首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Growth and herbivory of heterotrophic dinoflagellates (Gymnodinium sp.) from the Weddell Sea and the Weddell/Scotia Confluence were studied in 1988 in 100-liter microcosms. The microcosms were screened through 200-µm or 20-µm mesh nets and incubated for 12 d at 1 °C under artificial light. Mean cell volume of dinoflagellates was 1 000 to 1 500µm3, and that of their phytoplankton prey 360 to 430µm3. Dinoflagellate growth rate followed a Holling type II functional response, with a maximum growth rate of 0.3 d–1 and half-saturation food concentrations of 1.0µg chlorophylla l–1, 50µg C l–1, or 1 500 cells ml–1. Carbon budgets based on14CO2 assimilation and biomasses of phytoplankton and heterotrophic dinoflagellates suggested a balance between phytoplankton grazing loss and dinoflagellate consumption, assuming a dinoflagellate carbon conversion efficiency of 40%. Applying this to the functional response yielded estimates of maximum ingestion rate (0.8µg Cµg–1 C d–1, or 6 pg C dinoflagellate–1 h–1) and maximum clearance (0.8 to 1.2 × 105 body volumes h–1, or 80 to 120 nl ind.–1 h–1). The microcosm experiments suggested that heterotrophic dinoflagellates may contribute significantly to maintenance of low phytoplankton biomass in the Southern Ocean.  相似文献   

2.
A dual-isotope method was developed to measure grazing rates and food preferences of individual species of heterotrophic dinoflagellates from natural populations, collected from the Slope, Gulf Stream, and Sargasso Sea and from a transect from Iceland to New England, in 1983. The isotope method measures the grazing rates of microzooplankton which cannot be separated in natural populations on the basis of size. Tritiated-thymidine and 14C-bicarbonate were used to label natural heterotrophic and autotrophic food, respectively. Nine oceanic dinoflagellate species in the genera Protoperidinium, Podolampas, and Diplopsalis fed on both heterotrophic and autotrophic food particles with clearance rates of 0.4 to 8.0 l cell-1 h-1, based on 3H incorporation, and 0.0 to 28.3 l cell-1 h-1, based on 14C incorporation. Two dinoflagellate species, Protoperidinium ovatum and Podolampas palmipes, fed only on 3H-labelled food particles. Several species of dinoflagellates fed on bacteria (<1 m) which had been prelabelled with 3H-thymidine. The clearance rates of heterotrophic dinoflagellates and ciliates were similar and within the range of tintinnid ciliate clearance rates reported in the literature. As heterotrophic dinoflagellates and ciliates can have comparable abundances in oceanic waters, we conclude that heterotrophic dinoflagellates may have an equally important impact as microheterotrophic grazers of phytoplankton and bacteria in oceanic waters.Partially supported by a grant from the National Science Foundation, OCE-81-17744  相似文献   

3.
The distribution and structure of heterotrophic protist communities and size-fractionated chlorophyll a were studied during the Korea Deep Ocean Study 98 (KODOS 98) research expedition (July 1998) in the northeast equatorial Pacific Ocean (5–11°N). Areas of convergence and divergence formed at the boundaries of the South Equatorial Current (SEC), North Equatorial Current (NEC), and North Equatorial Counter Current (NECC) during the expedition. Water column physicochemical characteristics significantly influenced the size structure of heterotrophic protist communities. Intense vertical mixing and high nutrient and chlorophyll a concentrations characterized SEC and NECC areas, which were affected by converging and diverging water masses, respectively. Nanophytoplankton dominated in SEC and NECC areas; both areas also had relatively high heterotrophic protist biomasses (average 743 µg C m–2). NEC areas were characterized by a stratified vertical structure, low nutrient and chlorophyll a concentrations, and picophytoplankton dominance. The heterotrophic protist biomass in NEC areas averaged 414 µg C m–2; nanoprotists (<20 µm) dominated the community. The nanoprotist biomass comprised 49–54% of the total heterotrophic protist biomass in SEC/NECC areas and 67–72% in NEC areas. The biomass of heterotrophic protists was higher in SEC/NECC areas than in NEC areas, but the relative importance of nanoprotists was greater in NEC areas than in SEC/NECC areas. Heterotrophic dinoflagellates were dominant components of the <20 µm and >20 µm size classes in both water columns. The biomass of heterotrophic protists significantly correlated with the net-, nano-, and picophytoplankton biomass in SEC/NECC areas and with the nano- and picophytoplankton biomass in NEC areas. Heterotrophic protists and phytoplankton also showed strong positive correlation in the study area. The size structure of the phytoplankton biomass coincided with that of heterotrophic protists; the heterotrophic protist biomass positively correlated with the protists prey source. These relationships suggest that the community structure of heterotrophic protists and the microbial food web depended on size classes within the phytoplankton biomass. Microzooplankton grazing and phytoplankton growth rates were higher in SEC/NECC areas than in NEC areas. In contrast, the potential primary production grazed by microzooplankton was relatively high in NEC areas (127.3%) compared with SEC/NECC areas (94.6%). Our results indicate that the relative importance and size structure of heterotrophic protists might vary according to two distinct water column structures.Communicated by T. Ikeda, Hakodate  相似文献   

