首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cadotte MW 《Ecology》2007,88(4):823-829
The competition-colonization trade-off has long been a mechanism explaining patterns of species coexistence and diversity in nonequilibrium systems. It forms one explanation of the intermediate disturbance hypothesis (IDH) for local communities--specifically that diversity should be maximized at intermediate disturbance frequencies, yet only a fraction of empirical studies support IDH predictions. Similarly, this trade-off is also a powerful explanation of coexistence at larger spatial scales. I show, with a microbial experimental system, that the diversity-disturbance relationship is dependent on the relative distribution of species along this trade-off. Here I show that, when species are skewed toward late-successional habits, local diversity declines with disturbance. Yet, despite this trait skew, diversity at scales larger than the patch appears insensitive to the trade-off distribution. Intermediate disturbance frequencies produce the greatest diversity in patch successional stage, thus benefiting the maximum number of species at larger scales.  相似文献   

2.
Svensson JR  Lindegarth M  Pavia H 《Ecology》2010,91(10):3069-3080
Physical and biological disturbances are ecological processes affecting patterns in biodiversity at a range of scales in a variety of terrestrial and aquatic systems. Theoretical and empirical evidence suggest that effects of disturbance on diversity differ qualitatively and quantitatively, depending on levels of productivity (e.g., the dynamic equilibrium model). In this study we contrasted the interactive effects between physical disturbance and productivity to those between biological disturbance and productivity. Furthermore, to evaluate how these effects varied among different components of marine hard-substratum assemblages, analyses were done separately on algal and invertebrate richness, as well as richness of the whole assemblage. Physical disturbance (wave action) was simulated at five distinct frequencies, while biological disturbance (grazing periwinkles) was manipulated as present or absent, and productivity was manipulated as high or ambient. Uni- and multivariate analyses both showed significant effects of physical disturbance and interactive effects between biological disturbance and productivity on the composition of assemblages and total species richness. Algal richness was significantly affected by productivity and biological disturbance, whereas invertebrate richness was affected by physical disturbance only. Thus, we show, for the first time, that biological disturbance and physical disturbance interact differently with productivity, because these two types of disturbances affect different components of assemblages. These patterns might be explained by differences in the distribution (i.e., press vs. pulse) and degree of selectivity between disturbances. Because different types of disturbance can affect different components of assemblages, general ecological models will benefit from using natural diverse communities, and studies concerned with particular subsets of assemblages may be misleading. In conclusion, this study shows that the outcome of experiments on effects of disturbance and productivity on diversity is greatly influenced by the composition of the assemblage under study, as well as on the type of disturbance that is used as an experimental treatment.  相似文献   

3.
The role of habitat complexity has been widely neglected in the study of meiofaunal community patterns. We studied the intertidal nematode community of a structurally complex macrotidal beach exhibiting contrasting microhabitats (sandbars and runnels) to understand the influence of environmental gradients and habitat heterogeneity in the community structure. We tested whether topographical complexity affected (1) the zonation pattern in terms of abundance and diversity, and (2) local diversity by promoting compartmentalization into distinct faunal groups. Our analyses revealed three major faunal assemblages along the exposure gradient associated to differences in mean grain size and chlorophyll a. Diversity patterns involved a mid-intertidal peak, consistent with the intermediate disturbance hypothesis, and another peak at the limit with the subtidal region, consistent with the transition zone. These results highlight the predominance of environmental gradients in establishing intertidal zonation. However, microhabitats differed in environmental conditions and possessed significantly distinct nematofaunal communities. Runnels featured higher levels of taxonomic and functional diversity, many unique genera, and the community differed from the assemblage at the limit to the subtidal, stressing their role as distinct microhabitats. The nematofauna of the structurally complex beach was more diverse than the one from a homogeneous beach nearby, supporting the hypothesis that structural heterogeneity promotes diversity by compartmentalization and highlighting the importance of microhabitats in the assessment of biodiversity. Contrary to previous predictions, our results indicate potentially high regional marine nematode diversity in the Upper Gulf of California.  相似文献   

