首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
ABSTRACT: The U.S. Army Corps of Engineers conducted an assessment of Great Lakes water resources impacts under transient climate change scenarios. The integrated model linked empirical regional climate downscaling, hydrologic and hydraulic models, and water resource use sub-models. The water resource uses include hydropower, navigation, shoreline damages, and wetland area. The study is unique in that both steady-state 2°CO2 and transient global circulation model (GCM) scenarios were used and compared to each other. The results are consistent with other impact studies in that high scatter in regional climate among the GCM scenarios lead to high uncertainty in impacts. Nevertheless, the transient scenarios show that in the near-term (approximately 20 years) significant changes could occur. This result only adds to the urgency of creating more flexible and robust management of water resources uses.  相似文献   

2.
ABSTRACT: Recent research that couples climate change scenarios based on general circulation models (GCM) with Great Lakes hydrologic models has indicated that average water levels are projected to decline in the future. This paper outlines a methodology to assess the potential impact of declining water levels on Great Lakes waterfront communities, using the Lake Huron shoreline at Goderich, Ontario, as an example. The methodology utilizes a geographic information system (GIS) to combine topographic and bathymetric datasets. A digital elevation surface is used to model projected shoreline change for 2050 using water level scenarios. An arbitrary scenario, based on a 1 m decline from February 2001 lake levels, is also modeled. By creating a series of shoreline scenarios, a range of impact and cost scenarios are generated for the Goderich Harbor and adjacent marinas. Additional harbor and marina dredging could cost as much as CDN $7.6 million. Lake freighters may experience a 30 percent loss in vessel capacity. The methodology is used to provide initial estimates of the potential impacts of climate change that can be readily updated as more robust climate change scenarios become available and is adaptable for use in other Great Lakes coastal communities.  相似文献   

3.
ABSTRACT Atmospheric scientists have predicted that large-scale climatic changes will result from increasing levels of tropospheric CO2 We have investigated the potential effects of climate change on the primary productivity of Castle Lake, a mountain lake in Northern California. Annual algal productivity was modeled empirically using 25 years of limnological data in order to establish predictive relationships between productivity and the climatic variables of accumulated snow depth and precipitation. The outputs of monthly temperature and precipitation from three general circulation models (GCMs) of doubled atmospheric CO2 were then used in the regression model to predict annual algal productivity. In all cases, the GCM scenarios predicted increased algal productivity for Castle Lake under cenditions of doubled atmospheric CO2The primary cause of enhanced productivity was the increased length of the growing season resulting from earlier spring ice-out.  相似文献   

4.
ABSTRACT: A climate change impacts assessment for water resources in the San Joaquin River region of California is presented. Regional climate projections are based on a 1 percent per year CO2 increase relative to late 20th Century CO2 conditions. Two global projections of this CO2 increase scenario are considered (HadCM2 and PCM) during two future periods (2010 to 2039 and 2050 to 2079). HadCM2 projects faster warming than PCM. HadCM2 and PCM project wetter and drier conditions, respectively, relative to present climate. In the HadCM2 case, there would be increased reservoir inflows, increased storage limited by existing capacity, and increased releases for deliveries and river flows. In the PCM case, there would be decreased reservoir inflows, decreased storage and releases, and decreased deliveries. Impacts under either projection case cannot be regarded as more likely than the other. Most of the impacts uncertainty is attributable to the divergence in the precipitation projections. The range of assessed impacts is too broad to guide selection of mitigation projects. Regional planning agencies can respond by developing contingency strategies for these cases and applying the methodology herein to evaluate a broader set of CO2 scenarios, land use projections, and operational assumptions. Improved agency access to climate projection information is necessary to support this effort.  相似文献   

5.
The climate simulations from atmospheric general circulation models (GCMs) are often used to analyze the potential effects of climate change on environmental resources. It has been demonstrated that there are differences among the simulations from various GCMs, on spatial scales ranging from global to regional. This paper quantifies the differences in temperature and precipitation simulated by three major GCMs for four specific regions: an agricultural region (the North American winter wheat belt), a hydrologic region (the Great Basin), a demographic region (the high-density population corridor of the northeast United States), and a political region (the state of Texas). Both the current (control) climate and the climatic response to a doubling of atmospheric carbon dioxide (CO2) are consideredIn each region, even when the data are averaged on a seasonal basis, marked differences occurred in the areal average climate simulated by the different GCMs for both the control climate and the doubled-CO2 climate. Thus, climate impact studies based on the simulations of more than one GCM could easily yield a range of possible results  相似文献   

