.  相似文献   

11.
The effects of two humic acids (HAs) of different origins on the photodegradation of the chloroacetanilide herbicides acetochlor, propisochlor and butachlor were investigated in this study. One of the tested HAs was a standard sample that was purchased from a commercial source, and the other was isolated from the black soil of Northeast China. The photolysis of all three herbicides followed pseudo-first-order kinetics under ultraviolet (UV) irradiation conditions, regardless of whether HAs were present or not. Both HAs improved the photolysis rates of acetochlor in a dose-reversed way, whereas they inhibited butachlor degradation under all experimental concentrations. The two HAs differed in their effects on propisochlor photolysis, changing from enhancement to inhibition, depending on the origin and concentration of HAs. Element and Fourier Transform Infrared spectroscopy analyses showed that the isolated HAs had more polysaccharides and less aliphatic groups than the commercial HAs, and it was indicated that some characteristic radicals (C=O, O-H and phenolic hydroxyls) in HAs were involved in the photolysis of the herbicides. Gas chromatography/mass spectrometry (GC/MS) analyses indicated that the presence of HAs had no effects on the photolysis pathway and photoproduct species of the three herbicides.  相似文献   

12.
Mercury toxicity induces oxidative stress in growing cucumber seedlings   总被引:6,自引:0,他引:6  
In this study, the effects of exogenous mercury (HgCl(2)) on time-dependent changes in the activities of antioxidant enzymes (catalase and ascorbate peroxidase), lipid peroxidation, chlorophyll content and protein oxidation in cucumber seedlings (Cucumis sativus L.) were investigated. Cucumber seedlings were exposed to from 0 to 500microM of HgCl(2) during 10 and 15 days. Hg was readily absorbed by growing seedlings, and its content was greater in the roots than the in shoot. Time and concentration-dependent reduction in root and shoot length was observed at all concentrations tested, equally in the roots and shoot, at both 10 and 15 days. At 50microM HgCl(2), root fresh weight of 15-day-old seedlings increased, and at other concentrations, it reduced. For 10-day-old seedlings, reduction in root and shoot fresh biomass was observed. At 15 days, only at 50microM HgCl(2) was there no observed reduction in shoot fresh biomass. Dry weight of roots increased at 500microM both at 10 and 15 days, though at 250microM HgCl(2) there was only an increase at 15 days. There was a significant effect on shoot dry weight at all concentrations tested. Hg-treated seedlings showed elevated levels of lipid peroxides with a concomitant increase in protein oxidation levels, and decreased chlorophyll content when exposed to between 250 and 500microM of HgCl(2). At 10 days, catalase activity increased in seedlings at a moderately toxic level of Hg, whereas at the higher concentration (500microM), there was a marked inhibition. Taken together, our results suggest that Hg induces oxidative stress in cucumber, resulting in plant injury.  相似文献   

13.
This study hypothesized that the positive or negative effects of exogenous abscisic acid (ABA) on oxidative stress caused by lead were dose dependent. The effects of different levels of ABA (2.5, 5, and 10 mg L?1) on lead toxicity in the leaves of Atractylodes macrocephala were studied by investigating plant growth, soluble sugars, proteins, lipid peroxidation, and antioxidative enzymes. Excess Pb inhibited root dry weight, root length, and the number of lateral roots, but increased shoot growth. In addition, lead stress significantly decreased the levels of chlorophyll pigments, protein, and activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and peroxidase (POD). Different levels of ABA significantly increased SOD, CAT, POD, and APX activities, but decreased the level of hydrogen peroxide and malondialdehyde in nonstressed plants. Exogenous application of 2.5 mg L?1 ABA detoxified the stress-generated damages caused by Pb and also enhanced plant growth, soluble sugars, proteins, and all four antioxidant enzyme activities but reduced Pb uptake of lead-stressed plant compared to lead treatment alone. However, the toxic effects of Pb were further increased by the applications of 5 and 10 mg L?1 ABA. The levels of antioxidants caused by a low concentration of exogenous ABA might be responsible for minimizing the Pb-induced toxicity in A. macrocephala.  相似文献   