4.
A microcosm experiment was carried out to evaluate the effects of continuous and spasmodic physical disturbance of differing frequency on the structure of nematode communities of intertidal sand and mud. There was a marked, characteristic change in abundance and diversity for both sediment types. In the sand microcosms, the majority of univariate measures of community structure, including species diversity, were lowest in the sediments subjected to a high frequency of disturbance. For the mud microcosms, most univariate measures reached their highest values in the treatments with an intermediate frequency of disturbance and were lower in treatments subjected to both higher and lower frequencies. Multivariate ordinations for both nematode assemblages showed a clear separation of undisturbed controls and disturbed treatments, but only for the muddy sediment was there a graded change in community composition with increasing frequency of disturbance. These results confirmed our a priori expectation that nematode assemblages from mobile sandy sediments would be more resilient to physical disturbance than those from sheltered muds, and these observations are considered in the context of Connell's intermediate disturbance hypothesis. Received: 7 May 1997 / Accepted: 10 October 1997  相似文献   

5.
Consumers affect prey biomass and diversity through resource partitioning   总被引:1,自引:0,他引:1  
Råberg S  Kautsky L 《Ecology》2007,88(10):2468-2473
Consumer presence and nutrient availability can have contrasting and interactive effects on plant diversity. In a factorial experiment, we manipulated two levels of nutrient supply and the presence of two moderately specialized grazers in different combinations (no grazers, two species in monoculture, and both in combination). We tested how nutrients and grazers regulated the biomass of marine coastal epiphytes and the diversity of algal assemblages, based on the prediction that the effect of consumers on prey diversity depends on productivity and consumer specialization. Nutrient enrichment increased the epiphytic load, while monocultures of single grazer species partly prevented epiphyte growth. However, only the presence of two species with complementary feeding preferences effectively prevented epiphyte overgrowth. The epiphytes comprised micro- and macroalgal species, and the diversity of these algal assemblages differed, depending on grazer identity. For the microalgae, diversity was reduced by nutrient addition when grazer control was inefficient, but not when specialist microalgal grazers were present. Macroalgal diversity was reduced in ambient water with specialist macroalgal grazers compared to the treatment with inefficient ones. These results indicate that grazer composition and productivity are crucial in determining whether consumer pressure will have a positive or negative effect on algal diversity.  相似文献   

6.
How simple can a model be that still captures essential aspects of wildfire ecosystems at large spatial and temporal scales? The Drossel-Schwabl model (DSM) is a metaphorical forest-fire model developed to reproduce only one pattern of real systems: a frequency distribution of fire sizes resembling a power law. Consequently, and because it appears oversimplified, it remains unclear what bearings the DSM has in reality. Here, we test whether the DSM is capable of reproducing a pattern that was not considered in its design, the hump-shaped relation between the diversity of succession stages and average annual area burnt. We found that the model, once reformulated to represent succession, produces realistic landscape diversity patterns. We investigated four succession scenarios of forest-fire ecosystems in the USA and Canada. In all scenarios, landscape diversity is highest at an intermediate average annual area burnt as predicted by the intermediate disturbance hypothesis. These results show that a model based solely on the dynamics of the fuel mosaic has surprisingly high predictive power with regard to observed statistical properties of wildfire systems at large spatial scales. Parsimonious models, such as the DSM can be used as starting points for systematic development of more structurally realistic but tractable wildfire models. Due to their simplicity they allow analytical approaches that further our understanding under increasing complexity.  相似文献   

7.
Maestre FT  Reynolds JF 《Ecology》2007,88(2):501-511
Patterns of resource availability and heterogeneity shape the composition, productivity, and dynamics of plant assemblages in a wide variety of terrestrial ecosystems. Despite this, the responses of plant assemblages to simultaneous changes in the availability and heterogeneity of more than a single resource are virtually unknown. To fill this gap, microcosms consisting of assemblages formed by Lolium perenne, Plantago lanceolata, Anthoxantum odoratum, Holcus lanatus, and Trifolium repens were grown in a factorial experiment with the following treatments: nutrient availability (NA), water availability (WA), spatial nutrient heterogeneity (NH), and temporal water heterogeneity (WH). Assemblages exhibited precise root foraging patterns in response to nutrient heterogeneity, which were modified by NA and WA. A series of two- and three-way interactions involving the four factors evaluated determined biomass production, the belowground: aboveground biomass ratio, the patterns of root biomass allocation with depth, and the relative contribution to aboveground biomass of Lolium and Anthoxanthum. In all cases, these interactions explained significant amounts of the variation found in the data. Our study demonstrates that considering the interactions between resource availability and heterogeneity allows for a refinement of predictions that can detectably reduce the error associated with extrapolating from single factor analyses.  相似文献   

