首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
In recent studies, we developed a combined nutrient removal-marine aquaculture process for the tertiary treatment of wastewater and the production of commercially important shellfish. Part of this process consists of an outdoor mass cultivation system for marine algae. During our previous experiments we observed that marine diatoms almost exclusively are the dominant algal species in our outdoor cultures. To better understand this phenomenon of diatom dominance we grew 16 species of marine algae in continuous monoculture under laboratory conditions simulating to some degree the conditions prevailing in our outdoor experiments. Species such as Skeletonema costatum, Monochrysis lutheri and Tetraselmis sp., which were never dominant in our outdoor cultures, grew as well in monoculture, as Phaeodactylum tricornutum, frequently, the prevalent species outdoors. However, when monocultures of Dunaliella tertiolecta and Thalassiosira pseudonana (3H) were purposely contaminated with P. tricornutum, the latter species quickly became dominant. It is suggested that a complex interaction of environmental factors is usually responsible for the dominance of a particular species; one such factor may be the nitrogen source in the growth media. Under conditions of virtually, complete nitrogen assimilation, the carbon: nitrogen ratio in the algae was high (7 to 8) when NO 3 - –N was the source of nitrogen, and low (4 to 6) when NH 4 + –N was the prime form of nitrogen. When algal growth was low, resulting in a large inorganic nitrogen residue, the carbon:nitrogen ratio was low regardless of whether NO 3 - –N or NH 4 + –N was the main nitrogen source.Contribution No. 3297 from the Woods Hole Oceanographic Institution.  相似文献   

2.
In-situ experiments were performed during different seasons to determine uptake rates of PO 3- 4 , NH + 4 and NO - 3 within ecologically representative ranges of nutrient concentrations, of dominant macroalgae in the Baltic Sea. Uptake rates were governed by nutrient concentrations, water temperature and thallus morphology, but not by the phylogenetic affinity of the species. Nitrogen uptake rates were always higher than those of phosphorus at the same concentrations, and NH + 4 –N uptake rates exceeded those of NO - 3 –N. The lowest uptake rates occurred among the late successional, long-lived, coarse species with low surface: volume ratios (Fucus vesiculosus, Furcellaria lumbricalis andPhyllophora truncata). The highest uptake rates were measured for short-lived, opportunistic algae, filamentous or with numerous hairs, (Cladophora glomerata, Enteromorpha ahlneriana, Scytosiphon lomentaria, Dictyosiphon foeniculaceus andCeramium tenuicorne). The latter group also had the highest Vmax:kmax ratios, which indicates a more competitive advantage for nutrient uptake at low concentrations.  相似文献   

3.
Marine Synechococcus spp. are sufficiently abundant to make a significant contribution to primary productivity in the ocean. They are characterized by containing high cellular levels of phycoerythrin which is highly fluorescent in vivo. We sought (Jan.–Apr., 1984) to determine the adaptive photosynthetic features of two clonal types of Synechococcus spp., and to provide a reliable physiological basis for interpreting remote sensing data in terms of the biomass and productivity of this group in natural assemblages. It was found that the two major clonal types optimize growth and photosynthesis at low photon flux densities by increasing the numbers of photosynthetic units per cell and by decreasing photosynthetic unit size. The cells of clone WH 7803 exhibited dramatic photoinhibition of photosynthesis and reduction in growth rate at high photon flux densities, accompanied by a large and significant increase in phycoerythrin fluorescence. Maximal photosynthesis of cells grown under 10–50 E m-2 s-1 was reduced by 20 to 30% when the cells were exposed to photon flux densities greater than 150 E m-2 s-1. However, steady-state levels of photosynthesis maintained for brief periods under these conditions were higher than those of cells grown continuously at high photon flux densities. No photoinhibition occurred in clone WH 8018 and rates of photosynthesis were greater than in WH 7803. Yields of in-vivo phycoerythrin fluorescence under all growth photon flux densities were lower in clone WH 8018 compared to clone WH 7803. Since significant inverse correlations were obtained between phycoerythrin fluorescence and Pmax and for both clones grown in laboratory culture, it may be possible to provide a reliable means of assessing the physiological state, photosynthetic capacity and growth rate of Synechococcus spp. in natural assemblages by remote sensing of phycoerythrin fluorescence. Poor correlations between phycoerythrin fluorescene and pigment content indicate that phycoerythrin fluorescence may not accurately estimate Synechococcus spp. biomass based on pigment content alone.  相似文献   