14.
A pot experiment was conducted to investigate the dynamic changes in the rhizosphere properties and antioxidant enzyme responses of wheat plants (Triticum aestivum L.) grown in three levels of Hg-contaminated soils. The concentrations of soluble Hg and dissolved organic carbon (DOC) in the rhizosphere soil solutions of the wheat plants were characterised by the sequence before sowing > trefoil stage > stooling stage, whereas the soil solution pH was found to follow an opposite distribution pattern. The activities of antioxidant enzymes in wheat plants under Hg stress were substantially altered. Greater superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) activities were observed in the wheat plants grown in a highly polluted soil than in a slightly polluted soil (with increases of 11–27% at the trefoil stage and 26–70% at the stooling stage); however, increasing concentrations of Hg up to seriously polluted level led to reduced enzyme activities. The present results suggest that wheat plants could positively adapt to environmental Hg stress, with rhizosphere acidification, the enhancement of DOC production and greater antioxidant enzyme activities perhaps being three important mechanisms involved in the metal uptake/tolerance in the rhizospheres of wheat plants grown in Hg-contaminated soils.  相似文献   

15.
The sorption behaviour of the severely toxic heavy metal thallium (Tl) as a monovalent cation onto three representative materials (goethite, pyrolusite and a natural sediment sampled from a field site) was examined as a function of pH in the absence and presence of two natural humic acids (HAs), using 204Tl(I) as a radiotracer. In order to obtain a basic understanding of trends in the pH dependence of Tl(I) sorption with and without HA, sorption of HAs and humate complexation of Tl(I) as a function of pH were investigated as well. In spite of the low complexation between Tl(I) and HAs, the presence of HAs results in obvious alterations of Tl(I) sorption onto pyrolusite and sediment. An influence on Tl(I) sorption onto goethite was not observed. Predictions of Kd (distribution coefficient) for Tl(I) on goethite in the presence of HAs, based on a linear additive model, agree well with the experimental data, while a notable disagreement occurs for the pyrolusite and sediment systems. Accordingly, it is suggested that HAs and goethite may act as a non-interacting sorbent mixture under the given conditions, but more complex interactions may take place between the HAs and the mineral phases of pyrolusite or sediment.  相似文献   

16.
In this study we evaluated the effect of different fertilizer treatments on Brassica plants grown on boron-contaminated sediments. Experiments were conducted in the laboratory and on the lysimeter scale. At laboratory scale (microcosm), five different fertilizers were tested for a 35-d period. On the lysimeter scale, nitrogen fertilization was tested at three different doses and plants were allowed to grow until the end of the vegetative phase (70 d). Results showed that nitrogen application had effectively increased plant biomass production, while B uptake was not affected. Total B phytoextracted increased three-fold when the highest nitrogen dose was applied. Phytotoxicity on Brassica was evaluated by biochemical parameters. In plants grown in unfertilized B-contaminated sediments, the activity of antioxidant enzymes superoxide dismutase (SOD), ascorbate peroxidase (APX) and pyrogallol peroxidase (PPX) increased, whereas catalase (CAT) decreased with respect to control plants. Addition of N progressively mitigated the alteration of enzymatic activity, thus suggesting that N can aid in alleviating B-induced oxidative stress. SOD activity was restored to control levels just at the lowest N treatment, whereas the CAT inhibition was partially restored only at the highest one. N application also lowered the B-induced increase in APX and PPX activities. Increased glutathione reductase activity indicated the need to restore the oxidative balance of glutathione. Data also suggest a role of glutathione and phytochelatins in B defense mechanisms. Results suggest that the nitrogen fertilizer was effective in improving B phytoextraction by increasing Brassica biomass and by alleviating B-induced oxidative stress.  相似文献   

17.
Zhou ZS  Wang SJ  Yang ZM 《Chemosphere》2008,70(8):1500-1509
Mercury has become one of the major causes of toxic metal pollution in agricultural lands. Accumulation of mercury by plants may disrupt many cellular functions and block growth and development. To assess mercury toxicity, we performed an experiment focusing on the responses of alfalfa (Medicago sativa) to Hg(2+)-induced oxidative stress. Alfalfa plants were treated with 0-40microM HgCl(2) for 7d. The concentrations of Hg(2+) were positively correlated with the generation of O2- and H(2)O(2) in leaves. Treatment with Hg(2+) increased the activities of NADH oxidase and lipoxygenase (LOX) and damaged the biomembrane lipids. To understand biochemical responses under Hg stress, activities of several antioxidant enzymes, superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) were assayed. Analysis of SOD activity by non-denaturing polyacrylamide gel electrophoresis revealed five isoforms in leaves, but they showed different patterns. Also, eight isoenzymes of APX and seven of POD in leaves were detected. However, only one isoform of CAT was visualized. The total activities of APX, POD and CAT were generally enhanced. We also measured several antioxidative metabolites such as ascorbate and glutathione (GSH), and found that both differentially accumulated in leaves. These results indicate that the increased levels of O2- and H(2)O(2) under Hg stress were closely linked to the improved capacity of antioxidant enzymes. The data not only provide the important information for better understanding of the toxic and tolerance mechanisms, but as well can be used as a bio-indicator for soil contamination by Hg.  相似文献   

