首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract

The formation of the insecticide methidathion (S-[(5-methoxy-2-oxo-1,3,4-thiadiazol-3(2H)-yl)methyl] O,O-dimethyl phosphorodithioate) complexes with inorganic cation-saturated (Mg2+, Ca2+, Cu2+, and Ni2+) montmorillonites was investigated. The nature and structure of the complexes was determined by X-ray diffraction and infrared spectroscopy. The arrangement of the pesticide molecule in the interlayer space was also considered from ab initio calculations using simpler related molecules. The insecticide methidathion penetrated the interlayer spaces of the homoionic clay samples. The ligand–cation interactions in these complexes depend on the nature and characteristics of the saturating cations. Mechanisms involving water bridges and direct coordination with the exchange cation were proposed for the adsorption of methidathion by inorganic cation-saturated montmorillonites. The effect of the inorganic cations on the sorption of the cationic surfactant tetradecyltrimethylammonium bromide (TDTMA) by montmorillonite was also studied and the subsequent sorption of methidathion in TDTMA+-Montmorillonite determined. Van der Waals bonds constitute the methidathion adsorption mechanism by montmorillonite saturated with TDTMA+. The arrangements of methidathion and of the cationic surfactant molecules in the montmorillonite interlayer space were demostrated.  相似文献   

2.
The joint toxicity of mixtures of phosphamidon and methidathion to adult lobsters (Homarusamericanus) is greater than additive in tests with the combined 48-h toxicity unit of the mixtures totalling 0.25, 0.5 and 1.0 units. The largest magnification factor for greater than additive toxicity occurred where phosphamidon and methidathion contributed to the total toxicity unit in a ratio of 1:1.5 and was progressively smaller for ratios of 1:4.4 and 2:1.  相似文献   

3.
A simple and cost-effective analysis method based on quartz crystal nanobalance (QCN) coated with a molecularly imprinted polymer (MIP) for measurement of methomyl was investigated. In the first part of this study, a sensitive, selective and reliable quartz crystal nanobalance (QCN) sensor was designed for the selective determination of methomyl in aqueous solutions. In the second part, in order to demonstrate the applicability and performance of the fabricated sensor in the real world situation, it was successfully applied for the determination of methomyl residual in photo catalytic degradation by ZnO powders in aqueous solutions. The fabricated sensor presents a high selectivity and sensitivity (4.56 Hz per mg L?1) for methomyl and it can be used for determination of methomyl concentration ranged between 1 to 45 mg L?1. Furthermore, good reproducibility, R.S.D. = 2.14% (n = 5) was observed. To investigate the performance of the sensor, the change in the insecticide concentration during the photocatalytic degradation of methomyl by ZnO was investigated by QCN and UV/Vis spectroscopy. Results obtained from QCN sensor and UV/Vis spectroscopy measurement are in good mutual agreement. So the fabricated sensor may provide an efficient, low cost, easy-to-use method for the in-field evaluation of specific targeted analytes in aqueous solutions which in turn may lead to improved food and water safety.  相似文献   

4.
1H NMR metabolomics can be used to assess the sub-lethal toxicity of contaminants to earthworms by identifying alterations in the metabolic profiles of contaminant- exposed earthworms in contrast to those of healthy (control) individuals. In support of this method this study sought to better characterize the baseline metabolic profile of healthy, mature earthworms of the species, Eisenia fetida, which is recommended for both acute and sub-lethal toxicity testing for soil contaminants. Profiles of D2O-buffer extracted metabolites were determined using 1H NMR spectroscopy and both inter-individual metabolic variability and pair-wise metabolic correlations were assessed. The control earthworm extracts exhibited low overall inter-individual metabolic variability, with a spectrum-wide median relative standard deviation (%RSD = standard deviation/mean × 100) of 14%, which suggests that the metabolic profile of E. fetida earthworms is well controlled in laboratory conditions and supports further use of this organism in environmental metabolomics research. In addition, strong positive correlations were detected between the levels of maltose, betaine, glycine, and glutamate as well as between the levels of lactate, valine, leucine, alanine, lysine, tyrosine, and phenylalanine which had not previously been reported. Since comparison of pair-wise metabolic correlations between control and treated organisms can reveal changes in the underlying pattern of biochemical relationships between the metabolites, identification of these significant metabolic correlations in control earthworms provides an additional characteristic that may be applied to delineate between control and treated earthworms in future NMR-based metabolomic studies.  相似文献   