4.
The zoeal larvae of brachyuran crabs must feed soon after hatching on a diet that includes large micro- and mesozooplankton in order to satisfy nutritional requirements. However, newly hatched larvae have been shown to ingest a variety of dinoflagellates, perhaps using microbial carbon sources to sustain them until they encounter more favored prey. Ingestion of dinoflagellates by larval crabs has been documented previously under conditions in which the larvae were exposed to algae provided in monoculture or in defined mixtures of cells. We report here on experiments conducted on the hatching stage of five crab species to determine if ingestion of dinoflagellates occurred when they were provided in combination with Artemia sp. nauplii or after a period of feeding on mesozooplankton. Quantitative measurements of chl a in the larval guts provided evidence of ingestion of algal cells. Active ingestion of the dinoflagellate Prorocentrum micans at specified intervals during an extended feeding period was determined on larvae of two crab species using fluorescently labeled cells provided for brief periods at prescribed time intervals. Stage 1 larvae of four of the five crab species ingested dinoflagellates when they were provided in combination with nauplii and larvae of all five species ingested cells after feeding solely on nauplii for 24 h. Ingestion of algal cells was first evident in the larval guts after 6 h of feeding at both low (200 cell ml−1) and high (1,000 cells ml−1) prey densities. Higher prey densities resulted in higher gut chl a. Larvae continuously exposed to dinoflagellates actively ingested cells at every 3 h interval tested over a 36 h period. Results confirm previous studies that larvae will ingest dinoflagellates even when they are encountered in a mixed prey field or when having previously fed. Ingestion of cells may occur on a continual basis over time.  相似文献   

5.
The metabolite exchange in alga–invertebrate symbioses has been the subject of extensive research. A central question is how the biomass of the algal endosymbionts is maintained within defined limits under a given set of environmental conditions despite their tremendous growth potential. Whether algal growth is actively regulated by the animal cells is still an open question. We experimentally evaluated the effect of inorganic nutrient supply and host-animal nutritional status on the biomass composition, growth and cell-cycle kinetics of the endosymbiotic dinoflagellate Symbiodinium pulchrorum (Trench) in the sea anemone Aiptasia pulchella. Dinoflagellates in anemones starved for 14?d exhibited lower growth rates, chlorophyll content and higher C:N ratios than in anemones fed Artemia sp. (San Francisco brand #65034) nauplii every 2 d, indicating N-limitation of the algae during starvation of the host animal. Manipulation of the dissolved inorganic nutrient supply through ammonium and phosphate additions induced a rapid recovery (half time, t ½~ 2?d) in the C:N ratio of the dinoflagellate cells to levels characteristic of N-sufficient cells. The mitotic index and population growth rate of the dinoflagellate symbionts subjected to this enrichment did not recover to the levels exhibited in fed associations. Flow cytometric analysis of dinoflagellate cell size and DNA content revealed that the duration of the G1 phase (first peak of DNA content: 70 to 100 relative fluorescence units, rfu) of their cell cycle lengthened dramatically in the symbiotic state, and that the majority of algal biomass increase occurred during this phase. Covariate analysis of dinoflagellate cell size and DNA-content distributions indicated that the symbiotic state is associated with a nutrient-independent constraint on cell progression from G1 through the S phase (intermediate DNA content: 101 to 139?rfu). This analysis suggests that the host-cell environment may set the upper limit on the rate of dinoflagellate cell-cycle progression and thereby coordinate the relative growth rates of the autotrophic and heterotrophic partners in this symbiotic association.  相似文献   

