首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 298 毫秒
1.
Laser-induced breakdown spectroscopy (LIBS) is a laser-based optical technique particularly suited for in situ surface analysis. A portable LIBS instrument was tested to detect surface chemical contamination by chemical warfare agents (CWAs). Test of detection of surface contamination was carried out in a toxlab facility with four CWAs, sarin (GB), lewisite (L1), mustard gas (HD), and VX, which were deposited on different substrates, wood, concrete, military green paint, gloves, and ceramic. The CWAs were detected by means of the detection of atomic markers (As, P, F, Cl, and S). The LIBS instrument can give a direct response in terms of detection thanks to an integrated interface for non-expert users or so called end-users. We have evaluated the capability of automatic detection of the selected CWAs. The sensitivity of our portable LIBS instrument was confirmed for the detection of a CWA at surface concentrations above 15 μg/cm2. The simultaneous detection of two markers may lead to a decrease of the number of false positive.  相似文献   

2.
One of the foremost environmental issues having a key role in the feasibility study of polycyclic aromatic hydrocarbons (PAHs) biodegradation is the concern of the toxicity of the formed intermediate metabolites. In this study, biodegradability of phenanthrene (PHE) at initial concentrations of 100–500 ppm and its hydroxylated intermediate metabolites (IMs) in aqueous phase were investigated using free cells (FC) and immobilized cells (IC) in polyvinyl alcohol (PVA) cryogel beads. Results showed that both FC and IC systems were capable of complete PHE biodegradation at initial concentrations lower than 250 ppm after 7 days, though IC system showed a higher PHE removal rate. The maximum IM concentrations observed at initial PHE concentrations of 100 and 250 ppm were 20 and 49 ppm for FC system, whereas 7.4 and 19 ppm were obtained for IC system, respectively, and IMs were finally removed after 7 days. Similarly, at 500 ppm, IC system resulted in higher removal of PHE compared to FC system. However, during the 7-day period for FC system, IMs concentration rose up to 59 ppm, while for IC system, IMs concentration reaches a maximum at day 5 and thereafter it follows a negative rate. It was also shown that resorcinol as an indicator of hydroxylated aromatic metabolites at concentrations of 0–100 ppm can well be biodegraded by free and immobilized cell systems. No prohibition on PHE biodegradation could hence occur due to IMs formation. Additionally, stability of IC system was examined in repeated-batch cultures, showing the effective removal of PHE up to nine reuse cycles.  相似文献   

3.
This paper demonstrated the relative bactericidal activity of photoirradiated (6W-UV Torch, λ?>?340 nm and intensity?=?0.64 mW/cm2) P25–TiO2 nanoparticles, nanorods, and nanotubes for the killing of Gram-negative bacterium Agrobacterium tumefaciens LBA4404 for the first time. TiO2 nanorod (anatase) with length of 70–100 nm and diameter of 10–12 nm, and TiO2 nanotube with length of 90–110 nm and diameter of 9–11 nm were prepared from P-25 Degussa TiO2 (size, 30–50 nm) by hydrothermal method and compared their biocidal activity both in aqueous slurry and thin films. The mode of bacterial cell decomposition was analyzed through transmission electron microscopy (TEM), Fourier transform-infrared (FT-IR), and K+ ion leakage. The antimicrobial activity of photoirradiated TiO2 of different shapes was found to be in the order P25–TiO2?>?nanorod?>?nanotube which is reverse to their specific surface area as 54?<?79?<?176 m2 g?1, evidencing that the highest activity of P25–TiO2 nanoparticles is not due to surface area as their crystal structure and surface morphology are entirely different. TiO2 thin films always exhibited less photoactivity as compared to its aqueous suspension under similar conditions of cell viability test. The changes in the bacterial surface morphology by UV-irradiated P25–TiO2 nanoparticles was examined by TEM, oxidative degradation of cell components such as proteins, carbohydrates, phospholipids, nucleic acids by FT-IR spectral analysis, and K+ ion leakage (2.5 ppm as compared to 0.4 ppm for control culture) as a measure of loss in cell membrane permeability.  相似文献   