5.
Abstract

The effect of methomyl and cypermethrin insecticides on the B6‐dependent kynurenine hydrolase(KH) and kynurenine aminotransferase (KATE) was studied. These insecticides induced pronounced inhibition on the (KH) and (KATE) enzymes after single dose treatment. Repeated doses of methomyl induced inhibition on the (KH) and (KATE) activities, whereas repeated treatment with cypermethrin had no effect on the activities of these enzymes. In vitro methomyl inhibited (KH) and (KATE) enzymes at 10 M up to 10‐3 M, through a competitive mechanism. Methomyl and cypermethrin are capable of causing alterations in the kynurenine metabolizing enzymes of mouse liver.  相似文献   

6.
The microcrustacean Thamnocephalus platyurus was used to detect the toxicity reduction of carboxin in abiotic degradation compared to biotic degradation. The abiotic degradation was obtained using two sterilized Entisols with different surface properties while the biotic degradation by Pseudomonas aeruginosa was obtained using the fungicide as the only C source. The results showed that the highest toxicity reduction rates for the abiotic degradation were achieved in 20 days with 49.2% for the coarser soil, 60.7% for the soil with a finer texture, whereas for the biotic degradation, 60.6%. Analysis (1H NMR) showed that the soils transformed carboxin to produce sulfoxide and enol in different concentrations depending on the soil properties, while P. aeruginosa metabolized the fungicide to produce inorganic compounds such as ammonium and nitrite, minor degradation pathways were oxidized to sulfoxide and hydrolytic ring-opening to 2-[(2-hydroxyethyl)thio]acetoacetanilide enol. These results indicated that the degradation of carboxin occurred via abiotic catalytic processes as well as via biotic transformation leading to less toxic derivatives and such phenomena are caused by exchange/surface features of soils, rather than by the mere content of clay or organic matter fractions.  相似文献   

7.
Anaerobic digestion does not efficiently reduce ionic compounds present in swine slurry, which could present a potential risk to aquatic ecosystems (surface runoff) and terrestrial ambient (irrigation). The objective of this study was to evaluate the ecotoxicological characteristics of anaerobically treated swine slurry using acute and chronic (epicotyl elongation) toxicity tests with Daphnia magna and Raphanus sativus and identification of suspected toxic compounds using the Toxicity Identification Evaluation (TIE) method. The evaluation was performed in three phases: physicochemical characterization of the slurry; acute/chronic toxicity testing with Daphnia magna and Raphanus sativus for each fraction of the TIE (cation and anion exchange columns, activated carbon, pH modification/aeration and EDTA) and identification of suspected toxic compounds. The anaerobically treated slurry contained concentrations of ammonium of 1,072 mg L?1, chloride of 815 mg L?1 and metals below 1 mg L?1 with a D. magna acute toxicity (48h-LC50) of 5.3% and R. sativus acute toxicity (144h-LC50) of 48.1%. Epicotyl elongation of R. sativus was inhibited at concentrations above 25% (NOEC). The cation exchange reduced the toxicity and free ammonia by more than 90% for both bio-indicators. Moreover, this condition stimulated the epicotyl growth of R. sativus between 10% and 37%. In conclusion, the main compound suspected of causing acute toxicity in D. magna and acute/chronic toxicity in R. sativus is the ammonium. The findings suggest the need the ammonium treatment prior to the agricultural reuse of swine slurry given the high risk to contaminate the aquatic environment by runoff and toxicity of sensitive plants.  相似文献   