6.
ABSTRACT: Effects of climate change are likely to be detected in nearly all sectors and regions of the economy, with both winners and losers. One of the consequences of climatic changes could be altered regional water supplies. This paper presents an investigation of regional agricultural implications of changes in water availability. Specifically, using a profit maximization approach, the economic consequences of altered water availability in the Great Basin of Nevada are analyzed in terms of the effects on net returns of agricultural producers. Under the scenarios analyzed in this paper, it is found that with adequate water systems, increase in streamflow and consequent increase in water availability could significantly benefit agricultural producers of this region. Net returns to irrigators could increase by 8 to 13 percent, not taking into account the possibility of changes in crop yields and prices. It is also shown that the benefits from increased water availability are sensitive to likely crop yield and price changes. The potential for adverse effects of climatic changes on water supply is also considered by analyzing the effects of decreased water availability. Under decreased water availability scenarios, farmer net returns decrease substantially.  相似文献   

7.
The rapid increase in atmospheric concentrations of greenhouse gases has caused concern because of their potential to alter the earth's radiation budget and disrupt current climate patterns While there are many uncertainties associated with use of general circulation models (GCMs), GCMs are currently the best available technology to project changes in climate associated with elevated gas concentrations. Results indicate increases in global temperature and changes in global precipitation patterns are likely as a result of doubled CO2. GCMs are not reliable for use at the regional scale because local scale processes and geography are not taken into account. Comparison of results from five GCMs in three regions of the United States indicate high variability across regions and among models depending on season and climate variable. Statistical methods of scaling model output and nesting finer resolution models in global models are two techniques that may improve projections. Despite the many limitations in GCMs, they are useful tools to explore climate-earth system dynamics when used in conjunction with water resource and ecosystem models. A variety of water resource models showed significant alteration of regional hydrology when run with both GCM-generated and hypothetical climate scenarios, regardless of region or model complexity. Similarly, ecological models demonstrate the sensitivity of ecosystem production, nutrient dynamics, and distribution to changes in climate and CO2 levels. We recommend the use of GCM-based scenarios in conjunction with water resource and ecosystem models to guide environmental management and policy in a “no-regrets” framework or as part of a precautionary approach to natural resource protection.  相似文献   

8.
ABSTRACT: The implications of Lake Ontario regulation under transposed climates with changed means and variability are presented for seasonal and annual time scales. The current regulation plan is evaluated with climates other than the climate for which it was developed and tested. This provides insight into potential conflicts and management issues, development of regulation criteria for extreme conditions, and potential modification of the regulation plan. Transposed climates from the southeastern and south central continental United States are applied to thermodynamic models of the Great Lakes and hydrologic models of their watersheds; these climates provide four alternative scenarios of water supplies to Lake Ontario. The scenarios are analyzed with reference to the present Great Lakes climate. The responses of the Lake Ontario regulation plan to the transposed climate scenarios illustrate several key issues: (1) historical water supplies should no longer be the sole basis for testing and developing lake regulation plans; (2) during extreme supply conditions, none of the regulation criteria can be met simultaneously, priority of interests may change, and new interests may need to be considered, potentially requiring substantial revision to the Boundary Waters Treaty of 1909; (3) revised regulation criteria should be based on ecosystem health and socio-economic benefits for a wider spectrum of interests and not on frequencies and ranges of levels and flows of the historical climate; and (4) operational management of the lake should be improved under the present climate, and under any future climate with more variability, through the use of improved water supply forecasts and monitoring of current hydrologic conditions.  相似文献   