4.
ABSTRACT

In this study, granular activated carbon (GAC) was used as an adsorbent for biogas desulfurization. Biogas containing 932–2,350 ppm of H2S was collected from an anaerobic digester to treat the wastewater from a dairy farm with about 200 cows. An adsorption test was performed by introducing the biogas to a column that was packed with approximately 50 L of commercial GAC. The operation ceased if the effluent gas had an H2S concentration of over 100 ppm. The GAC was replaced by a given weight of new GAC in a subsequent test. According to the results, for H2S concentrations in the range of 932–1,560 ppm (average±SD = 1,260 ± 256 ppm), 1 kg of the GAC yielded biogas treatment capacities of 568 ± 112 m3 and H2S adsorption capacities of 979 ± 235 g. For the higher influent H2S concentrations of 2,110 ± 219 ppm, the biogas treatment and H2S-adsorption capacities decreased to 229 ± 18 m3 and 668 ± 47 g, respectively. An estimation indicated a requisite cost of US$16.5 for the purification of 1,000 m3 of biogas containing 2,110 ppm of H2S. This cost is approximately 5% of US$330, the value of 1,000 m3 of biogas.  相似文献   

5.
Based on the enhancing effect of chitosan (CS) on luminol-dissolved oxygen chemiluminescence (CL) reaction, a flow injection (FI) luminol–CS CL system was established. It was found that the increase of CL intensity was proportional to the concentrations of CS ranging from 0.7 to 10.0 μmol l?1. In the presence of chlortoluron (CTU), the CL intensity of luminol–CS system could be obviously inhibited and the decrements of CL intensity were linearly proportional to the logarithm of CTU concentrations ranging from 0.01 to 70.0 ng ml?1, giving the limit of detection 3.0 pg ml?1 (3σ). At a flow rate of 2.0 ml min?1, the whole process including sampling and washing could be accomplished within 36 s, offering a sample throughput of 100 h?1. The proposed FI–CL method was successfully applied to the determination of CTU in soil samples with recoveries ranging from 95.0 % to 105.3 % and the relative standard deviations (RSDs) of less than 4.0 %.  相似文献   

6.
Many studies have focused their attention on the determination of elements of toxicological and environmental interest in atmospheric particulate matter using analytical techniques requiring chemical treatments. The instrumental nuclear activation analysis technique allows achieving high sensitivity, good precision, and excellent limit of detection without pretreatment, also considering the problems related to the radioisotope characteristics (e.g., half-life time, interfering reactions, spectral interferences). In this paper, elements such as Al, As, Br, Cl, Cu, I, La, Mg, Mn, Na, Sb, Si, Ti, and V are studied in atmospheric PM10 sampled in downtown Rome: The relative radionuclides after activation of the sample are characterized by very short (ranging from 2.24 to 37.2 min) and short (ranging from 2.58 h to 2.70 days) half-lives. Furthermore, As, Br, La, Mn, and Sb were also determined for evaluating the aerosol characteristics. The results, elaborated considering the matrix effects and the interfering reaction contribution to the radioisotope formation (e.g., 28Al generated by both (n,γ) reaction from 27Al and (n,p) reaction from 28Si), show interesting values of As (0.3–6.1 ng m?3), Cu (22–313 ng m?3), Mn (17–125 ng m?3), V (7–63 ng m?3), higher than those determined in an area not influenced by autovehicular traffic, and significant levels of I (1–11 ng m?3) and Ti (25–659 ng m?3) in Rome PM10. The other elements show a pattern similar to the very few data present in the literature. It should be underlined the good correlation (r 2) of Al vs. Mg (0.915) and Al vs. La (0.726), indicating a same sources for these species as well as Br–Sb showing a little lower correlation (0.623). This last hypothesis is confirmed by the study of the enrichment factors: Sb and Br may be attributed to anthropogenic sources; Cu, Cl, and I show a mixed origin (natural and anthropogenic), whereas Al, Si, Ti, Mn, Na, Mg, and As are of crustal origin. For having more information, a statistical approach based on the principal component analysis and the canonical discriminant analysis has been performed: All the samples (except one) are grouped in a cluster, and elements such as As, Br, Cu, I, La, Mn, Sb, Ti, and V are highly correlated, whereas Na and Cl and Mg and Al assemble in two different clusters. Finally, a comparison with other similar studies is reported showing interesting values for Al, As, Mg, Mn, and Ti.  相似文献   