8.
The main objective of this work was to investigate the kinetic characteristics of acid and alkaline phosphatases isolated from different sources and to study the effects of the herbicide atrazine and insecticide methomyl on the activity and kinetic properties of the enzymes. Acid phosphatase (ACP) was isolated from the tomato plant (Solanum lycopersicum L. var. lycopersicum); alkaline phosphatase (ALP) was isolated from two sources, including mature earthworms (Aporrectodea caliginosa) and larvae of the Egyptian cotton leafworm (Spodoptera littoralis). The specific activities of the enzymes were 33.31, 5.56 and 0.72 mmol substrate hydrolyzed per minute per milligram protein for plant ACP, earthworms ALP and cotton leafworm ALP, respectively. The inhibition kinetics indicated that atrazine and methomyl caused competitive–non-competitive inhibition of the enzymes. The relationships between estimates of Km and Vmax calculated from the Michaelis–Menten equation have been explored. The extent of the inhibition was different, as estimated by the values of the inhibition constant Ki that were found to be 3.34 × 10?3, 1.12 × 10?2 and 1.07 × 10?2 mM for plant ACP, earthworms ALP and cotton leafworm ALP, respectively, with methomyl. In the case of atrazine, Ki were found to be 8.99 × 10?3, 3.55 × 10?2 and 1.36 × 10?2 mM for plant ACP, earthworms ALP and cotton leafworm ALP, respectively.  相似文献   

9.
Organochlorine pesticides (OCPs) were analyzed in 26 surface sediment samples from the Liaohe River basin, and the distributions of and potential environmental risks posed by OCPs in the basin were evaluated. Eighteen OCPs listed in the Stockholm Convention were determined using isotope-dilution gas chromatography–high resolution mass spectrometry. This is the first study of hexachlorobenzene (HCB) in the Liaohe River basin sediments. The total OCP concentrations were 0.39–68.06 ng g?1 dry weight. The total α-, β-, γ-, and δ-hexachlorocyclohexane (HCH), the total dichlorodiphenyltrichloroethane (DDT – p,p′-dichlorodiphenyldichloroethane (DDD), p,p′-dichlorodiphenyldichloroethylene (DDE), o,p'-DDT, and p,p′-DDT), and the HCB concentrations in the sediment samples were 0.1–28.48 ng g?1 (mean 4.01 ng g?1), 0.08–6.52 ng g?1 (mean 3.07 ng g?1), and 0.18–24.8 ng g?1 (mean 4.38 ng g?1), respectively. The HCB concentrations were higher than the concentrations of the other OCPs, and the HCHs and HCB together were the dominant OCPs. β-HCH was the most abundant HCH isomer. The concentrations of DDTs and other OCPs were relatively low, and the (DDE+DDD)/DDT ratios (>0.5) and DDD/DDE ratios (<1) indicated that no recent DDT inputs had occurred in the Liaohe River system. The main sources of HCHs were probably the historical production and agricultural use of HCH in the study area. The DDT and HCH concentrations were generally below or similar to the concentrations that have been found in other parts of the world. An ecotoxicological evaluation indicated that HCHs in surface sediments pose slight risks to human and ecological health in the Liaohe River basin.  相似文献   

10.
Soil avoidance by earthworms has been generally considered a relevant and sensitive endpoint for assessing soil contamination by xenobiotics. However, when pesticide ecotoxicological assessment is concerned, the sensitivity of the recently standardized avoidance assay has been questioned. We hypothesized that this controversy may be due to the specific pesticide mode of action of the chemicals used rather than reveal inconsistencies in the test feasibility, i.e. provided that no pesticides interfering with neuronal pathways are tested, this bioassay should keep expected high levels of sensitivity. In this study, the avoidance behaviour of the earthworm Eisenia andrei under exposure to the carbamate insecticide methomyl [S-methyl N-(methylcarbamoyloxy)thioacetimidate] was linked to the corresponding acetylcholinesterase (AChE) inhibition. Significant AChE inhibition occurred at lower concentrations (from 0.86 mg Kg?1 onwards) than significant avoidance of spiked soil (from 5.62 mg Kg?1 onwards). This indicates that assessments regarding pesticides that have neurotoxic activity may be biased if behavioral endpoints are selected. Despite theoretical hypothesis that have been raised, this should be the first study providing preliminary experimental evidence on such a link between avoidance behavior and neuronal impairment levels in earthworms. Further studies are ongoing that should refine conclusions of this study.  相似文献   