9.
ABSTRACT Existing meteorological controls of water exchange by precipitation and evaporation on the Great Lakes are almost entirely inadvertent and related to man's urban-industrial complexes and their effect upon precipitation processes. These inadvertent effects have led to 10 to 40% increases in precipitation in localized areas within the basin. Envisioned growth of urban-industrial complexes within the Great Lakes region should lead to more inadvertent weather modification in the Basin. The only existing planned weather modification efforts are those at Lake Erie which are attempting to eliminate by redistribution the concentration of lake-derived heavy snowfall along the south shore. It appears reasonable to assume that practical increases of lake precipitation on the order of 5-20% could be achieved on an operational basis over the Great Lakes in the next 10 years, but the time of accomplishment will depend on national priorities, international cooperation, and economic factors. These activities would certainly produce a sizeable increase in the water quantity of the Great Lakes and should result in an improvement in water quality. Operational methods of evaporation suppression applicable to the lakes are just not available. Meteorological controls to ameliorate certain undesirable lake-effect snowstorms are a near reality.  相似文献   

10.
ABSTRACT: Using a regional climate model (RegCM2.5), the potential impacts on the climate of California of increasing atmospheric CO2 concentrations were explored from the perspective of the state's 10 hydrologic regions. Relative to preindustrial CO2 conditions (280 ppm), doubled preindustrial CO2 conditions (560 ppm) produced increased temperatures of up to 4°C on an annual average basis and of up to 5°C on a monthly basis. Temperature increases were greatest in the central and northern regions. On a monthly basis, the temperature response was greatest in February, March, and May for nearly all regions. Snow accumulation was significantly decreased in all months and regions, with the greatest reduction occurring in the Sacramento River region. Precipitation results indicate drier winters for all regions, with a large reduction in precipitation from December to April and a smaller decrease from May to November. The result is a wet season that is slightly reduced in length. Findings suggest that the total amount of water in the state will decrease, water needs will increase, and the timing of water availability will be greatly perturbed.  相似文献   

11.
ABSTRACT: Global climate change due to the buildup of greenhouse gases in the atmosphere has serious potential impacts on water resources in the Pacific Northwest. Climate scenarios produced by general circulation models (GCMs) do not provide enough spatial specificity for studying water resources in mountain watersheds. This study uses dynamical downscaling with a regional climate model (RCM) driven by a GCM to simulate climate change scenarios. The RCM uses a subgrid parameterization of orographic precipitation and land surface cover to simulate surface climate at the spatial scale suitable for the representation of topographic effects over mountainous regions. Numerical experiments have been performed to simulate the present-day climatology and the climate conditions corresponding to a doubling of atmospheric CO2 concentration. The RCM results indicate an average warming of about 2.5°C, and precipitation generally increases over the Pacific Northwest and decreases over California. These simulations were used to drive a distributed hydrology model of two snow dominated watersheds, the American River and Middle Fork Flathead, in the Pacific Northwest to obtain more detailed estimates of the sensitivity of water resources to climate change. Results show that as more precipitation falls as rain rather than snow in the warmer climate, there is a 60 percent reduction in snowpack and a significant shift in the seasonal pattern of streamflow in the American River. Much less drastic changes are found in the Middle Fork Flathead where snowpack is only reduced by 18 percent and the seasonal pattern of streamflow remains intact. This study shows that the impacts of climate change on water resources are highly region specific. Furthermore, under the specific climate change scenario, the impacts are largely driven by the warming trend rather than the precipitation trend, which is small.  相似文献   

12.
13.
The Great Lakes Basin Commission has initiated a Framework Study to assess the present and projected water- and related land-resource problems and demands in the Great Lakes Basin. Poorly defined objectives; incomplete and inconsistent data arrays; unknown air, biota, water, and sediment interactions; and multiple planning considerations for interconnected, large lake systems hinder objective planning. To incorporate mathematical modeling as a planning tool for the Great Lakes, a two-phase program, comprising a feasibility and design study followed by contracted and in-house modeling, data assembly, and plan development, has been initiated. The models will be used to identify sensitivities of the lakes to planning and management alternatives, insufficiencies in the data base, and inadequately understood ecosystem interactions. For the first time objective testing of resource-utilization plans to identify potential conflicts will provide a rational and cost-effective approach to Great Lakes management. Because disciplines will be interrelated, the long-term effects of planning alternatives and their impacts on neighboring lakes and states can be evaluated. Testing of the consequences of environmental accidents and increased pollution levels can be evaluated, and risks to the resource determined. Examples are cited to demonstrate the use of such planning tools.  相似文献   