8.
Long ZT  Bruno JF  Duffy JE 《Ecology》2007,88(11):2821-2829
Biodiversity may enhance productivity either because diverse communities more often contain productive species (selection effects) or because they show greater complementarity in resource use. Our understanding of how these effects influence community production comes almost entirely from studies of plants. To test whether previous results apply to higher trophic levels, we first used simulations to derive expected contributions of selection and complementarity to production in competitive assemblages defined by either neutral interactions, dominance, or a trade-off between growth and competitive ability. The three types of simulated assemblages exhibited distinct interaction signatures when diversity effects were partitioned into selection and complementarity components. We then compared these signatures to those of experimental marine communities. Diversity influenced production in fundamentally different ways in assemblages of macroalgae, characterized by growth-competition trade-offs, vs. in herbivores, characterized by dominance. Forecasting the effects of changing biodiversity in multitrophic ecosystems will require recognizing that the mechanism by which diversity influences functioning can vary among trophic levels in the same food web.  相似文献   

9.
Howeth JG  Leibold MA 《Ecology》2010,91(9):2727-2741
Metacommunity theory suggests that relationships between diversity and ecosystem stability can be determined by the rate of species dispersal among local communities. The predicted relationships, however, may depend upon the relative strength of local environmental processes and disturbance. Here we evaluate the role of dispersal frequency and local predation perturbations in affecting patterns of diversity and stability in pond plankton metacommunities. Pond metacommunities were composed of three mesocosm communities: one of the three communities maintained constant "press" predation from a selective predator, bluegill sunfish (Lepomis macrochirus); the second community maintained "press" conditions without predation; and the third community experienced recurrent "pulsed" predation from bluegill sunfish. The triads of pond communities were connected at either no, low (0.7%/d), or high (20%/d) planktonic dispersal. Richness and composition of zooplankton and stability of plankton biomass and ecosystem productivity were measured at local and regional spatial scales. Dispersal significantly affected diversity such that local and regional biotas at the low dispersal rate maintained the greatest number of species. The unimodal local dispersal-diversity relationship was predator-dependent, however, as selective press predation excluded species regardless of dispersal. Further, there was no effect of dispersal on beta diversity because predation generated local conditions that selected for distinct community assemblages. Spatial and temporal ecosystem stability responded to dispersal frequency but not predation. Low dispersal destabilized the spatial stability of producer biomass but stabilized temporal ecosystem productivity. The results indicate that selective predation can prevent species augmentation from mass effects but has no apparent influence on stability. Dispersal rates, in contrast, can have significant effects on both species diversity and ecosystem stability at multiple spatial scales in metacommunities.  相似文献   

10.
Natural heterogeneity in ecological parameters, like population abundance, is more widely recognized and investigated than variability in the processes that control these parameters. Experimental ecologists have focused mainly on the mean intensity of predictor variables and have largely ignored the potential to manipulate variances in processes, which can be considered explicitly in experimental designs to explore variation in causal mechanisms. In the present study, the effect of the temporal variance of disturbance on the diversity of marine assemblages was tested in a field experiment replicated at two sites on the northeast coast of New Zealand. Fouling communities grown on artificial settlement substrata experienced disturbance regimes that differed in their inherent levels of temporal variability and timing of disturbance events, while disturbance intensity was identical across all levels. Additionally, undisturbed assemblages were used as controls. After 150 days of experimental duration, the assemblages were then compared with regard to their species richness, abundance and structure. The disturbance effectively reduced the average total cover of the assemblages, but no consistent effect of variability in the disturbance regime on the assemblages was detected. The results of this study were corroborated by the outcomes from simultaneous replicate experiments carried out in each of eight different biogeographical regions around the world.  相似文献   

