首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Methods for assessing human health risks and establishing water quality criteria under the Clean Water Act are based on the assumption that fish accumulation of dioxin is correlated with the dissolved phase of the dioxin in the water column by a water-to-fish predictive factor called a bioconcentration factor. However, dioxin does not remain dissolved in the water column to any significant degree, but sorbs to organic matter in the water column and sediment. Under Toxic Substances Control Act regulations, dioxin's hydrophobicity is recognised, and fish dioxin levels are predicted with a solids-to-fish factor. These two different predictive methods can result in extremely variable predictions of fish contaminant levels. A methodology for establishing criteria under the Clean Water Act, which considers fish uptake of sorbed hydrophobic compounds by way of ingestion of contaminated sediment, is offered as an alternative to the methods used today.  相似文献   

2.
Most polychlorinated naphthalones (PCN) accumulate rapidly according to their hydrophobicity. The uptake and ellmination rate constants are comparable to those of chlorinated benzenes and biphenyls.For most PCN-congeners the resulting bioaccumulation factors show an increase with increasing hydrophobicity. For higher Kd,oct-values (>105) however, no further increase of Kc is observed (Kc. max. = 3.5.104).For the two hepta- and the octachloronaphthalenes no detectable concentrations are found in the fishes, although no restricted blo-availability could be expected. Based on these observations and on data obtained from the literature. a loss of membrane permeation is suggested for hydrophobic molecules with widths over 9.5 Å.In addition a membrane permeation model, as part of the accumulation process of hydrophobic chemicals. Is proposed, which is based on diffusion and partition processes.  相似文献   

3.
This is the second of a two-part series describing the sorption kinetics of hydrophobic organic chemicals. Part I “The Use of First-Order Kinetic Multi-Compartment Models” is published in issue 1 of this journal, pp. 21–28. Sorption kinetics of chlorinated benzenes from a natural lake sediment have been investigated in gas-purge desorption experiments. Biphasic desorption curves, with an initial “fast” part and a subsequent “slow” part, were found for all tested chlorobenzenes. From these results first-order sorption uptake and desorption rate constants were calculated with a two-sediment compartment model, which is presented in the first paper. In three sets of experiments the sorption uptake period and sediment/water ratio were varied. Rate constants are not influenced by these experimental conditions, which supports the partitioning concept for the sorption of hydrophobic organic chemicals in sediments.  相似文献   

4.
The dissolution potency of hydrophobic resin acids (RAs), retene and wood sterols from sediments was studied. These wood extractives and their metabolites are sorbed from pulp and paper mill effluents to downstream sediments. With harmful components like these, sediments can pose a hazard to the aquatic environment. Therefore, sediment elutriates with water were produced under variable conditions (agitation rate and efficiency, time), and concentrations of the dissoluted compounds were analyzed. Both naturally contaminated field sediments and artificially spiked sediments were studied. By vigorous agitation RAs can be released fast from the sediment matrix and equilibrium reached within 3 days. Compared to RAs, desorption of retene from lake sediment was slower and did not completely reach equilibrium in 23 days. Sterols spiked to pristine sediment with a 33-day contact time desorbed faster than those associated authentically with industrial sediment of from a contaminated lake. Simulating the water turbulence adjacent to a sediment surface by low and high rate of agitation in the laboratory, an increase in the mixing rate after 43-day elutriation suddenly released a high amount of wood sterols. The results indicate wide variation between hazardous chemicals in their tendency to dissolution from sediment solids. Erosion and hydrology adjacent to the sediment surface, as well as risks from dredging activities of sediments, may expose lake biota to bioactive chemicals.  相似文献   

5.
Traditionally, regulatory approaches to the bioaccumulation of hydrophobic organic chemicals (HOCs) have emphasized the direct accumulation of these chemicals from solution across biological membranes, leading to the development of the bioconcentration factor as a measure of direct uptake of freely dissolved HOCs. However, an often larger fraction of the total amount of many HOCs in the water column is not freely dissolved, but is partitioned among suspended sediments and particulate matter in the water column. Partitioned HOCs are available for accumulation by organisms ingesting the contaminated particulate matter. The net accumulation of HOCs from water through consumption and direct uptake of dissolved HOC is termed bioaccumulation, quantified using a bioaccumulation factor. In order to develop recommendations designed to close the gap between current knowledge concerning bioaccumulation and regulations, the Institute of Evaluating Health Risks organized a working conference, 'The Bioaccumulation of Hydrophobic Organic Chemicals by Aquatic Organisms'. This paper reflects the view of workshop participants that the bioaccumulation paradigm can be used in a number of practical applications.  相似文献   