14.
The estimates for geological CO2 storage capacity worldwide vary, but it is generally believed that the capacity in saline aquifers will be sufficient for the amounts of CO2 that will need to be stored. The effort required to select and qualify a geological storage site for safe storage will, however, be significant and storage capacity may be a limited resource regionally. Both from a economic and resource management perspective it is therefore important that potential storage sites are exploited to their full potential.In static capacity estimates, where the maximum stored amount of CO2 is given as a fraction of the formation pore volume, typically arrive at efficiency factors in the range of a few per cents. Recent work has shown that when the dynamic behaviour of the injected CO2 is taken into account, the efficiency factor will be reduced because of the increase in pore pressure in the region around the injection well(s). The increase in pore pressure will propagate much further than the CO2. The EU directive on geological CO2 storage specifically addresses the restriction that will apply when different storage sites are interacting due to pressure communication. Consequently, the pore pressure increase at the boundary of the storage license area will be an important limiting factor for the amount of CO2 that can be injected.One obvious method to control the pore pressure is to produce water from the aquifer at some distance from the CO2 injection wells. This paper discusses results from simulations of CO2 injection in two aquifers on the Norwegian Continental Shelf; the Johansen aquifer and the southern part of the Utsira aquifer. These aquifers are candidates for injection of CO2 shipped out via pipeline from the Norwegian West Coast. The injected amounts of CO2 over a period of 50 years are 0.518 Gtonne for the Johansen aquifer and 1.04 Gtonne for the Utsira aquifer.Several design options for the injection operations are investigated: Injection of CO2 without water production; injection into several wells to distribute the injected fluids and reduce the local pressure increase around each injection well; and injection with simultaneous production of water from one or more wells. The boundaries of the aquifer formations are assumed closed in all simulations. The possible consequences of other types of boundary conditions (semi-closed or open) are briefly discussed.  相似文献   

15.
Ecosystem‐based management of the Laurentian Great Lakes, which spans both the United States and Canada, is hampered by the lack of consistent binational watersheds for the entire Basin. Using comparable data sources and consistent methods, we developed spatially equivalent watershed boundaries for the binational extent of the Basin to create the Great Lakes Hydrography Dataset (GLHD). The GLHD consists of 5,589 watersheds for the entire Basin, covering a total area of approximately 547,967 km2, or about twice the 247,003 km2 surface water area of the Great Lakes. The GLHD improves upon existing watershed efforts by delineating watersheds for the entire Basin using consistent methods; enhancing the precision of watershed delineation using recently developed flow direction grids that have been hydrologically enforced and vetted by provincial and federal water resource agencies; and increasing the accuracy of watershed boundaries by enforcing embayments, delineating watersheds on islands, and delineating watersheds for all tributaries draining to connecting channels. In addition, the GLHD is packaged in a publically available geodatabase that includes synthetic stream networks, reach catchments, watershed boundaries, a broad set of attribute data for each tributary, and metadata documenting methodology. The GLHD provides a common set of watersheds and associated hydrography data for the Basin that will enhance binational efforts to protect and restore the Great Lakes.  相似文献   

16.
London and New York have often been hailed for their sustainable planning practices. However, when one focuses on the entire city region, there is ever-increasing car-dependent development. This paper focuses on the exurban region of the two cities investigating transport-created CO2 emissions. The research is based on the analysis of data of the National Travel Surveys of Great Britain and the USA through a quantification of personal travel and a top-down estimation of CO2 emissions. It is the exurban region that accounts for the vast majority of CO2 emissions: 77% for London and 87% for New York. In the wider region for both cities there is a policy vacuum and dearth of regional planning mechanisms to deliver policies to reduce CO2 emissions. The paper argues that transport needs to be planned at the city-regional scale.  相似文献   