4.
Porphyra perforata J. Ag. was collected from a rocky land-fill site near Kitsilano Beach, Vancouver, British Columbia, Canada and was grown for 4 d in media with one of the following forms of inorganic nitrogen: NO 3 - , NH 4 + and NO 3 - plus NH 4 + and for 10 d in nitrogen-free media. Internal nitrogen accumulation (nitrate, ammonium, amino acids and soluble protein), nitrate and ammonium uptake rates, and nitrate reductase activity were measured daily. Short initial periods (10 to 20 min) of rapid ammonium uptake were common in nitrogen-deficient plants. In the case of nitrate uptake, initial uptake rates were low, increasing after 10 to 20 min. Ammonium inhibited nitrate uptake for only the first 10 to 20 min and then nitrate uptake rates were independent of ammonium concentration. Nitrogen starvation for 8 d overcame this initial suppression of nitrate uptake by ammonium. Nitrogen starvation also resulted in a decrease in soluble internal nitrate content and a transient increase in nitrate reductase activity. Little or no decrease was observed in internal ammonium, total amino acids and soluble protein. The cultures grown on nitrate only, maintained high ammonium uptake rates also. The rate of nitrate reduction may have limited the supply of nitrogen available for further assimilation. Internal nitrate concentrations were inversely correlated with nitrate uptake rates. Except for ammonium-grown cultures, internal total amino acids and soluble protein showed no correlation with uptake rates. Both internal pool concentrations and enzyme activities are required to interpret changes in uptake rate during growth.  相似文献   

5.
In the marine green alga Ulva rigida C. Agardh, nitrate reductase (NR) is synergetically induced by blue light and nitrate. The present study examines the effect of blue light and a large NO 3 pulse (0.3 mM) on relevant variables of NO 3 -assimilation such as NO 3 -uptake, intracellular NO 3 -storage, NR activity, in vivo NO 3 -reduction rate and NO 2 and NH 4 + -accumulation. Nitrate uptake started immediately upon addition of NO 3 , suggesting the presence of a constitutive carrier, however in the first 1.5 to 2 h, periods of net NO 3 efflux were frequent. After this time, NO 3 -uptake and intracellular NO 3 -accumulation proceeded linearly with time, suggesting the existence of a different NO 3 -uptake mechanism, which seems to be inducible. Our results indicate that in vivo NO 3 -reduction is not exclusively dependent on the potential NR activity. In U. rigida, during the first 2 h after a NO 3 pulse (300 M) there were clear indications that the induction state of the NO 3 -carrier limits the reduction rate of NO 3 . Once the induction of the NO 3 -transporter had been completed (1.5 to 2 h), the NO 3 -assimilation pathway reached a steady state, NO 3 -uptake rate, NO 3 -reduction rate and NO 2 and NH 4 + -accumulation being linear with time. Since the reduction of NO 3 leads mainly to the accumulation of NH 4 + , we conclude that, after the NO 3 -reduction itself, NH 4 + -fixation into carbon skeletons is the limiting step in the assimilation of NO 3 by U. rigida under blue light.  相似文献   

6.
In a continuing investigation of dark CO2 uptake by nitrogen-limited cultures of the marine diatom Chaetoceros simplex (Bbsm), we expanded on several of our earlier conclusions regarding the potential application of this physiological response for measuring the degree and type of nitrogen limitation in phytoplankton populations. First, the duration over which the maximal enhancement of dark 14CO2 uptake was sustained after NH 4 + enrichment was a function both of the concentration of added NH 4 + and the standing crop of phytoplankton nitrogen — in effect, the total N demand. Second, pulsing with NH 4 + for a given degree of N-limitation always produced the same level of enhanced dark CO2 uptake regardless of whether the cultures were preconditioned with oxidized or reduced nitrogen. In contrast, urea pulsing led to reduced dark CO2 uptake, but the effect was most pronounced in cells grown on NO 3 . And third, the assay could be used to distinguish readily between no, moderate, and severe N limitation. The degree of severe N limitation was quantitatively correlated with the degree of enhanced dark CO2 uptake, but this relationship was not so clear in the region of moderate N limitation. The main advantage of the assay is that it is a relatively simple and effective alternative to more complicated techniques for gauging the degree and form of N limitation in phytoplankton. Further evaluation will be required, both in the laboratory and field, before the assay can be calibrated for quantitative use.Contribution No. 5982 from the Woods Hole Oceanographic Institution  相似文献   