6.
In this work we studied the trophic ecology and feeding impact of the cladoceran Penilia avirostris and the cyclopoid copepod Oithona nana, the two dominant zooplankters in the summer communities of the coastal NW Mediterranean, on the naturally occurring microbial communities. In order to ascertain carbon surplus for growth and reproduction and the contribution to carbon and nitrogen recycling of these two species, we also determined their basal metabolism and excretion rates. The experiments conducted during summers 2002, 2003, and 2004 indicate that P. avirostris grazed mostly upon small flagellates, dinoflagellates, and diatoms, whereas O. nana had a narrower prey range, selecting motile organisms such as ciliates and occasionally dinoflagellates. The grazing impact of both species accounted, on average, for <10% of the standing stock of the microbial groups considered. In spite of the oligotrophic conditions, the feeding activity of P. avirostris is in general sufficient to compensate basal metabolism and allows a surplus for growth and reproduction. This was not the case for O. nana, its daily rations being often lower than the carbon basal demands. Regarding excretion rates, both species presented different N:P excretion ratios, the ones of O. nana falling within values typical for copepods, whereas the absence of detectable phosphorus excretion by P. avirostris implied an unbalance recycling with respect to typical Redfield ratio composition of marine seston.  相似文献   

7.
Concentrations of dissolved inorganic nitrogen compounds above the pycnocline in the Oslofjord are very low in the summer, with turnover times of the inorganic N pools of no more than a few hours. To investigate the possibility that continued phytoplankton growth in the summer depends on ammonium excretion by microzooplankton, rates of NH 4 + regeneration and assimilation were measured by a 15N isotope dilution method. Daytime regeneration rates at 0–2 m depth were 0–28% of the calculated assimilation rates at ambient NH 4 + concentrations. Regeneration was faster during a dinoflagellate bloom in August than in mixed diatom-dinoflagellate blooms in June and September. Most of the NH 4 + appeared to be produced by juvenile copepods, rotifers, tintinnids, and heterotrophic dinoflagellates in the size fraction 45–200 m.  相似文献   

8.
In situ grazing rates for the mixotrophic dinoflagellate Gymnodinium sanguineum Hirasaka feeding on nanociliate populations of Chesapeake Bay were determined in June and October of 1990 using a gut clearance/gut fullness approach. Recently ingested prey were digested beyond the point of recognition at a rate of 23% h-1. Estimates of in situ ingestion and clearance ranged from 0 to 0.06 prey dinoflagellate-1 h-1 and 0 to 5.8 l dinoflagellate-1 h-1, respectively, with daily removal of ciliate biomass representing 6 to 67% of the 20-m oligotrich standing stock. Daily consumption of ciliate biomass by G. sanguineum averaged 2.5% of body carbon and 4.0% of body nitrogen with maximal values of 11.6 and 18.5%, respectively. Ingestion of ciliates may help balance nitrogen requirements for G. sanguineum and give this species an advantage over purely photosynthetic dinoflagellates in nitrogen limited environments. By preying on ciliates, these dinoflagellates reverse the normal flow of material from primary producer to consumer and thereby influence trophodynamics of the microbial food web in Chesapeake Bay.  相似文献   

9.
The planktonic copepod Calanus finmarchicus is a dominant member of the zooplankton community in the lower St. Lawrence Estuary in eastern Canada. Blooms of the toxic marine dinoflagellate Alexandrium excavatum which produces high cellular levels of paralytic shellfish poisoning (PSP) toxins, occur during the period of high C. finmarchicus production in summer in this region. To study the feeding behaviour of C. finmarchicus in the presence of Alexandrium spp., experiments were conducted in which female adult copepods collected from the St. Lawrence Estuary between May and September 1991 were exposed under controlled conditions to two toxic isolates of A. excavatum (Pr18b and Pr11f) from the estuary and to a non-toxic control (PLY 173) of a closely related species, A. tamarense isolated from the Tamar Estuary, Plymouth, U.K. Clearance rates on non-toxic A. tamarense cells averaged 5.5 ml ind-1 h-1 but were nearzero with either toxic isolate. When presented with a mixture of A. excavatum and the non-toxic diatom Thalassiosira weissflogii in varying proportions, C. finmarchicus fed upon the diatom but avoided the toxic dinoflagellate. Although feeding rates on A. excavatum were very low, toxin analysis by high-performance liquid chromatography with fluorescence detection (HPLC-FD) revealed that the PSP toxins were accumulated in copepods exposed to toxigenic dinoflagellates.The toxin composition in copepods was similar to that of the toxic dinoflagellate, but not necessarily identical, particularly after short-term (2-h) exposure, when relatively elevated levels of N-sulfocarbamoyl toxins were detected. The evidence suggests that C. finmarchicus ingests toxic dinoflagellate cells, either mistakenly or during exploratory bouts of feeding, and accumulates PSP toxins in its gut system and perhaps in other tissues.  相似文献   