18.
Song NH  Yin XL  Chen GF  Yang H 《Chemosphere》2007,68(9):1779-1787
Chlorotoluron is a phenylurea herbicide that is widely used for controlling grass weeds in the land of cereal, cotton and fruit production. However, extensive use of this herbicide may lead to its accumulation in ecosystems, thus inducing the toxicity to crops and vegetables. To assess chlorotoluron-induced toxicity in plants, we performed the experiment focusing on the metabolic adaptation of wheat plants (Triticum aestivum) to the chlorotoluron-induced oxidative stress. The wheat plants were cultured in the soils with chlorotoluron at concentrations of 0-25mg/kg. Chlorotoluron accumulation in plants was positively correlated with the external chlorotoluron concentrations, but negatively with the plant growth. Treatment with chlorotoluron induced the accumulation of O(2)(-) and H(2)O(2) in leaves and resulted in the peroxidation of plasma membrane lipids in the plant. We measured the endogenous proline level and found that it accumulated significantly in chlorotoluron-exposed roots and leaves. To understand the biochemical responses to the herbicide, activities of the antioxidant enzymes, such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) were assayed. Analysis of SOD activity by non-denaturing polyacrylamide gel electrophoresis (PAGE) revealed that there were three isoforms in the roots and leaves, but the isoforms in the tissues showed different patterns. Also, using the native PAGE, 6 isoforms of root POD and 10 in leaves were detected. The total activity of POD in roots was significantly enhanced. Activities of APX in roots and leaves showed a similar pattern. The CAT activities were generally suppressed under the chlorotoluron exposure.  相似文献   

19.
Singh S  Eapen S  D'Souza SF 《Chemosphere》2006,62(2):233-246
Bacopa monnieri L. plants exposed to 10, 50, 100 and 200 microM cadmium (Cd) for 48, 96 and 144 h were analysed with reference to the accumulation of metal and its influence on various enzymatic and non-enzymatic antioxidants, thiobarbituric acid reactive substances (TBARS), photosynthetic pigments and protein content. The accumulation of Cd was found to be increased in a concentration and duration dependent manner with more Cd being accumulated in the root. TBARS content of the treated roots and leaves increased with increase in Cd concentration and exposure periods, indicating the occurrence of oxidative stress. Induction in the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX) and guiacol peroxidase (GPX) was recorded in metal treated roots and leaves of B. monnieri. In contrast, a significant reduction in catalase activity in Cd treated B. monnieri was observed. An increase was also noted in the levels of cysteine and non-protein thiol contents of the roots of B. monnieri followed by a decline. However, in leaves, cysteine and non-protein thiol contents were found to be enhanced at all the Cd concentrations and exposure periods. A significant reduction in the level of ascorbic acid was observed in a concentration and duration dependent manner. The total chlorophyll and protein content of B. monnieri decreased with increase in Cd concentration at all the exposure periods. Results suggest that toxic concentrations of Cd caused oxidative damage as evidenced by increased lipid peroxidation and decreased chlorophyll and protein contents. However, B. monnieri is able to combat metal induced oxidative injury involving a mechanism of activation of various enzymatic and non-enzymatic antioxidants.  相似文献   

20.
Humic acids (HAs) were extracted from four digested sewage sludge samples composted for four months, one, two and four years. HAs were pyrolyzed at three different temperatures applying both conventional and in situ methylation (ISM) pyrolysis. The pyrolysates were analyzed using gas chromatography-mass spectrometry (GC/MS). Derivatization (ISM) and pyrolysis temperature had dramatic effects on the composition and relative amounts of the pyrolysates. Among the derivatized HA fragments aliphatic compounds prevailed under all the pyrolysis conditions tested. Aromatic substances consisting mainly of guaiacyl-type compounds were detected in higher abundances only at elevated temperatures. Without ISM the contribution of aromatic structures to the total pyrogram was considerably greater than that of the aliphatics. Increase of the pyrolysis temperature from 450 degrees C to 600 degrees C had smaller effect on the proportions and composition of the compounds studied than increase from 350 degrees C to 450 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号