7.
Chlorella autotrophica Shihira and Krauss (clone 580), a euryhaline microalga from the marine coastal environment is subject to large fluctuations in external salinity and nitrogen supply. The alga exhibits maximum growth at salinities lower than 100% ASW (artificial seawater). Cells divide faster and show higher cell yields when the supply of either NH 4 + or NO 3 - is increased above 0.2 mM. Cells growing on NH 4 + show high levels of NADPH-glutamate dehydrogenase (GDH) activity, and the levels of glutamine synthetase (GS) are decreased to very low levels under these conditions. Methionine sulfoximine (MSX), an inhibitor of GS, has little effect on cell division and nitrogen assimilation of cells growing on NH 4 + . Cells growing on NO 3 - , however, show marked inhibition (65%) in nitrogen assimilation in the presence of 5 mM MSX. This MSX concentration also causes growth retardation and a progressive decrease in cell protein and nitrogen content. GS is almost completely inhibited by 5 mM MSX in both NH 4 + and NO 3 - -grown cells. Cells growing on NH 4 + maintain high levels of NADPH-GDH activity in the presence of MSX. NADPH-GDH activity in MSX-treated NO 3 - -grown cells increases, and, in the presence of 5 mM MSX, reaches 40% of the level found in NH 4 + -grown cells. These results are consistent with NADPH-GDH providing an alternate pathway for NH 4 + assimilation by this marine Chlorella species.  相似文献   

8.
The salt marsh ecosystem at North Inlet, South Carolina, USA consistently exported dissolved inorganic nitrogen via tidal exchange with the coastal Atlantic Ocean. Concentrations centrations of NH 4 + and NO 3 - +NO 2 - displayed distinct tidal patterns with rising values during ebb flow. These patterns suggest the importance of biogeochemical processes in the flux of material from the salt marsh. NH 4 + export peaked during the summer (15 to 20 mg m-2 tide-1) during a net balance of tidal water exchange. Remineralization of NH 4 + within the salt marsh system appears to be contributing to the estimated annual net export of bout 4.7 g NH 4 + -N m-2 yr-1. NO 3 - +NO 2 - exports were higher in the fall and winter of 1979 (2 to 4 mg N m-2 tide-1). The winter export coincided with a considerable net export of water with no distinctive concentration patterns, suggesting a simple advective export. However, the fall peak of NO 3 - +NO 2 - export occurred during a period of net water balance in tidal exchange and an insignificant freshwater input from the western, forested boundary. During the summer and fall, tidal concentration patterns were particularly apparent, suggesting that nitrification within the salt marsh system was contributing to the estimated annual net export of ca 0.6 g NO 3 - +NO 2 - -N m-2 yr-1.Contribution No. 637 from the Belle W. Baruch Institute of Marine Biology and Coastal Research  相似文献   

9.
Seasonal changes in ambient NO 3 and NH 4 + , tissue composition (N, C, and C/N ratio), and frond growth rates for Macrocystis pyrifera (L.) Agardh were examined. Ambient NO 3 showed distinct seasonal variations. Frond growth rates were variable, but showed no clear correlation to ambient NO 3 . The average N content of plant tissue did, however, show the same seasonal variations as ambient NO 3 . The longitudinal distribution of total tissue N and various components of tissue N along fronds were also analyzed. Several distinct patterns were found: high levels of protein N at growing tips and elevated levels of soluble N in lower parts of the frond. Free amino acids accounted for a major portion of the soluble N, but neither NO 3 nor NH 4 + accumulated in the plant tissue. The longitudinal distribution of N along the fronds is compared to reported variations in C metabolism, and it is concluded that C and N sourcesink relations do not always coincide and bidirectional translocation may occur.  相似文献   