11.
The rates of radial oxygen loss (ROL), root porosity, concentrations of arsenic (As), iron (Fe) and manganese (Mn) in shoot and root tissues and on root surfaces, As tolerances, and their relationships in different wetland plants were investigated based on a hydroponic experiment (control, 0.8, 1.6 mg As L−1) and a soil pot trail (control, 60 mg As kg−1). The results revealed that wetland plants showed great differences in root porosity (9-64%), rates of ROL (55-1750 mmo1 O2 kg−1 root d.w. d−1), As uptake (e.g., 8.8-151 mg kg−1 in shoots in 0.8 mg As L−1 treatment), translocation factor (2.1-47% in 0.8 mg As L−1) and tolerance (29-106% in 0.8 mg As L−1). Wetland plants with higher rates of ROL and root porosity tended to form more Fe/Mn plaque, possess higher As tolerance, higher concentrations of As on root surfaces and a lower As translocation factor so decreasing As toxicity.  相似文献   

12.
The enantioselective toxicity of chiral herbicides in the environment is of increasing concern. To investigate the enantioselective effects of the chiral herbicide imazapyr on target organisms, we exposed Arabidopsis thaliana to imazapyr enantiomers and racemate. The results show that imazapyr was enantioselectively toxic to A. thaliana. The total chlorophyll content in A. thaliana was affected more by (+)-imazapyr than (±)-imazapyr and (?)-imazapyr. Concentrations of proline and malondialdehyde reflected a toxic effect in the order of (+)-imazapyr > (±)-imazapyr > (?)-imazapyr at every concentration. Acetolactate synthase (ALS) activity was inhibited more by (+)-imazapyr than (±)-imazapyr or (?)-imazapyr. At 100 mg L?1 of imazapyr, ALS activity was 78%, 43%, and 19% with (?)-, (±)-, and (+)-imazapyr, respectively. The results suggest the significant enantioselective toxicity of imazapyr in A. thaliana for greater toxicity with (+)-imazapyr than (±)-imazapyr and (?)-imazapyr, which suggests that (+)-imazapyr has more herbicidal effect.  相似文献   

13.
1H NMR metabolomics was used to monitor earthworm responses to sub-lethal (50-1500 mg/kg) phenanthrene exposure in soil. Total phenanthrene was analyzed via soxhlet extraction, bioavailable phenanthrene was estimated by hydroxypropyl-β-cyclodextrin (HPCD) and 1-butanol extractions and sorption to soil was assessed by batch equilibration. Bioavailable phenanthrene (HPCD-extracted) comprised ∼65-97% of total phenanthrene added to the soil. Principal component analysis (PCA) showed differences in responses between exposed earthworms and controls after 48 h exposure. The metabolites that varied with exposure included amino acids (isoleucine, alanine and glutamine) and maltose. PLS models indicated that earthworm response is positively correlated to both total phenanthrene concentration and bioavailable (HPCD-extracted) phenanthrene in a freshly spiked, unaged soil. These results show that metabolomics is a powerful, direct technique that may be used to monitor contaminant bioavailability and toxicity of sub-lethal concentrations of contaminants in the environment. These initial findings warrant further metabolomic studies with aged contaminated soils.  相似文献   