10.
We tested whether ingesting toxic algae by heterotrophic prey affected their nutritional value to crab larval predators, using toxic algal strains that are either ingested directly by larval crabs or rejected by them. Ingestion of toxic strains of the dinoflagellates Alexandrium andersoni and A. fundyense by the rotifer Brachionus plicatilis was confirmed. Rotifers having ingested either algal type for five days were fed to freshly hatched larvae of three crab species, with larval survival and stage durations determined. For both algal/rotifer treatments in all three crab species, larvae fed algae directly died during the first zoeal stage, while those fed rotifers that had been fed either algal strain survived to the experiment’s end (zoeal stage 3). Survival was lower, and stage duration longer, for larvae fed rotifers cultured on toxic algae when compared to those fed non-toxic algae. The role of toxic algae in the planktonic food web may be influenced by its direct or indirect ingestion by larval crabs.  相似文献   

11.
Food selection by young larvae of the gulf menhaden (Brevoortia patronus) was studied in the laboratory at Beaufort, North Carolina (USA) in 1982 and 1983; this species is especially interesting, since the larvae began feeding on phytoplankton as well as microzooplankton. When dinoflagellates (Prorocentrum micans), tintinnids (Favella sp.), and N1 nauplii of a copepod (Acartia tonsa) were presented to laboratory-reared, larval menhaden (3.9 to 4.2 mm notochord length), the fish larvae ate dinoflagellates and tintinnids, but not copepod nauplii. Larvae showed significant (P<0.001) selection for the tintinnids. Given the same mixture of food items, larger larvae (6.4 mm notochord length) ate copepod nauplii as well as the other food organisms. These feeding responses are consistent with larval feeding in the northern Gulf of Mexico, where gulf menhaden larvae between 3 and 5 mm in notochord length frequently ate large numbers of dinoflagellates (mostly P. micans and P. compressum) and tintinnids (mostly Favella sp.), but did not eat copepod nauplii. As larvae grew, copepod nauplii and other food organisms became important, while dinoflagellates and tintinnids became relatively less important in the diet. Since the tintinnids and nauplii used in the laboratory feeding experiments were similar in size as well as carbon and nitrogen contents, the feeding selectivity and dietary ontogeny that we observed were likely due to a combination of prey capturability and larval fish maturation and learning.Contribution No. 5575 of the Woods Hole Oceanographic Institution  相似文献   

12.
The nutritional pattern for heterotrophic growth of Nitzschia angularis var. affinis (Grun.) Perag. is more complex than for other diatom species studied previously. This species grew slowly in the dark in the presence of single amino acids, either glutamate or alanine; other amino acids when supplied singly were not used as substrates. Carbon from glutamate was converted to cell carbon with an efficiency of 43%. Glutamine was inhibitory both in the light and in the dark, and aspartate inhibited heterotrophic growth on glutamate. Glucose and tryptone supplied singly did not support heterotrophic growth, but when combined, together they allowed for rapid growth of N. angularis (generation time of 16 h). Glucose in combination with glutamate, alanine, aspartate, or asparagine (but not with any other amino acids) also supported growth in the dark, at a rate considerably more rapid than with glutamate alone. In the presence of excess glucose and limiting concentrations of glutamate, approximately 50% of the cell carbon for heterotrophic growth came from glucose, while in combination with tryptone about 25% of the cell carbon came from glucose. Amino acids were taken up by cells grown either photoautrophically or in the dark in the presence or absence of organic substrates; uptake rates were some-what higher for dark-grown than for light-grown cells. Glucose was taken up only by dark-grown cells; induction of a glucose uptake system in the dark required the presence of glutamate but not of glucose. The rates of uptake of glutamate and glucose by cells incubated in the dark with glutamate were sufficiently high to account for the observed rates of growth on these substrates in the dark. The uptake systems of N. angularis have relatively high affinities for glucose (K s =0.03 mM) and glutamate (K s =0.02 mM).Contribution No. 890 from the Department of Oceanography, University of Washington, Seattle, Washington 98195, USA.  相似文献   