10.
Interactions of the nitrate, phosphate, and ammonium uptake systems and the interactions of these systems with photosynthesis were investigated for Thalassiosira weissflogii and Phaeodactylum tricornutum preconditioned in continuous culture. The cultures were supplied with NO - 3 and PO = 4 in an N:P atomic ratio of 15:1, and residual concentrations of both nutrients in the growth chamber were very low. The rate of NO - 3 uptake was reduced by the addition of NH + 4 or PO = 4 . The rate of PO = 4 uptake by T. weissflogii was reduced by the addition of NH + 4 . The rate of carbon fixation was reduced by NO - 3 additions and slightly reduced by the addition of PO = 4 . There were two components of NO - 3 uptake, one light-dependent and one light-independent. Uptake inhibition by added PO = 4 acted on the light-independent component. The change in the C fixation rate due to added NO - 3 was equal to the rate of NO - 3 uptake by the light-dependent component on a molar basis. Nitrate assimilation (reduction) rates were calculated from the time course of extracellular and intracellular NO - 3 concentrations. The light-dark change in the assimilation rate was similar to the light-dark change in the uptake rate, suggesting close coupling between the light-dependent components of uptake and assimilation. The assimilation rate dropped upon exhaustion of extracellular NO - 3 , implying that an uptake-coupled component of assimilation is unavailable for the assimilation of intracellular NO - 3 . The reduction in the C fixation rate due to NO - 3 was temporally associated with uptake rather than assimilation, but may reflect interaction with either the light-dependent uptake step or the closely coupled assimilation. Phosphate additions reduced the rate of NO - 3 uptake, while the rate of assimilation was unaffected.  相似文献   

11.
The dissolved nitrogen pool in aquatic systems is comprised of many different nitrogen forms, both inorganic and organic. Interaction among these nitrogen forms at the level of uptake and enzyme activity is, with the exception of NH4+ and NO3, not completely understood. Nitrate reductase (NR) and urease (UA) activities in the marine diatom Thalassiosira weissflogii (Grunow) Fryxell et Hasle were measured in NO3, NH4+, and urea-sufficient cultures before and after challenge additions of NH4+, NO3, and urea in a factorial design. NR and UA were constitutively expressed during growth on NO3, NH4+, and urea. Growth on NH4+ or urea resulted in NR activities that were <10% of the activity observed in the NO3-grown culture, while growth on NO3 resulted in UA values that were ~35% of the activities during growth on either NH4+ or urea. The addition of NH4+ or urea to NO3-grown cultures resulted in an immediate decrease in cellular NO3 uptake rate, which was not mirrored by an immediate repression of in vitro NR activity; however, the diel peak in NR was suppressed in these challenge experiments. The addition of NO3 or NH4+ to urea-grown cultures resulted in non-significant decreases in the urea uptake rate. UA was not impacted by NO3 addition, but NH4+ addition significantly decreased UA throughout the experiment. These studies demonstrate that the uptake and assimilation of NO3 and urea may not be subject to the same internal feedback mechanism when challenged with other nitrogen substrates.Communicated by J.P. Grassle, New Brunswick  相似文献   

12.
Concentrations of dissolved inorganic nitrogen compounds above the pycnocline in the Oslofjord are very low in the summer, with turnover times of the inorganic N pools of no more than a few hours. To investigate the possibility that continued phytoplankton growth in the summer depends on ammonium excretion by microzooplankton, rates of NH 4 + regeneration and assimilation were measured by a 15N isotope dilution method. Daytime regeneration rates at 0–2 m depth were 0–28% of the calculated assimilation rates at ambient NH 4 + concentrations. Regeneration was faster during a dinoflagellate bloom in August than in mixed diatom-dinoflagellate blooms in June and September. Most of the NH 4 + appeared to be produced by juvenile copepods, rotifers, tintinnids, and heterotrophic dinoflagellates in the size fraction 45–200 m.  相似文献   