14.
Microwave irradiation (MWI) of acetophenones and substituted benzaldehydes in water resulted in a “green-chemistry” procedure for the preparation of chalcones (1-14), through base catalyzed Claisen-Schmidt condensation reaction, in good yields. Further 3,5-diaryl-6-carbethoxy-2-cyclohexen-1-ones (1a-14a) were prepared through base catalyzed cyclocondensation of above chalcones with ethylacetoacetate using MWI as the energy source and silica as support. Out of fourteen cyclohexenones, ten (1a, 4a, 5a, 6a, 7a, 9a, 10a, 11a, 12a and 13a) are reported for the first time in literature. The synthesized compounds were characterized using various spectroscopic techniques, viz. (1H NMR and IR) and screened for their antifungal activity in vitro against Sclerotium rolfsii and Rhizoctonia solani by poisoned food technique. The compounds tested were found to be active against R. solani whereas against S. rolfsii, moderate activity was observed, as evident from LC50 values. The most potent compounds against R. solani were 1-(4-Fluoro-phenyl)-3-phenyl-propenone (13) and 1,3-Diphenyl-propenone (14) having LC50 values of 2.36 and 2.49 mgL? 1 respectively (LC50 of Hexaconazole = 1.12 mgL? 1) and against S. rolfsii 3-(4-Fluoro-phenyl)-5-(3-nitro-phenyl)-6-carbethoxy-2-cyclohexen-1-one (12a) was most active having LC50 value of 285 mgL? 1compared to Hexaconazole (LC50 = 1.27 mgL? 1).  相似文献   

15.
Pesticides have been implicated in widespread amphibian declines. We assessed acute and chronic toxicity of two widely used herbicides to larval New Mexico (Spea multiplicata) and Plains (S. bombifrons) spadefoots from cropland and native grassland playas. Roundup WeatherMAX® (WM) toxicity estimates (48- and 216-h LC50; 48-h LC1) for both species were similar to environmental concentrations expected from accidental overspray. Chronic (30-day) exposure to WM at predicted environmental concentrations (2.0 and 2.8 mg glyphosate acid equivalents/L) reduced survival of both species. Ignite® 280 SL (IG) toxicity estimates (48-h LC50 and LC1) for both species were above predicted environmental concentrations of 1.0 mg glufosinate/L. Chronic exposure to predicted environmental concentrations of IG did not reduce survival of either species. Toxicity test results suggest that at predicted environmental concentrations IG would not cause extensive mortalities among larval New Mexico and Plains spadefoots. However, WM may cause extensive mortality among larvae of these species.  相似文献   

16.
Eisenia fetida earthworms were exposed to phenanthrene for thirty days to compare hydroxypropyl-β-cyclodextrin (HPCD) extraction of soil and 1H NMR earthworm metabolomics as indicators of bioavailability. The phenanthrene 28-d LC50 value was 750 mg/kg (632-891, 95% confidence intervals) for the peat soil tested. The initial phenanthrene concentration was 319 mg/kg, which biodegraded to 16 mg/kg within 15 days, at which time HPCD extraction suggested that phenanthrene was no longer bioavailable. Multivariate statistical analysis of 1H NMR spectra for E. fetida tissue extracts indicated that phenanthrene exposed and control earthworms differed throughout the 30 day experiment despite the low phenanthrene concentrations present after 15 days. This metabolic response was better correlated to total phenanthrene concentrations (Q2 = 0.59) than HPCD-extractable phenanthrene concentrations (Q2 = 0.46) suggesting that 1H NMR metabolomics offers considerable promise as a novel, molecular-level method to directly monitor the bioavailability of contaminants to earthworms in the environment.  相似文献   