6.
The rates of uptake and elimination of 2,4,5 tri- and 3,3′,4,4′-tetrachlorodiphenylether in fish after aqueous exposure are comparable to those of similarly substituted chlorobiphenyls. Mass balance data suggest that 2,4,5- trichlorobiphenyl and 2,4,5- trichlorodiphenylether are metabolized with rates approximately twice as high as the rates of elimination of the parent compounds.The bioconcentration factors of the 3,3′,4,4′-tetrachloro- biphenyl and 3,3′,4,4′- tetrachlorodiphenyl ether are only determined by the hydrophobic nature of these chemicals and are not influenced by metabolism. Congener specific uptake and elimination processes as have been reported for chlorinated dibenzo-p-dioxins and dibenzofurans does not seem to be important for chlorinated biphenyls and diphenylethers.  相似文献   

7.
Barry G. Oliver 《Chemosphere》1985,14(8):1087-1106
The desorption of 20 chlorinated organics from sediments has been studied using a nitrogen purge/Tenax trap system for separating the “dissolved” and “sorbed” fractions in sediment/water slurries. The desorption partition coefficient, KD, was found to decrease with increasing temperature and suspended sediment concentration. While some differences in KD and desorption rates were observed for the study chemicals, considering their wide range of physical/chemical properties such as KOW, these changes were small. Desorption half-lives averaged about 60d at 4°C, 40d at 20°C and 10d at 40°C under continuous gaseous purging. Estimates of the loadings of chemicals via desorption from bottom sediments in Lake Ontario are compared to loadings of these chemicals to the lake from the Niagara River.  相似文献   

8.
D. Freitag  L. Ballhorn  H. Geyer  F. Korte 《Chemosphere》1985,14(10):1589-1616
The concept of “Environmental Hazard Profile” developed at this institute has been tested with 100 14C-labelled organic compounds. Concentration factors in activated sludge, in algae and fish were determined. The microbial degradation of the chemicals to CO2 in activated sludge and the decomposition to CO2 under artificial light were determined. Ranking of compounds is given in the order of falling concentration factors and accumulation in rats respectively, and decreasing rates of decomposition. Relationship between chemical structure and accumulative and degradative behaviours is demonstrated using some selected groups of chemicals, such as benzenes, phenols, biphenyls and polyaromatic hydrocarbons. Correlations between the octanol/water partition coefficient, concentration factors and rates of decomposition could be established. Evaluation of test compounds was possible using hazard profiles obtained by the sum of single test results.  相似文献   

9.
Wang B  Xue M  Lv Y  Yang Y  Zhong J  Su Y  Wang R  Shen G  Wang X  Tao S 《Chemosphere》2011,83(11):1461-1466
Oral ingestion of contaminated soil is an important pathway of human exposure to hydrophobic organic contaminants (HOCs), particularly for children in developing countries. The mobilization potential of various contaminants from ingested soil is often characterized using an in vitro gastrointestinal model, based on the quantities of contaminants remaining in digestive fluid after digestion and separation. Recently, it was experimentally demonstrated that a large fraction of mobilized contaminants sorbed on the digested residue could be released if the dissolved fraction was removed by intestinal absorption. This hypothesis was further tested in this study. Soil spiked with dichlorodiphenyltrichloroethane and its metabolites (DDXs) and polycyclic aromatic hydrocarbons (PAHs) was digested using an in vitro gastrointestinal model. A human colon carcinoma cell line (Caco-2) was cultured in digestive fluid with or without soil residue (pre-equilibrated with the soil) for 2 h. A large proportion of the contaminants (37-68%) was sorbed on the digested residue. Without this residue, 66 ± 13% of DDXs and 73 ± 14% of PAHs dissolved in the fluid, as means and standard deviations, were absorbed by the cell monolayer after exposure. With both digestive fluid and residue, the sorbed fraction of PAHs and DDXs decreased by 38-92%, while the ratios of the cellular to the dissolved concentrations were 2.7-2.8 times higher than those without the residue. This supported the hypothesis that the cell absorption of dissolved HOCs induces desorption of the sorbed fraction from digestive residue, and the desorbed HOCs can be absorbed as well.  相似文献   