11.
We studied the effect of aquatic vegetation on the process of species sorting and community assembly of three functional groups of plankton organisms (phytoplankton, seston-feeding zooplankton, and substrate-dwelling zooplankton) along a primary productivity gradient. We performed an outdoor cattle tank experiment (n = 60) making an orthogonal combination of a primary productivity gradient (four nutrient addition levels: 0, 10, 100, and 1000 microg P/L; N/P ratio: 16) with a vegetation gradient (no macrophytes, artificial macrophytes, and real Elodea nuttallii). We used artificial plants to evaluate the mere effects of plant physical structure independently from other plant effects, such as competition for nutrients or allelopathy. The tanks were inoculated with species-rich mixtures of phytoplankton and zooplankton. Both productivity and macrophytes affected community structure and diversity of the three functional groups. Taxon richness declined with increasing plankton productivity in each functional group according to a nested subset pattern. We found no evidence for unimodal diversity-productivity relationships. The proportional abundance of Daphnia and of colonial Scenedesmus increased strongly with productivity. GLM analyses suggest that the decline in richness of seston feeders was due to competitive exclusion by Daphnia at high productivity. The decline in richness of phytoplankton was probably caused by high Daphnia grazing. However, partial analyses indicate that these explanations do not entirely explain the patterns. Possibly, environmental deterioration associated with high productivity (e.g., high pH) was also responsible for the observed richness decline. Macrophytes had positive effects on the taxon richness of all three functional plankton groups and interacted with the initial productivity gradient in determining their communities. Macrophytes affected the composition and diversity of the three functional groups both by their physical structure and through other mechanisms. Part of the macrophyte effect may be indirect via a reduction of phytoplankton production. Our results also indirectly suggest that the often reported unimodal relationship between primary productivity and diversity in nature may be partially mediated by the tendency of submerged macrophytes to be most abundant at intermediate productivity levels.  相似文献   

12.
Changes in disturbance rates due to climate change may increase or decrease diversity, whereas permanent loss of habitat is generally believed to decrease diversity. It is, however, very likely that the effects of disturbances and habitat destruction interact. Understanding such combined effects is essential to predict the response of communities to global changes and in particular which functional types of species are most endangered. Using an individual-based spatially explicit community model, we investigate (1) whether diversity-disturbance curves alter when spatially uncorrelated or autocorrelated habitat destruction is added, and (2) which functional types of species are able to survive under these altered conditions. Model communities consisted of four functional types of species trading off between colonisation ability and competition strength. We found that habitat destruction may alter both height and shape of diversity-disturbance curves: maximum diversity at intermediate disturbance rates may shift to other disturbance rates or even split into two peaks giving rise to bimodal diversity-disturbance relationships with different sub-communities persisting at low and high disturbance rates. Diversity responded differentially depending on how the colonisation-competition trade-off was represented. Our results suggest that, for trade-offs in seed production rate, generally the best coloniser will better withstand the interacting effects of habitat destruction and changing disturbance rates; however, for trade-offs in mean dispersal distances, functional types characterized by intermediate abilities will perform best. We conclude that predictions of the impacts of changing disturbance rates on biodiversity depend on community structure and cannot be made without knowledge of concurrent permanent habitat destruction.  相似文献   

13.
Balata D  Piazzi L  Benedetti-Cecchi L 《Ecology》2007,88(10):2455-2461
How changes in environmental complexity and heterogeneity affect beta diversity is poorly known. We investigated patterns of beta diversity in subtidal assemblages of algae and invertebrates in the northwest Mediterranean in relation to inclination of the substratum and sedimentation. Vertical and horizontal substrata supported distinct assemblages under low, but not under heavy, ambient loads of sediment. To test the hypothesis that sediment reduced the dissimilarity between assemblages, sedimentation was increased experimentally in plots established on vertical and horizontal surfaces at sites experiencing low ambient levels of sedimentation. Patterns were compared to those occurring at unmanipulated sites and at sites exposed to heavy loads of sediment about 2 km apart. After one year, assemblages on vertical substrata were indistinguishable from those occurring on flat surfaces at manipulated sites and both converged toward those occurring at sites exposed to heavy loads of sediment. Control sites still supported distinct assemblages on vertical and horizontal substrata by the end of the experiment. Similar effects of sediment were observed on recovering assemblages in experimental clearings. These results show that sediment increased similarity in assemblages overriding the influence of habitat complexity on beta diversity at small and large spatial scales.  相似文献   

14.
Disturbance, Diversity, and Invasion: Implications for Conservation   总被引:38,自引:0,他引:38  
Disturbance is an important component of many ecosystems, and variations in disturbance regime can affect ecosystem and community structure and functioning. The "intermediate disturbance hypothesis" suggests that species diversity should be highest at moderate levels of disturbance. However, disturbance is also known to increase the invasibility of communities. Disturbance therefore poses an important problem for conservation management, Here, we review the effects of disturbances such as fire grazing, soil disturbance and nutrient addition on plant species diversity and invasion with particular emphasis on grassland vegetation. Individual components of the disturbance regime can have marked effects on species diversity, but it is often modifications of the existing regime that have the largest influence. Similarly, disturbance can enhance invasion of natural communities, but frequently it is the interaction between different disturbances that has the largest effect. The natural disturbance regime is now unlikely to persist within conservation areas since fragmentation and human intervention have usually modified physical and biotic conditions. Active management decisions must now be made on what disturbance regime is required and this requires decisions on what species are to be encouraged or discouraged.  相似文献   