17.
Abstract

Acute and chronic toxicity tests with diazinon (diethyl 2‐isopropyl‐6‐methyl‐4‐pyrimidinyl phosphorothionate) were conducted on Daphnia magna. The 24‐hr static LC50 was 0.86 μL.L‐1. The sublethal effects of 0.05, 0.1, 0.5, 0.75 and 1.0 ngL‐1 of diazinon concentrations on the survival, reproduction and growth of D. magna were monitored for 21 days. The algae Nannochloris oculata (5 x 105 cellsmL‐1) was used to feed the daphnids. The parameters used to determined the effect of the pesticide on D. magna were: mean total young per female; mean brood size; days to first brood; intrinsic rate of natural increase (r); growth; and survival. Reproduction as well as survival was significantly reduced at diazinon concentrations of 0.10 ngL‐1 and higher. The intrinsic rate of natural increase (r) decreased with increasing concentrations of diazinon. Growth, as measured by body length, was depressed significantly at 0.05 ngL‐1 of diazinon and higher concentrations. The maximum acceptable toxicant concentration (MATC) was calculated. The chronic data was used to formulate an acute/chronic ratio.  相似文献   

18.
A series of novel N-alkyl-N-[1-(2-hydroxyphenyl) ethyl]amines were synthesized as potential new agents to control pests. Their structures were confirmed on the basis of IR, NMR and elemental analyses. Six new N-alkyl-N-[1-(2-hydroxyphenyl) ethyl]amines were prepared by reduction of corresponding Schiff bases using sodium borohydride in 80–87 % yields. These compounds were tested for their antifungal activity against two pathogenic fungi viz., Rhizoctonia bataticola ITCC 0482 and Sclerotium rolfsii ITCC 5226 and for insecticidal activity against insects of stored grain pest Callosobruchus analis. Fungicidal bioassay revealed that compound N-Decyl-N-[1-(2-hydroxyphenyl)ethyl]amine, was highly effective against R. bataticola (ED50 6.86 mg L?1) which was comparable with that of commercial fungicide hexaconazole (ED50 6.35 mg L?1). Also compounds N-Heptyl-N-[1-(2-hydroxyphenyl)ethyl]amine, N-Octyl-N-[1-(2-hydroxyphenyl)ethyl]amine and N-Nonyl-N-[1-(2-hydroxyphenyl)ethyl]amine displayed promising fungitoxicity against same pathogen. However, compound N-Heptyl-N-[1-(2-hydroxyphenyl)ethyl]amine was also found to be effective against S. rolfsii (ED50 4.92 mg L?1 as against 1.27 mg L?1 for hexaconazole). Compound N-Hexyl-N-[1-(2-hydroxyphenyl)ethyl]amine was most effective as insecticide followed by compound N-Octyl-N-[1-(2-hydroxyphenyl)ethyl]amine. LC50 values for these compounds were 155.0 and 275.0 mg L?1 respectively as against 36.70 mg L?1 for commercial insecticide dichlorovos. The results obtained from bioassays indicate that this class of compounds can be utilized for the design of new substances endowed with pesticidal activities.  相似文献   

19.
Abstract

Dialifor and methidathion were added to diluted “Zinfandel”; grape concentrate at 25 ppm and dimethoate at 1.0 and 25 ppm prior to fermentation with Saccharomyces cerevisiae. The finished wine 56 days later contained 10% (2.5 ppm) of the dialifor, 46% (12 ppm) of the methidathion and 85% (21 and 0.98 ppm) of the dimethoate added to the grape must. Residues in wine stored at 24°C dissipated by hydrolysis; half‐lives in wine were 7 days for dialifor and methidathion and 30 days for dimethoate. Residues were unchanged in wine in frozen storage for one year. Analysis of seven commercial wines for dimethoate indicated less than 0.03 ppm dimethoate was present; identity could not be confirmed by thin‐layer chromatography at this level.  相似文献   

20.
Abstract

The acute toxicities (24, 48, 72 and 96 hr) of eight pesticides to Anguilla anguilla were determined. The organochlorine pesticide, endosulfan was the most toxic, with LC50 values in the range of 0.042 to 0.041 mg/L Endosulfan was followed in order of decreasing toxicity by diazinon, fenitrothion, chlorpyrifos, lmdane, methidathion, trichlorfon and methylparathion. When fishes were exposed to the pesticides tested they exhibited signs of restlessness, erratic swimming, convulsions and difficulty in respiration. This response was more persistent in fishes exposed to organophosphorus pesticides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号