13.
The dissolved organic nitrogen (DON) pool in marine waters contains a diverse mixture of compounds. It is therefore difficult to accurately estimate planktonic uptake of DON using the limited number of radiolabeled compounds commercially available. We describe a method to estimate DON uptake rates using 15N-labeled DON recently released from phytoplankton. To make 15N-labeled DON, we incubated surface water with 15NH 4 + and then isolated the DON, including any recently released DO15N, with ion retardation resin. This DON was then added to a freshly collected water sample from the same environment to quantify the rate of DON uptake. The technique was applied to investigate rates of DON uptake relative to inorganic nitrogen in the mesohaline Chesapeake Bay during May 1990 and August 1991. The May experiment took place after the spring bloom, and rates of DON uptake [ranging from 0.31 to 0.53 g-atom (g-at) Nl-1 h-1] often exceeded rates of NH 4 + and NO 3 - uptake combined. The rates of DON uptake at this time were higher than estimated bacterial productivity and were not correlated with bacterial abundance or bacterial productivity. They were, however, correlated with rates of NO 3 - uptake. In May, we estimate that only 7 to 32% of DON uptake was a result of urea utilization. In contrast, in August, when regenerated nutrients predominate in Chesapeake Bay, rates of DON uptake (ranging from 0.14 to 0.51 g-atom Nl-1 h-1) were an average of 50% of the observed rates of NH 4 + uptake. Consistent with the May experiment, rates of DON uptake were not correlated with bacterial production. A sizable fraction of DON uptake, however, appeared to be due to urea utilization; rates of urea uptake, measured independently, were equivalent to an average of 74% of the measured rates of DON uptake. These findings suggest that, during both periods of study, at least a fraction of the measured DON uptake may have been due to utilization by phytoplankton.  相似文献   

14.
Effect of algal bloom deposition on sediment respiration and fluxes   总被引:5,自引:0,他引:5  
Using sediment cores collected in November 1989 from Aarhus Bight, Denmark, the fluxes of O2, CO2 (total CO2), NH 4 + , NO 3 +NO 2 and DON (dissolved organic nitrogen) across the sediment-water interface were followed for 20 d in an experimental continous flow system. On day 7, phytoplankton was added to the sediment surface, to see the result of simulated algal bloom sedimentation. Benthic O2 consumption and CO2 efflux, 38 to 41 mmol O2 m-2 d-1 and 25 to 30 mmol CO2 m-2 d-1, respectively, immediately increased by 39% and 100% after the algal addition, but gradually declined to the orginal level. Fluxes of NH 4 + (1.0 to 1.2 mmol m-2 d-1) and DON (0.3 to 0.9 mmol m-2 d-1) increased due to the organic substrate addition. NH 4 + and NO 3 flux changed direction, becoming an efflux and influx, respectively, for a few days and a large amount of DON (max. rate 4.0 mmol m-2 d-1) was immediately produced either by bacterial hydrolytic activity or from autolysis of the algae. DON was the most significant nitrogen component in pore water and in terms of N-flux from sediment. A temporary stimulation of anaerobic respiration processes (sulfate reduction and denitrification) and a decrease in nitrification were indicated. After the effect of the organic addition had declined, the fluxes gradually reverted to the original rates. The halflife of the added algal material, of which 20 to 30% was very labile, was estimated to be 2 to 3 wk.  相似文献   

15.
Nitrogen Export from an Agriculture Watershed in the Taihu Lake Area, China   总被引:6,自引:0,他引:6  
Temporal changes in nitrogen concentrations and stream discharge, as well as sediment and nitrogen losses from erosion plots with different land uses, were studied in an agricultural watershed in the Taihu Lake area in eastern China. The highest overland runoff loads and nitrogen losses were measured under the upland at a convergent footslope. Much higher runoff, sediment and nitrogen losses were observed under upland cropping and vegetable fields than that under chestnut orchard and bamboo forest. Sediment associated nitrogen losses accounted for 8–43.5% of total nitrogen export via overland runoff. N lost in dissolved inorganic nitrogen forms (NO 3 -N + NH 4 + -N) accounted for less than 50% of total water associated nitrogen export. Agricultural practices and weather-driven fluctuation in discharge were main reasons for the temporal variations in nutrient losses via stream discharge. Significant correlation between the total nitrogen concentration and stream discharge load was observed. Simple regression models could give satisfactory results for prediction of the total nitrogen concentrations in stream water and can be used for better quantifying nitrogen losses from arable land. Nitrogen losses from the studied watershed via stream discharge during rice season in the year 2002 were estimated to be 10.5 kg N/ha using these simple models.  相似文献   