13.
The burglar alarm theory of bioluminescence was investigated by determining predation rates of a nocturnal teleost predator,Porichthys notatus, on nonluminescent kelp mysids illuminated by dinoflagellate flashes, between the fall and spring of 1989/1990. Mysids (Holmesimysis costata) were placed in aquaria containing varying concentrations (0 to 40 cells/ml) of the dinoflagellatePyrocystis fusiformis and a single midshipman fish. Controls usedP. fusiformis during their luminescence-inhibited day phase. Mysid swimming movements readily stimulated dinoflagellate luminescence. Flashes and prey strikes were observed simultaneously by image-intensifying and infrared video cameras on a splitscreen monitor. Predation rates increased at dinoflagellate concentrations of 3 to 15 cells/ml and decreased below controls at levels>20 cells/ml. Videotape analysis showed that at low concentrations (2 to 5 cells/ml), strike success rates exceeded 75% if prey were previously illuminated by a flash, but dropped below 50% at higher cell densities. Increased predation was attributed to luminescence revealing prey position. The decrease at higher concentrations was considered to be due to greater flash frequency providing a more diffuse and confusing target. The study demonstrates the effects of secondary luminescence on zooplankton predation at normally encountered dinoflagellate concentrations.  相似文献   

14.
Hilbish  T. J. 《Marine Biology》1985,85(2):163-169
Feeding rates, patterns of prey selection, and starvation tolerance were investigated for adult males and females of the cyclopoid copepod Corycaeus anglicus collected from the waters of Friday Harbor, Washington, USA. Selection by C. anglicus was determined largely by prey body-size, but was also affected by species and developmental stage. Small developmental stages of all prey species were fed upon at relatively low rates. The small calanoid species Acartia clausii was increasingly vulnerable to predation by C. anglicus as it progressed through successive developmental stages. Larger prey species, Pseudocalanus sp. and Calanus pacificus, were more vulnerable in intermediate stages, the C3 and N6 stages, respectively. Larger and smaller prey were characteristically attacked at different sites on their bodies; however, attack sites fell within a similar range of body widths, 130 to 170 m. Males of Corycaeus anglicus killed a maximum of 1.4 prey d-1 when feeding on the optimally-sized adult females of Acartia clausii, which are approximately equivalent to its own body length. Males fed at approximately double the rates of females. Despite its small size and apparent lack of metabolic stores, this cyclopoid is highly tolerant of starvation conditions. Median survival time without food is at least 2 wk for both males and females. In its predatory behavior, C. anglicus employs an ambush-type strategy and seems to be adapted for infrequent encounters with relatively large prey.Contribution No. 1412 from the School of Oceanography, University of Washington, Seattle  相似文献   

15.
Predatory feeding of two marine mysids   总被引:3,自引:0,他引:3  
Predatory feeding of the marine mysids Mysidopsis bigelowi and Neomysis americana on several species of co-occurring copepods was examined in laboratory experiments. M. bigelowi exhibited a curvilinear functional response; there was a negative logarithmic relationship between prey density and clearance rates. N. americana also exhibited higher clearance rates at lower prey densities. Increased clearance rates at lower prey densities were probably due to increased swimming speed or reaction distance as hunger increased. This response occurred only when mysids could visually locate prey; in complete darkness clearance rates were significantly lower and independent of prey density. Feeding rates on different prey species were only partially dependent on prey size; prey movement patterns and escape behavior also strongly affected feeding rates. M. bigelowi showed active prey selection when offered a choice of different prey species. Estimates of predation rates of estuarine mysid populations indicate that they could have a significant effect on co-occurring copepod populations.  相似文献   