7.
Long-range atmospheric transport is a major pathway for delivering persistent organic pollutants to the oceans. Atmospheric deposition and volatilization of chlorinated pesticides and algae-produced bromoanisoles (BAs) were estimated for Bothnian Bay, northern Baltic Sea, based on air and water concentrations measured in 2011–2012. Pesticide fluxes were estimated using monthly air and water temperatures and assuming 4 months ice cover when no exchange occurs. Fluxes were predicted to increase by about 50 % under a 2069–2099 prediction scenario of higher temperatures and no ice. Total atmospheric loadings to Bothnian Bay and its catchment were derived from air–sea gas exchange and “bulk” (precipitation + dry particle) deposition, resulting in net gains of 53 and 46 kg year?1 for endosulfans and hexachlorocyclohexanes, respectively, and net loss of 10 kg year?1 for chlordanes. Volatilization of BAs releases bromine to the atmosphere and may limit their residence time in Bothnian Bay. This initial study provides baseline information for future investigations of climate change on biogeochemical cycles in the northern Baltic Sea and its catchment.  相似文献   

8.
In an effort to assess the occurrence and sources of polycyclic aromatic hydrocarbons (PAHs) in the ambient air of Riyadh, Saudi Arabia, PM10 samples were collected during December 2010. Diagnostic PAH concentration ratios were used as a tool to identify and characterize the PAH sources. The results reflect high PM10 and PAH concentrations (particulate matter (PM)?=?270–1,270 μg/m3). The corresponding average PAH concentrations were in the range of 18?±?8 to 1,003?±?597 ng/m3 and the total concentrations (total PAHs (TPAHs) of 17 compounds) varied from 1,383 to 13,470 ng/m3 with an average of 5,871?±?2,830 ng/m3. The detection and quantification limits were 1–3 and 1–10 ng/ml, respectively, with a recovery range of 42–80 %. The ratio of the sum of the concentrations of the nine major non-alkylated compounds to the total (CPAHs/TPAHs) was 0.87?±?0.10, and other ratios were determined to apportion the PM sources. The PAHs found are characteristic for emissions from traffic with diesel being a predominant source.  相似文献   

9.
Water quality assessment was conducted on the Ruiru River, a tributary of an important tropical river system in Kenya, to determine baseline river conditions for studies on the aquatic fate of N-methyl carbamate (NMC) pesticides. Measurements were taken at the end of the long rainy season in early June 2013. Concentrations of copper (0.21–1.51 ppm), nitrates (2.28–4.89 ppm) and phosphates (0.01–0.50 ppm) were detected at higher values than in uncontaminated waters, and attributed to surface runoff from agricultural activity in the surrounding area. Concentrations of dissolved oxygen (8–10 ppm), ammonia (0.02–0.22 ppm) and phenols (0.19–0.83 ppm) were found to lie within normal ranges. The Ruiru River was found to be slightly basic (pH 7.08–7.70) with a temperature of 17.8–21.2°C. The half-life values for hydrolysis of three NMC pesticides (carbofuran, carbaryl and propoxur) used in the area were measured under laboratory conditions, revealing that rates of decay were influenced by the electronic nature of the NMCs. The hydrolysis half-lives at pH 9 and 18°C decreased in the order carbofuran (57.8 h) > propoxur (38.5 h) > carbaryl (19.3 h). In general, a decrease in the electron density of the NMC aromatic ring increases the acidity of the N-bound proton removed in the rate-limiting step of the hydrolysis mechanism. Our results are consistent with this prediction, and the most electron-poor NMC (carbaryl) hydrolyzed fastest, while the most electron-rich NMC (carbofuran) hydrolyzed slowest. Results from this study should provide baseline data for future studies on NMC pesticide chemical fate in the Ruiru River and similar tropical water systems.  相似文献   