10.
Bioaccumulation kinetics of five di-, tri- and tetrachlorobiphenyls from water and food were studied in laboratory experiments with goldfish (Carassius auratus). First order rate constants for uptake from water and clearance were determined after simultaneous administration of the five compounds in constant concentration, and were related to bioconcentration factors obtained in a static fish-water equilibration system. Biomagnification by retention of the PCB's from food was studied in a separate experiment.The difference in clearance rates for the chlorobiphenyls is the main reason for the different bioconcentration and biomagnification factors.Absorption efficiencies from water and food are higher than 40%. Clearance half lives vary from 10 days for 2,5-dichlorobiphenyl to 60 days for 2,3′,4′5-tetrachlorobiphenyl, which is correlalated with the decreasing aqueous solubilities of the compounds. Bioconcentration factors are between 0.4 × 106 and 1.5 × 106, biomagnification factors between 0.2 and 1.7, based on extractable lipids. Substitution of chlorine in the position para to the phenyl-phenyl bond influences hydrophobicity and bioaccumulation of the PCB's more strongly than substitution in ortho position.A kinetic model is developed which accounts for the influence of the lipid content of the fish on the clearance rate of a chemical. Reproducible determination of the bioconcentration potential of environmental chemicals is possible by use of an “internal bioaccumulation standard” in a kinetic test system. Food chain accumulation in fish is likely to be an important process only for persistent chemicals with extremely low water solubility.  相似文献   

11.
Boving TB  Zhang W 《Chemosphere》2004,54(7):831-839
Roadway runoff derived polynuclear aromatic hydrocarbons (PAHs) impact the quality of surface and ground water. Inexpensive aspen wood fibers have been investigated as a means to remove dissolved PAH under laboratory conditions. Our isotherm experiments demonstrated that the uptake of naphthalene, fluorene, anthracene, and pyrene required up to 12.5 days to reach equilibrium. Aspen wood-water sorption coefficients, Kww, were linearly correlated to octanol-water partition coefficients and the molecular weight of the studied PAH compounds. The correlation between Kww and molecular weight was the most significant. Column experiments were carried out to study the sorption and desorption of fluorene, anthracene, and pyrene under dynamic conditions. The results indicate linear sorption, but non-linear desorption behavior. The degree of desorption was inversely correlated to a compound's hydrophobicity. Flow interruption experiments showed that sorption and desorption was rate limited. A mass balance of the sorption and desorption tests indicated that sorptive uptake exceeded desorptive release over a given number of pore volumes. Further, absolute mass-removal efficiency increased with the molecular weight and hydrophobicity of the PAH compound. Batch and column studies demonstrated that aspen wood has the potential to become an effective remedial agent for PAH in stormwater runoff or other PAH contaminated waters.  相似文献   

12.
There is extensive evidence that fish from waters with polychlorinated biphenyls (PCB)-contaminated sediments accumulate PCBs and related chemicals and that people who eat fish from contaminated waters have higher body burdens of PCBs and PCB metabolites than those who do not. PCBs and their metabolites are potentially toxic; thus, it is important to human health to understand the uptake, biotransformation, and elimination of PCBs in fish since these processes determine the extent of accumulation. The intestinal uptake of PCBs present in the diet of fish into fish tissues is a process that is influenced by the lipid composition of the diet. Biotransformation of PCBs in fish, as in mammals, facilitates elimination, although many PCB congeners are recalcitrant to biotransformation in fish and mammals. Sequential biotransformation of PCBs by cytochrome P450 and conjugation pathways is even less efficient in fish than in mammalian species, thus contributing to the retention of PCBs in fish tissues. A very important factor influencing overall PCB disposition in fish is water temperature. Seasonal changes in water temperature produce adaptive physiological and biochemical changes in fish. While uptake of PCBs from the diet is similar in fish acclimated to winter or summer temperatures, there is evidence that elimination of PCBs occurs much more slowly when the fish is acclimated at low temperatures than at warmer temperatures. Research to date suggests that the processes of elimination of PCBs are modulated by several factors in fish including seasonal changes in water temperature. Thus, the body burden of PCBs in fish from a contaminated location is likely to vary with season.  相似文献   

13.
Thermal desorption is widely used for remediation of soil contaminated with volatiles, such as solvents and distillates. In this study, a soil contaminated with semivolatile polychlorinated biphenyls (PCBs) was sampled at an interim storage point for waste PCB transformers and heated to temperatures from 300 to 600 °C in a flow of nitrogen to investigate the effect of temperature and particle size on thermal desorption. Two size fractions were tested: coarse soil of 420–841 μm and fine soil with particles <250 μm. A PCB removal efficiency of 98.0 % was attained after 1 h of thermal treatment at 600 °C. The residual amount of PCBs in this soil decreased with rising thermal treatment temperature while the amount transferred to the gas phase increased up to 550 °C; at 600 °C, destruction of PCBs became more obvious. At low temperature, the thermally treated soil still had a similar PCB homologue distribution as raw soil, indicating thermal desorption as a main mechanism in removal. Dechlorination and decomposition increasingly occurred at high temperature, since shifts in average chlorination level were observed, from 3.34 in the raw soil to 2.75 in soil treated at 600 °C. Fine soil particles showed higher removal efficiency and destruction efficiency than coarse particles, suggesting that desorption from coarse particles is influenced by mass transfer.  相似文献   