15.
Amarasekare P 《Ecology》2008,89(10):2786-2797
The prevalence of intraguild predation (IGP) in productive environments has long puzzled ecologists. Theory predicts the exclusion of intraguild prey from such environments, but data consistently defy this expectation. This suggests that coexistence mechanisms at high resource productivity may differ from those at lower productivity. Here I present a mathematical model that investigates multiple coexistence mechanisms. I incorporate two biological features widely observed in IGP communities: intraspecific interference via cannibalism or superparasitism, and temporal refuges arising from differential sensitivities to abiotic variation. I develop predictions based on three aspects of the IG prey-IG predator interaction: mutual invasibility, transient dynamics, and long-term abundances. These predictions specify the conditions under which coexistence mechanisms reinforce vs. deter one another: when a competition-IGP trade-off allows coexistence at intermediate productivity a temporal refuge for the intraguild prey always allows coexistence at high productivity, but intraspecific interference does so only at a net fitness cost to the intraguild predator. Intraspecific interference that benefits the intraguild predator not only reduces tradeoff-mediated coexistence at intermediate productivity, but also undermines the refuge's coexistence-enhancing effect at high productivity. Different mechanism combinations yield characteristic signatures in time series data during transient dynamics. By judicious measurement of parameters and examining time series for critical signatures, one can elucidate the mechanisms that allow IGP to prevail in resource-rich environments.  相似文献   

16.
Human Impacts on Regional Avian Diversity and Abundance   总被引:1,自引:0,他引:1  
Abstract: Patterns of association between humans and biodiversity typically show positive, negative, or negative quadratic relationships and can be described by 3 hypotheses: biologically rich areas that support high human population densities co‐occur with areas of high biodiversity (productivity); biodiversity decreases monotonically with increasing human activities (ecosystem stress); and biodiversity peaks at intermediate levels of human influence (intermediate disturbance). To test these hypotheses, we compared anthropogenic land cover and housing units, as indices of human influence, with bird species richness and abundance across the Midwestern United States. We modeled richness of native birds with 12 candidate models of land cover and housing to evaluate the empirical evidence. To assess which species were responsible for observed variation in richness, we repeated our model‐selection analysis with relative abundance of each native species as the response and then asked whether natural‐history traits were associated with positive, negative, or mixed responses. Native avian richness was highest where anthropogenic land cover was lowest and housing units were intermediate based on model‐averaged predictions among a confidence set of candidate models. Eighty‐three of 132 species showed some pattern of association with our measures of human influence. Of these species approximately 40% were negatively associated, approximately 6% were positively associated, and approximately 7% showed evidence of an intermediate relationship with human influence measures. Natural‐history traits were not closely related to the direction of the relationship between abundance and human influence. Nevertheless, pooling species that exhibited any relationship with human influence and comparing them with unrelated species indicated they were significantly smaller, nested closer to the ground, had shorter incubation and fledging times, and tended to be altricial. Our results support the ecosystem‐stress hypothesis for the majority of individual species and for overall species diversity when focusing on anthropogenic land cover. Nevertheless, the great variability in housing units across the land‐cover gradient indicates that an intermediate‐disturbance relationship is also supported. Our findings suggest preemptive conservation action should be taken, whereby areas with little anthropogenic land cover are given conservation priority. Nevertheless, conservation action should not be limited to pristine landscapes because our results showed that native avian richness and the relative abundance of many species peaked at intermediate housing densities and levels of anthropogenic land cover.  相似文献   

17.
Amarasekare P 《Ecology》2007,88(11):2720-2728
Intraguild predation/parasitism (IGP: competing species preying on or parasitizing each other) is widespread in nature, but the mechanisms by which intraguild prey and predators coexist remain elusive. Theory predicts that a trade-off between resource competition and IGP should allow local niche partitioning, but such trade-offs are expressed only at intermediate resource productivity and cannot explain observations of stable coexistence at high productivity. Coexistence must therefore involve additional mechanisms beside the trade-off, but very little is known about the operation of such mechanisms in nature. Here I present the first experimental test of multiple coexistence mechanisms in a natural community exhibiting IGP. The results suggest that, when resource productivity constrains the competition-IGP trade-off, a temporal refuge for the intraguild prey can not only promote coexistence, but also change species abundances to a pattern qualitatively different from that expected based on the trade-off or a refuge alone. This is the first empirical study to demonstrate a mechanism for why communities with IGP do not lose species diversity in highly productive environments. These results have implications for diversity maintenance in multi-trophic communities, and the use of multiple natural enemies in biological control.  相似文献   