10.
Fluazinam is a widely used pesticide employed against the fungal disease late blight in potato cultivation. A specific, repeatable, and rapid high-performance liquid chromatography (HPLC) method utilizing a diode array detector (DAD) was developed to determine the presence of fluazinam in soil. The method consists of acetonitrile (ACN) extraction, clean-up with solid-phase extraction (SPE), and separation using a mobile phase consisting of 70% ACN and 30% water (v/v), including 0.02% acetic acid. HPLC was performed with a C18 column and the detection wavelength was 240 nm. The method was successfully applied to an incubation experiment and to soil samples taken from potato fields where fluazinam had been applied two to three times during the on-going growing season. In the 90-day incubation experiment, analytical standard fluazinam and the commercial fungicide Shirlan® were added to soil samples that had never been treated with fluazinam, and were then extracted with ACN and 0.01 M calcium chloride (CaCl2). Fluazinam was not extractable with CaCl2, indicating that it does not leach to watercourses in the dissolved form. Recovery with ACN extraction for sandy soils was 72–95% immediately after application and 53–73% after 90 days of incubation. Out of the eight potato field soil samples, fluazinam was found in two samples at concentrations of 2.1 mg kg?1 and 1.9 mg kg?1, well above the limit of quantification (0.1 mg kg?1).  相似文献   

11.
The low bioavailability of Pb and low number of Pb-tolerant plant species represent an important limitation for Pb phytoextraction. It was recently suggested that halophyte plant species may be a promising material for this purpose, especially in polluted salt areas while Pb mobility may be improved by synthetic chelating agents. This study aims to evaluate Pb extraction by the halophyte Sesuvium portulacastrum in relation to the impact of EDTA application. Seedling were cultivated during 60 days on Pb artificially contaminated soil (200, 400, and 800 ppm Pb) in the presence or in the absence of EDTA (3 g kg?1 soil). Results showed that upon to 400 ppm, Pb had no impact on plant growth. However, exogenous Pb induce a decrease in shoot K+ while it increased shoot Mg2+ and had no impact on shoot Ca2+ concentrations. Lead concentration in the shoots increased with increasing external Pb doses reaching 1,390 ppm in the presence of 800 ppm lead in soil. EDTA addition had no effect on plant growth but strongly increased Pb accumulation in the shoot which increased from 1,390 ppm in the absence of EDTA to 3,772 ppm in EDTA-amended plants exposed to 800 ppm exogenous Pb. Both Pb absorption and translocation from roots to shoots were significantly enhanced by EDTA application, leading to an increase in the total amounts of extracted Pb per plant. These data suggest that S. portulacastrum is very promising species for decontamination of Pb2+-contaminated soil and that its phytoextraction potential was significantly enhanced by addition of EDTA to the polluted soil.  相似文献   

12.
Some metal etching operations emit limited flow rates of waste gases with reddish-brown NO2 fume, which may cause visual and acidic-odor complaints, as well as negative health effects. In this study, tests were performed by passing caustic-treated waste gases vented from Al-etching operations through columns packed either with virgin or regenerated granular activated carbon (GAC) to test their adsorptive conversion performance of NO2 in the gases. The gases contained 5–55 ppm NO2 and acetic and nitric acids of below 3 ppm. Exhausted carbon was regenerated by scrubbing it with caustic solution and water, and dried for further adsorption tests. Results indicate that with an (empty bed residence time (EBRT) of 0.15 sec for the gas through the GAC-packed space, around 60% of the influent NO2 of 54 ppm could be removed, and 47% of the removed NO2 was converted by and desorbed from the carbon as NO. GAC used in the present study could be regenerated at least twice to restore its capacity for NO2 adsorption. Within EBRTs of 0.076–0.18 sec, the adsorptive conversion capacity was linearly varied with EBRT. In practice, with an EBRT of 0.20 sec, a conversion capacity of 0.80 kg NO2 (kg GAC)?1 with an influent NO2 of 40 ppm can be used as a basis for system design.