14.
The complex and variable composition of natural sediments makes it very difficult to predict the bioavailability and bioaccumulation of sediment-bound contaminants. Several approaches have been proposed to overcome this problem, including an experimental model using artificial particles with or without humic acids as a source of organic matter. For this work, we have applied this experimental model, and also a sample of a natural sediment, to investigate the uptake and bioaccumulation of 2,4-dichlorophenol (2,4-DCP) by Sphaerium corneum. Additionally, the particle-water partition coefficients (K(d)) were calculated. The results showed that the bioaccumulation of 2,4-DCP by clams did not depend solely on the levels of chemical dissolved, but also on the amount sorbed onto the particles and the characteristics and the strength of that binding. This study confirms the value of using artificial particles as a suitable experimental model for assessing the fate of sediment-bound contaminants.  相似文献   

15.
Lin YJ  Liu HC  Hseu ZY  Wu WJ 《Chemosphere》2006,64(4):565-573
This study was designed to investigate the transportation, distribution, and bioaccumulation of PCBs in various environmental media and compartments using an ecologically simulated growth chamber. Spatial and temporal trends of PCBs in the growth chamber were discussed. The release of PCB congeners in soil was affected by the amount of rainfall with the transporting direction moving away from PCBs contaminated point. Two pathways of PCBs accumulation in plants were the uptake of roots and the deposition on shoots/leaves. There were 29 PCB congeners been found in the lalang grass. Higher concentrations of lower chlorinated PCBs were identified than higher chlorinated PCBs because of relatively higher vapor pressure for lower chlorinated congeners. After 10months of monitoring, PCBs were detected in water samples which were contributed by the release of PCBs from leached soil. Analysis of sediment showed that the percentages of low- and mid-chlorinated biphenyls were decreased 1% and 13%, respectively compared to the increase (14%) of high-chlorinated biphenyls. The increase of high-chlorinated PCBs was possibly caused by their low hydrophilicity which had resulted higher adsorption rate in sediment. All of five species of fish had been found significant amount of PCBs accumulation ( summation operatorPCBs: 21.7-102.1 microg/g-lipid). The concentrations of PCBs in fish were varied significantly among species. The range of bioaccumulation factors (BAFs) among different species of fish could be as much as 5 times depending on the consumption habits of fish. The mass balance of PCBs distribution in the growth chamber was also discussed.  相似文献   

16.
Prediction of mixture toxicity with its total hydrophobicity   总被引:5,自引:0,他引:5  
Lin Z  Yu H  Wei D  Wang G  Feng J  Wang L 《Chemosphere》2002,46(2):305-310
Based on the C18 Empore disk/water partition coefficient of a mixture, quantitative structure-activity relationships (QSARs) are presented, which are used to predict the toxicity of mixed halogenated benzenes to P. phosphoreum. The predicted toxicity of 10 other related mixtures based on the QSAR model, agree well with the observed data with r2 = 0.973, SE = 0.113 and F = 287.785 at a level of significance P < 0.0001. The joint effect of these chemicals is simple similar action and the toxicity of the mixtures can be predicted from total hydrophobicity and is independent of hydrophobicity of the components or the ratio of the individual chemicals.  相似文献   

17.
An open flow reactor is used to simulate the dissolution process of mineral aerosol particles in atmospheric water droplets. Data on dissolution kinetic and solubility are provided for the major trace metals from two kinds of matrix: alumino-silicated and carbonaceous sample. The results emphasise that the metals contained in the carbonaceous aerosols are easier dissolved than in the alumino-silicated particles. The released concentrations are not related to the total metal composition or the origin of particles, but are directly associated with the type of liaisons whereby the metals are bound in the solid matrix. Thus, the metals coming from carbonaceous particles are adsorbed impurities or salts and hence are very soluble and with a dissolution hardly dependent on pH, whereas the metals dissolved from alumino-silicated particles are less soluble, notably the ones constitutive of the matrix network (Fe, Mn), and with a dissolution highly influenced by pH. Consequently, in the regions with an anthropogenic influence, the dissolved concentrations of metals found in the atmospheric waters are mainly governed by the elemental carbon content. Moreover, it appears that the dissolution kinetic of metals is not constant as a function of time. The dissolution rates are very rapid in the first 20 min of leaching and then they are stabilised to lower values in comparison to initial rates. By consequence, the total dissolved metal content is provided after the first 20 min of the droplet lifetime. For this reason, the effects of trace metals on the atmospheric aqueous chemistry and as atmospheric wet input to the marine biota are maximal for "aged" droplets.  相似文献   