16.
The relationship between food ingested and NH + 4 excretion rate was investigated for female Calanus pacificus collected in August, 1982, from the San Juan Archipelago, Washington State, USA. The copepods were preconditioned to 6 densities of the diatom Thalassiosira weissflogii (0 to 104 cells ml–1) for 30 h before the experiment. The experiment was conducted with nutrients added in excess to maintain equal rates of NH + 4 uptake by the diatoms at all densities. Although ingestion rates of C. pacificus varied from 0 to over 20% of body N d–1 at the different food levels, excretion was a constant 6.6 nM NH + 4 copepod–1 h–1 or about 10% of body N d–1. This ingestion-excretion relationship, which is consistent with previous respiration and fecundity studies, suggests that the ecological dominance of C. pacificus only under conditions of high food abundance may be due to a dramatic increase in its growth efficiency as ingestion increases above the level supporting a constant metabolic rate. The maintenance of a constant level of metabolism during relatively short periods of low food abundance may be advantageous if it allows the copepod to exploit more effectively short-term variability in its food resulting from environmental heterogeneity or vertical migration.Contribution No. 1360 from the School of Oceanography, University of Washington, Seattle, Washington 98195, USA  相似文献   

17.
Effects of benthic macrofauna (Corophium volutator, Hydrobia sp., Nereis virens) on benthic community metabolism were studied over a 65-d period in microcosms kept in either light/dark cycle (L/D-system) or in continuous darkness (D-system). Sediment and animals were collected in January 1986 in the shallow mesohaline estuary, Norsminde Fjord, Denmark. The primary production in the L/D-system after 10 d acted as a stabilizing agent on the O2 and CO2 flux rates, whereas the D-system showed decreasing O2 and CO2 flux throughout the period. Mean O2 uptake over the experimental period ranged from 0.38 to 1.24 mmol m–2 h–1 and CO2 release varied from 0.80 to 1.63 mmol m–2 h–1 in both systems. The presence of macrofauna stimulated community respiration rates measured in darknes, 1.4 to 3.0 and 0.9 to 2.0 times for O2 and CO2, respectively. In contrast, macrofauna lowered primary production. Gross primary production varied from 1.06 to 2.26 mmol O2 m–2 h–1 and from 1.26 to 2.62 mmol CO2 m–2 h–1. The community respiratory quotient (CRQ, CO2/O2) was generally higher in the begining of the experiment (0–20 d, mean 1.89) than in the period from Days 20 to 65 (mean 1.38). The L/D-system exhibited lower CRQ (ca. 1) than the D-system. The community photosynthetic quotient varied for both net and gross primary production from 0.64 to 1.03, mean 0.81. The heterotrophic D-system revealed a sharp decrease in the sediment content of chlorophyll a as compared to the initial content. In the autotrophic L/D-system, a significant increase in chlorophyll a concentration was observed in cores lacking animals and cores with C. volutator (The latter species died during the experiment). Due to grazing and other macrofauna activities other cores of the L/D-system exhibited no significant change in chlorophyll a concentration. Community primary production was linearly correlated to the chlorophyll a content in the 0 to 0.5 cm layer. Fluxes of DIN (NH4 ++NO2 +NO3 ) did not reveal significant temporal changes during the experiment. Highest rates were found for the cores containing animals, mainly because of an increased NH4 + flux. The release of DIN decreased significantly due to uptake by benthic microalgae in the L/D-system. No effects of the added macrofauna were found on particulate organic carbon (POC), particulate organic nitrogen (PON), total carbon dioxide (TCO2) and NH4 + in the sediment. The ratio between POC and PON was nearly constant (9.69) in all sediment dephts. The relationship between TCO2 and NH4 + was more complex, with ratios below 2 cm depth similar to those for POC/PON, but with low ratios (3.46) at the sediment surface.  相似文献   