Implications: Some metal etching operations emit waste gases with reddish-brown (yellow when diluted) NO2 fume which may cause visual and acidic-odor complaints, as well as negative health effects. This study provides a simple process for the adsorptive conversion of NO2 in caustic-treated waste gases vented from metal-etching operations through a GAC column. With an EBRT of 0.20 sec, a conversion capacity of 0.80 kg NO2 (kg GAC)?1 with an influent NO2 of 40 ppm can be used as a basis for system design. Saturated GAC can be regenerated at least twice by simply scrubbing it with aqueous caustic solution.  相似文献   

13.
In the present work, a novel and simple detection system for As inorganic species contained in groundwater is presented. To reach the required detection limit, the proposed methodology is based on two steps: first is the transport and preconcentration of the inorganic arsenic species using a polymer inclusion membrane (PIM) system and second is the formation of a coloured complex, the  absorbance of which is measured. Different parameters related to the membrane composition and the transport kinetics have been studied, and it was found that membranes made of polyvinyl chloride (PVC) as a polymer, and Aliquat 336 as a carrier, ensured efficient arsenic transport when the carrier content was at least 31 % (w/w). The implementation of the designed PIM in a special device that contained only 5 mL of the stripping solution (0.1 M NaCl) allowed As preconcentration from a 100-mL water sample, thus facilitating its detection with the colorimetric method. The new method developed here was validated, and its analytical figures of merit were determined, i.e. limit of detection of 4.5 μg L?1 at 820 nm and a relative standard deviation within the range 8–10 %. Finally, the method was successfully applied to the analysis of different water samples from Catalonia region with naturally occurring As.  相似文献   

14.
The degradation of ciprofloxacin was studied in aqueous solutions by using a continuous flow homogeneous photo-Fenton process under simulated solar light. The effect of different operating conditions on the degradation of ciprofloxacin was investigated by changing the hydrogen peroxide (0–2.50 mM) and iron(II) sulphate (0–10 mg Fe L?1) concentrations, as well as the pH (2.8–10), irradiance (0–750 W m?2) and residence time (0.13–3.4 min) of the process. As expected, the highest catalytic activity in steady state conditions was achieved at acidic pH (2.8), namely 85 % of ciprofloxacin conversion, when maintaining the other variables constant (i.e. 2.0 mg L?1 of iron(II), 2.50 mM of hydrogen peroxide, 1.8 min of residence time and 500 W m?2 of irradiance). Additionally, magnetite magnetic nanoparticles (ca. 20 nm of average particle size) were synthesized, characterized and tested as a possible catalyst for this reaction. In this case, the highest catalytic activity was achieved at natural pH, namely a 55 % average conversion of ciprofloxacin in 1.8 min of residence time and under 500 W m?2. Some of the photocatalytic activity was attributed to Fe2+ leaching from the magnetic nanoparticles to the solution.  相似文献   

15.
We have carried out a series of laboratory experiments to investigate the oxidation of bromide (Br) by hydroxyl radical (OH) in solutions used to mimic sea-salt particles. Aqueous halide solutions with nitrate or hydrogen peroxide (HOOH) as a photochemical source of OH were illuminated with 313 nm light and the resulting gaseous bromine (Br*(g)) was collected. While illumination of these solutions nearly always formed gaseous bromine (predominantly Br2 based on modeling results), there was no evidence for the release of gaseous chlorine. The rate of Br*(g) release increased (up to a plateau value) with increasing concentrations of bromide and was enhanced at lower pH values for both nitrate and HOOH solutions. Increased ionic strength in nitrate solutions inhibited Br*(g) release and the extent of inhibition was dependent upon the salt used. In HOOH solutions, however, no ionic strength effects were observed and the presence of Cl strongly enhanced Br*(g) release.Overall, for conditions typical of aged, deliquesced, sea-salt particles, the efficiencies of gaseous bromine release, expressed as mole of Br*(g) released per mole of OH photochemically formed, were typically 20–30%. Using these reaction efficiencies, we calculated the Br2(g) release rate from aged, ambient sea-salt particles due to OH oxidation to be approximately 0.07 pptv h−1 with the main contributions from nitrate photolysis and partitioning of gas-phase OH into the particle. While our solution conditions are simplified compared to ambient particles, this estimated rate of Br2 release is high enough to suggest that OH-mediated reactions in sea-salt particles could be a significant source of reactive bromine to the marine boundary layer.  相似文献   