17.
The International Energy Agency Energy Technologies Perspectives (ETP) model is used to assess the prospects for carbon abatement options, including carbon capture and storage, up to 2050. Three main scenarios are considered: a Baseline scenario with current energy policies, an accelerated technology scenario that seeks to return energy-related CO2 emissions in 2050 to their level in 2005, and a scenario for which CO2 emissions are reduced at 50% of current levels by 2050. To reach these emissions reduction targets, annual global CO2 emissions in the year 2050 must be reduced by 35 GtCO2 to 48 GtCO2 compared to the Baseline scenario. The analysis presented here shows that a broad portfolio of emissions reducing technologies will need to be deployed across all economic sectors of the global economy to reach these targets. Carbon dioxide capture and storage (CCS) is one of the suite of technologies employed across the globe to reach these targets. CCS adoption occurs in many aspects of the global economy and accounts for 14–19% of all emissions reductions. The total amount of CO2 captured and stored in deep geologic reservoirs up to 2050 ranges between 5.1 GtCO2 and 10.4 GtCO2 in these two climate policy scenarios. Up to 2030, more than half of total CCS deployment takes place in OECD countries. After 2035, emerging economies account for more than half of total CCS use. This paper also demonstrates that as the climate policy becomes more stringent it will be necessary for CCS to deploy more extensively in many different industries outside of the electric power sector which often receives the most attention in discussions of CCS's role in addressing climate change.  相似文献   

18.
This paper summarizes the spectrum of options that can be employed during the initial design and construction of pulverized coal (PC), and integrated gasification and combined cycle (IGCC) plants to reduce the capital costs and energy losses associated with retrofitting for CO2 capture at some later time in the future. It also estimates lifetime (40 year) net present value (NPV) costs of plants with differing levels of pre-investment for CO2 capture under a wide range of CO2 price scenarios. Three scenarios are evaluated—a baseline supercritical PC plant, a baseline IGCC plant and an IGCC plant with pre-investment for capture. This analysis evaluates each technology option under a range of CO2 price scenarios and determines the optimum year of retrofit, if any. The results of the analysis show that a baseline PC plant is the most economical choice under low CO2 prices, and IGCC plants are preferable at higher CO2 prices (e.g., an initial price of about $22/t CO2 starting in 2015 and growing at 2%/year). Little difference is seen in the lifetime NPV costs between the IGCC plants with and without pre-investment for CO2 capture. This paper also examines the impact of technology choice on lifetime CO2 emissions. The difference in lifetime emissions become significant only under mid-estimate CO2 price scenarios (roughly between $20 and 40/t CO2) where IGCC plants will retrofit sooner than a PC plant.  相似文献   

19.
食物生产不仅依赖水资源,同时产生大量二氧化碳排放,这种资源环境影响存在于食物系统整个产业链。为促进食物系统节水降碳,本文构建了包含5大类共23种具体食物部门的混合生命周期评价模型,对各类食物系统的完全水资源消耗和二氧化碳排放进行了核算与比较。结果表明:①不同食物的水资源消耗和二氧化碳排放差异明显,动物性食物的平均水资源消耗和二氧化碳排放强度分别为植物性食物的1.9 ~ 15.0倍和1.9 ~ 2.7倍;②食物系统直接和间接水资源消耗占比较为接近,但二氧化碳排放主要源自上游产业链的间接排放,占比高达80.9%;③食物系统间接水资源消耗主要来自农业部门,而间接碳排放主要来自电力生产和供应业、基础化工原料制造业、非金属矿产品行业和交通运输业;④从营养元素供给看,动物性食物提供蛋白质和脂肪的资源环境影响高于植物性食物,蔬菜和主食分别在提供维生素C和碳水化合物上具有最小的环境成本。基于本文结果,食物系统节水应主要提高生产环节用水效率,而降碳则主要依靠上游产业减排,特别是发电和化肥生产等行业的协同节水减碳潜力。同时,本文结果也可为未来基于环境影响制定膳食指南提供数据支撑。  相似文献   

20.
ABSTRACT: This paper reports on the current assessment of climate impacts on water resources, including aquatic ecosystems, agricultural demands, and water management, in the U.S. Great Plains. Climate change in the region may have profound effects on agricultural users, aquatic ecosystems, and urban and industrial users alike. In the central Great Plains Region, the potential impacts of climate changes include changes in winter snowfall and snow-melt, growing season rainfall amounts and intensities, minimum winter temperature, and summer time average temperature. Specifically, results from general circulation models indicate that both annual average temperatures and total annual precipitation will increase over the region. However, the seasonal patterns are not uniform. The combined effect of these changes in weather patterns and average seasonal climate will affect numerous sectors critical to the economic, social and ecological welfare of this region. Research is needed to better address the current competition among the water needs of agriculture, urban and industrial uses, and natural ecosystems, and then to look at potential changes. These diverse demands on water needs in this region compound the difficulty in managing water use and projecting the impact of climate changes among the various critical sectors in this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号