18.
The red algaGelidium sesquipedale (Clem.) Born. et Thur. has been cultured in chemostats to assess the effects of light quality and photon-fluence rate (PFR) on growth, photosynthesis and biochemical composition. Plants under blue and red light (BL and RL) showed higher growth rates than under white light (WL) of the same PFR (40 mol m–2 s–1). The light-saturated rate of photosynthesis was higher for algae grown under BL and RL than for algae grown under WL. When algae were transferred to WL of moderate PFR (100 mol m–2 s–1), the light-saturated rate of photosynthesis decreased, being higher in previously RL-grown algae than in previously BL- and WL-grown algae. The initial slope of photosynthesis-irradiance (PI) curves () was affected by PFR but not by light quality. Pigment content was little affected by light quality. Light-quality treatments also affected the biochemical composition of the alga; previous exposure to various light treatments activate or repress several metabolical pathways that are fully expressed in the subsequent phase of WL of moderate PFR. Thus, phycobiliproteins and soluble proteins increased for previously BL- and RL-grown algae, whereas insoluble carbohydrate concentration was reduced, indicating a change of the C-partitioning between carbon compounds and organic nitrogen compounds. Inorganic nitrogen metabolism was also affected by light: under WL of moderate PFR, NO3 was totally depleted from sea water, and maximal values of NO3 uptake were recorded. In addition, neither NO2 nor NH4 + was released. However, when algae were transferred to a low PFR, there was a drastic reduction of NO3 uptake under WL, which only partially recovered over time. It was accompanied by the release of NO2 , but not NH4 +, to the culture medium. Under BL and RL, however, there was a transient enhancement of NO3 uptake that was followed by a net release of NO2 and NH4 . Growth rates were not correlated with PFR. This could be due to the the dynamics of internal carbon mobilization and accumulation in the algae. When algae were exposed to a moderate PFR of WL, carbon requirements for growth were satisfied by photosynthesis. Thus, there was a net accumulation of carbon in the tissue. In contrast, when algae were exposed to low PFRs of either WL, BL or RL, observed growth rates could not be maintained by photosynthesis and carbon was mobilized.  相似文献   

19.
Rates of ammonium remineralization were determined using a 15N isotope dilution technique for two oceanic regions, one coastal region, and one estuarine region, covering a wide range of ambient nutrient, light, and temperature conditions. Results showed that NH 4 + assimilative and regenerative fluxes were primarily in balance, even when the ambient nitrogenous pool was completely dominated by NO 3 - . Variations in uptake and remineralization rates relative to time of day and season were also determined. Size fraction studies at several of the sites showed that the smallest size fraction (<10 m) was usually the most important in remineralizing NH 4 + , and the importance of the apparent bacterial fraction (<1 m) may increase following blooms. The results support the concept that, over a wide variety of conditions, the fluxes of NH 4 + remineralization and uptake are tightly coupled; phytoplankton are able to utilize NH 4 + at the rate that it is produced by heterotrophic processes.  相似文献   

20.
R. H. Burris 《Marine Biology》1983,75(2-3):151-155
Corals from the Swain Reefs of the Great Barrier Reef were exposed to 15NH 4 + in sea water, and the disappearance of NH 4 + from the medium and the appearance of 15N in the corals was followed. Disappearance of NH 4 + usually followed a reasonably smooth curve with rate of disappearance decreasing as the concentration of NH 4 + decreased; the decrease in rate was not the result of damage to the corals. The rate of uptake of 15NH 4 + vs concentration did not describe a normal substrate saturation curve, as uptake may have been diffusion limited. 15N was assimilated into the corals in the form of stable organic nitrogenous compounds. Its assimilation usually exhibited an initial lag. An ahermatypic coral did not remove NH 4 + from the medium. Differences in NH 4 + uptake with a 1-h cycle of light and dark were minor. Isolated zooxanthellae assimilated 15NH 4 + as indicated by accumulation of 15N with no lag.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号