18.
We investigated the respiratory uptake kinetics of polychlorinated biphenyls (PCBs), organohalogen pesticides (OCPs), polycyclic aromatic hydrocarbons (PAHs), and 2,2′,4,4′-tetrabrominated diphenyl ether (BDE #47) in a marine benthic fish, Pseudopleuronectes yokohamae. The respiratory uptake efficiencies (EW) of the chemicals, of which there have been no reports for the majority of persistent organic pollutants (POPs), were obtained by measuring the respiratory uptake rate constants (k1) and the oxygen consumption rates of fish. Fish were exposed to water in which these chemicals were dissolved at environmentally relevant concentrations for 28 d, followed by 168 d of depuration in clean seawater. The k1 and EW values for 99 compounds were obtained, and they ranged from 2000 to 42 000 L kg-lipid−1 d−1 and from 0.060 to 1.3, respectively. The EW values of the chemicals, except for PAHs, tended to increase with increasing values of the log octanol–water partition coefficients (KOW) of the chemicals up to a log KOW of 5. For log KOW in the range 3–5, the EW values in this study were much lower than those in a published study (about one-third). As a result of analysis by a two-phase resistance model, the resistance of transport rates to the lipid phase in this study was lower than was the case in the published study. These findings indicate that the EW predicted by the published study for log KOW in the range 3–5 may differ among fish species and water temperature, and further study is needed.  相似文献   

19.
An equilibrium and recirculation column test for hydrophobic organic chemicals (ER-H test) was used to study the leaching behaviour of chlorophenols (CPs), polychlorinated diphenyl ethers (PCDEs), polychlorinated dibenzofurans (PCDFs) and polychlorinated dibenzo-p-dioxins (PCDDs) from contaminated soil. A 50% increase in the pore water velocity was shown to have little or no effect on the mobility of CPs, PCDEs, PCDFs and PCDDs. The standard deviations of truly dissolved compounds, CPs, were between 19% and 65% between the tests. However, the repeatability of the ER-H test decreased with increases in the hydrophobicity of the studied compounds; the standard deviations for PCDEs, PCDFs and PCDDs ranged from 53% to 110%, 57% to 77% and 110% to 130%, respectively. The influence of colloids on the release of these compounds was also examined. Up to 30% of the CPs in the soil were leached, of which 1-3% were associated with colloids. The PCDEs, PCDFs and PCDDs were found to be preferably associated with the particulate fraction of the leachate, and less than 0.2% of these compounds were mobilised.  相似文献   

20.
The purpose of this work is to present a distributed-domain mathematical model incorporating the primary mass-transfer processes that mediate the transport of immiscible organic liquid constituents in water-saturated, locally heterogeneous porous media. Specifically, the impact of grain/pore-scale heterogeneity on immiscible-liquid dissolution and sorption/desorption is represented in the model by describing the system as comprising a continuous distribution of mass-transfer domains. With this conceptualization, the distributions of the initial dissolution rate coefficient and the sorption/desorption rate coefficient are represented as probability density functions. Several sets of numerical experiments are conducted to examine the effects of heterogeneous dissolution and sorption/desorption on contaminant transport and elution. Four scenarios with different combinations of uniform/heterogeneous rate-limited dissolution and uniform/heterogeneous rate-limited sorption/desorption are evaluated. The results show that both heterogeneous rate-limited sorption/desorption and heterogeneous rate-limited dissolution can significantly increase the time or pore volumes required to elute immiscible-liquid constituents from a contaminated porous medium. However, sorption/desorption has minimal influence on elution behavior until essentially all of the immiscible liquid has been removed. For typical immiscible-liquid constituents that have relatively low sorption, the asymptotic elution tailing produced by heterogeneous rate-limited sorption/desorption begins at effluent concentrations that are several orders of magnitude below the initial steady-state concentrations associated with dissolution of the immiscible liquid. Conversely, the enhanced elution tailing associated with heterogeneous rate-limited dissolution begins at concentrations that are approximately one-tenth of the initial steady-state concentrations. Hence, dissolution may generally control elution behavior of immiscible-liquid constituents in cases wherein grain/pore-scale heterogeneity significantly influences both dissolution and sorption/desorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号