16.
This study was undertaken to develop and validate direct competitive ELISA for the determination of chloramphenicol residues in bovine milk. Antisera and an enzyme-tracer for chloramphenicol were prepared and used to develop an ELISA with inhibition concentrations, IC20 and IC50, of 0.09 and 0.44 ng mL?1, respectively. Milk samples were spiked with standards equivalent to 0, 0.2, 0.3, 0.5, 1.0 &; 1.5 ng mL?1 and extracted in methanol. The mean recoveries were found to be 73–100% with coefficient of variance 7–11%. The decision limit (CCα) and detection capability (CCβ) were calculated as 0.10 and 0.12 ng mL?1, respectively. The results were found comparable with the commercial ELISA, having recoveries of 87 to 100%, CCα 0.09 ng mL?1 and CCβ 0.12 ng mL?1. As per Commission Decision 2002/657/EC, in-house ELISA was further validated by using LC-MS/MS. Mass spectral acquisition was done by using electrospray ionization in the negative ion mode applying single reaction monitoring of the diagnostic transition reaction for CAP (m/z 152, 194 and 257). The calibration curve showed good linearity in concentrations from 0.025 to 1.6 ng mL?1 with correction coefficient 0.9902. The mean recoveries were found to be 88 to 100%. The CCα was calculated as 0.057 ng mL?1 and CCβ 0.10 ng mL?1. Since CCα and CCβ are less than half of the MRPL (0.15 ng mL?1), the test was found suitable for screening and quantification of CAP residues in bovine milk samples. Results of surveillance studies indicated that out of 31 analyzed milk samples, 12.9% samples were found with CAP residues but only 3.2% samples were declared positive with maximum concentration 0.31 ng mL?1, slightly above the MRPL.  相似文献   

17.
Abstract

The analytical figure of merit of the potential of laser-induced breakdown spectroscopy (LIBS) has been evaluated for detection of trace element in liquid. LIBS data of Mg, Cr, Mn, and Re were studied. Various optical geometries, which produce the laser spark in and at the liquid sample, were tested. The calibration curves for Mg, Cr, Mn, and Re were obtained at the optimized experimental conditions with bulk liquid and in liquid jet. It was found that measurements using a liquid jet provide better detection limits than bulk liquid measurements. The limits of detection (LOD) of Mg, Cr, Mn, and Re in the present liquid jet measurement are found to be 0.1, 0.4, 0.7, and 8 ppm, respectively. The LOD of Mg using Mg 279.55 nm was compared with the values found in other liquid work.  相似文献   

18.
This paper describes a long-term trend study of passenger exposure to carbon monoxide (CO) inside a vehicle traveling on an arterial highway in northern California. CO exposure was measured during four field surveys on State Route #82 (El Camino Real) on the San Francisco Peninsula in 1980–1981, 1991–1992, 2001–2002, and 2010–2011. Each field survey took at least 12 months. Fifty trips from each survey—for a total of 200 trips—were matched by date, day of the week, and starting time of the day to facilitate comparisons over three decades. The mean net CO concentration of each trip was obtained by subtracting the background CO level from the average CO concentration for the entire trip. The mean net CO concentration (0.5 ppm) for 2010–2011 was only 5.2% of that (9.7 ppm) for 1980–1981. For the 50 trips, the average travel time for the 1980–1981 period (39.6 min) was only 8.3% higher than during the 2010–2011 period (36.3 min). The estimated round-trip distance on the highway was held constant at 11.8 miles. The reduction in the mean net CO concentration was attributed to more stringent CO emission standards on new vehicles sold in California since 1980. The state’s cold-temperature CO standard implemented in 1996 appeared to reduce high CO concentrations that were observed during the late fall and winter of 1980–1981. In addition, the observed standard deviation in concentration fell from 3.1 ppm in 1980–1981 to 0.2 ppm in 2010–2011, and the range of the 50 mean net CO concentrations narrowed from 14.9 ppm in 1980–1981 to 1.1 ppm in 2010–2011, but the relative variability, as indicated by the geometric standard deviation, remained the same. These results have important scientific implications for regulatory policies designed to control air pollution from motor vehicles.