18.
Jiang L  Patel SN 《Ecology》2008,89(7):1931-1940
Ecologists know relatively little about the manner in which disturbance affects the likelihood of alternative community stable states and how the history of community assembly affects the relationship between disturbance and species diversity. Using microbial communities comprising bacterivorous ciliated protists assembled in laboratory microcosms, we experimentally investigated these questions by independently manipulating the intensity of disturbance (in the form of density-independent mortality) and community assembly history (including a control treatment with simultaneous species introduction and five sequential assembly treatments). Species diversity patterns consistent with the intermediate disturbance hypothesis emerged in the controls, as several species showed responses indicative of a tradeoff between competitive ability and ability to recover from disturbance. Species diversity in communities with sequential assembly, however, generally declined with disturbance, owing to the increased extinction risk of later colonizers at the intermediate level of disturbance. Similarities among communities subjected to different assembly histories increased with disturbance, a result due possibly to increasing disturbance reducing the importance of competition and hence priority effects. This finding is most consistent with the idea that increasing disturbance tends to reduce the likelihood of alternative stable states. Collectively, these results indicate the strong interactive effects of disturbance and assembly history on the structure of ecological communities.  相似文献   

19.
Abstract: Despite growing concern, no consensus has emerged over the effects of habitat modification on species diversity in tropical forests. Even for comparatively well-studied taxa such as Lepidoptera, disturbance has been reported to increase and decrease diversity with approximately equal frequency. Species diversity within landscapes depends on the spatial scale at which communities are sampled, and the effects of disturbance in tropical forests have been studied at a wide range of spatial scales. Yet the question of how disturbance affects diversity at different spatial scales has not been addressed. We reanalyzed data from previous studies to examine the relationship between spatial scale and effects of disturbance on tropical-forest Lepidoptera. Disturbance had opposite effects on diversity at large and small scales: as scale decreased, the probability of a positive effect of disturbance on diversity increased. We also explicitly examined the relationship between spatial scale and the diversity of butterflies in selectively logged and unlogged forest in Maluku Province, Indonesia. Species richness increased with spatial scale in both logged and unlogged forest, but at a significantly faster rate in unlogged forest, whereas species evenness increased with scale in unlogged forest but did not increase with scale in logged forest. These data indicate that the effects of habitat modification on species diversity are heavily scale-dependent. As a result, recorded effects of disturbance were strongly influenced by the spatial scale at which species assemblages were sampled. Future studies need to account for this by explicitly examining the effects of disturbance at a number of different spatial scales. A further problem arises because the relationship between scale and diversity is likely to differ among taxa in relation to mobility. This may explain to some extent why the measured effects of disturbance have differed between relatively mobile and immobile taxa.  相似文献   

20.
Urban MC  Skelly DK 《Ecology》2006,87(7):1616-1626
The metacommunity framework predicts that local coexistence depends on the outcome of local species interactions and regional migration. In analogous fashion, spatial structure among populations can shape species interactions through evolutionary mechanisms. Yet, most metacommunity theories assume that populations do not evolve. Here, we evaluate how evolution shapes local species coexistence and exclusion within the multiscale and multispecies context embodied by the metacommunity framework. In general, coexistence in joint ecological-evolutionary models requires low to intermediate dispersal rates that can promote maintenance of both regional species and genetic diversity. These conditions support a set of key mechanisms that modify patterns of species coexistence including local adaptation, gene storage effects, genetic rescue effects, spatial genetic subsidies, and metacommunity evolution. Multispecies extensions indicate that correlated selection can further alter the outcome of interspecific interactions depending on the magnitude and direction of correlations and shape of fitness trade-offs. We suggest that an evolving metacommunity perspective has the potential to generate novel predictions about community structure and function by incorporating the genetic and species diversity that characterize natural communities. In adopting such a perspective, we seek to facilitate understanding about the interactions between evolutionary and metacommunity dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号