Implications: Many developing countries launched or expanded their mobile source emission control programs in the 1990s, yet many of them do not have adequate inspection and maintenance (I/M) programs. The El Camino Real study shows the long-term public health benefits of more stringent motor vehicle emission standards for carbon monoxide (CO) on new cars and of an I/M program (Smog Check) on the existing fleet in California. The study provides a protocol for conducting standardized field surveys of in-vehicle exposure on a periodic basis. Such surveys would enable developing countries to assess the progress of their mobile source emission control programs.  相似文献   


19.
This study examined the mercury concentration in the Grisette Amanita vaginata Fr. and soil below the fruiting bodies collected between 2000 and 2008 from the wild at seven distant sites across Poland. The Hg content in samples was determined by cold atomic absorption method (CV-AAS) at a wavelength of 253.7 nm. Mean Hg contents varied from 0.096 ± 0.052 to 0.48 ± 0.13 mg kg?1 dry matter (dm) in caps (range, 0.043–0.73 mg kg?1), from 0.047 ± 0.02 to 0.23 ± 0.07 mg kg?1 dm (range, 0.028–0.47 mg kg?1) in stipes, and in underlying soil were from 0.035 ± 0.018 to 0.096 ± 0.036 mg kg?1 dm (range, 0.017 to 0.16 mg kg?1). The median Qc/s values ranged from 1.2 to 2.2 (mean 1.2 ± 0.4 to 2.1 ± 0.5) indicating that Hg content in stipes was generally lower than in caps. This mushroom species has some potential to bioconcentrate Hg in the fruiting bodies, as the values of the bioconcentration factor (BCF) varied for the sites between 1.2 ± 0.6 to 11 ± 5 for caps and 0.61 ± 0.26 to 7.4 ± 3.9 for stipes. Also available literature data on Hg in A. vaginata are reviewed and discussed.  相似文献   

20.
Nutrient enrichment from nonpoint source pollution is one of the main causes of poor water quality and biotic impairment in many streams and rivers worldwide. The establishment of reference nutrient conditions in a river system is an essential but difficult task for water quality control. In the present study, the reference concentrations of total nitrogen (TN) and total phosphorus (TP) were estimated in an intensive agricultural watershed, the Cao-E River system of Eastern China. Based on a 3-year water quality monitoring data in the river system, three approaches were adopted to establish the reference concentrations of TN and TP, those are the 75th percentile of frequency distribution of nutrient concentrations in reference streams, the 25th percentile of frequency distribution of nutrient concentration in general streams (including reference and non-reference streams) and regression modeling. Results showed that the nutrient reference concentrations were slightly different from different approaches. By the three approaches, the average reference concentrations for TN and TP in the study system were 1.73?±?0.13 mg l?1 and 55.23?±?4.77 μg l?1 with CV of 7.39 % and 8.63 %, respectively. Accordingly, the reference concentrations for TN and TP were recommended to be 1.70 mg l?1 and 55 μg l?1, respectively. In the mountainous and intensive agricultural watershed, the major anthropogenic impacts to river water quality were the urban area percentage cover, cropland area with slopes 0–8°, and livestock and poultry waste loads density. These variables could account for 89.7 % and 80.3 % of the total variations for TN and TP concentration, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号