16.
To determine the general palatability of autotrophic dinoflagellates to newly hatched crab larvae and whether there are taxonomic, predator/prey size relationships, or toxicity components to their ability to discriminate among dinoflagellates, larvae of six species of crabs from two families were fed 16 species/strains of dinoflagellates from three orders. Dinoflagellate cell length ranged from 18 to 50 µm, and toxic and non-toxic species/strains were included. Experiments measuring incidence of prey ingestion, grazing rates on individual constituents of selected prey combinations, and development on one toxic species shown to be readily ingested were conducted between 2000 and 2002. Thirteen of sixteen dinoflagellates were palatable to larvae, with no consistent pattern of prey discrimination based on taxonomic affinity, toxicity, larval hatching season, or predator/prey size relationships. Although the three dinoflagellates not ingested were toxic, three other toxic species/strains were ingested, with accelerated mortality occurring in the one case. Ingestion of non-favored prey occurred only at very low rates when mixed with readily ingested prey, indicating selectivity. Larvae hatching in winter generally ingested dinoflagellates as readily as did zoeae hatched in spring and summer. Newly hatched larvae ingested a wide variety of dinoflagellates, while discriminating among related species. Such discrimination will not always prevent larval ingestion of prey that will result in mortality.Communicated by J.P. Grassle, New Brunswick  相似文献   

17.
The long-distance dispersal of larvae provides important linkages between populations of reef-building corals and is a critical part of coral biology. Some coral planulae have symbiotic dinoflagellates (Symbiodinium spp.) that probably provide energy in addition to the lipids provisioned within the egg. However, our understanding of the influence of symbionts on the energy metabolism and survivorship of planulae remains limited. This study examines the relative roles of symbiotic dinoflagellate photosynthesis and stored lipid content in the survivorship of the developing stages of the corals Pocillopora damicornis and Montipora digitata. We found that survivorship decreased under dark conditions (i.e. no photosynthetic activity) for P. damicornis and M. digitata at 31 and 22 days after release/spawning, respectively. The lipid content of P. damicornis and M. digitata planulae showed a significant decrease, at a higher rate, under dark conditions, when compared with light conditions. When converted to energy equivalents, the available energy provided by the depletion of lipids could account for 41.9 and 84.7% of larval metabolism for P. damicornis (by day 31) and 38.4 and 90.1% for M. digitata (by day 21) under light and dark conditions, respectively. This finding indicates that not all energy requirements of the larvae are met by lipids: energy is also sourced from the photosynthetic activities of the symbiotic dinoflagellates within these larvae, especially under light conditions. In addition, the amounts of three main lipid classes (wax esters, triglycerides, and phospholipids) decreased throughout the experiment in the planulae of both species, with the wax ester content decreasing more rapidly under dark conditions than under light conditions. The observations that the planulae of both species derive considerable amounts of energy from wax esters, and that symbiotic dinoflagellates enable larvae to use their stores at lower rates, suggested that symbiotic dinoflagellates have the potential to extend larval life under light conditions.  相似文献   

18.
Growth and grazing loss rates of naturalPhaeocystis sp. single cells were measured using a seawater dilution technique. Measurements were performed during an intensePhaeocystis sp. bloom in the North Sea between 19 April and 5 May 1988. Experimental results yielded rapid carbon turnover rates. Population growth rates varied from 0.033 to 0.098 h–1, grazing loss rates from 0.037 to 0.174 h–1. From measured growth rates, average doubling rages of 1.3 doublings d–1 were calculated. The growth rates would have resulted in maximum carbon production rates of 146 mg C m–3 d–1. Grazing rates increased in the course of the bloom and exceeded growth rates at the end. Grazing loss was caused primarily by microzooplankton feeding. Ciliates and heterotrophic dinoflagellates were identified as the major potential consumers of single cells ofPhaeocystis sp. at the beginning of the bloom. The grazing impact of larger microzooplankton species appeared to increase during the progressing bloom.  相似文献   

19.
The food and feeding habits of 3 species of gadoid larvae — the cod Gadus morhua Linnaeus, 1758, the whiting Merlangius merlangus (Linnaeus, 1758), and the bib Trisopterus luscus (Linnaeus, 1758), collected in the eastern English Channel and Southern Bight during the spring of 1971 are described. All 3 species began to feed in the yolk-sac stage on diatoms, dinoflagellates and tintinnids, but the principal food was the nauplii and copepodites of calanoid copepods, particularly of Pseudocalanus minutes, but also of Paracalanus parvus, Temora longicornis and Acartia clausii. Pseudocalanus minutus and Paracalanus parvus were eaten mainly early in the season and T. longicornis later when it became more abundant. The larvae discriminated for prey size as growth proceeded. They sometimes took the largest prey available to them, but in general the size of the prey was considerably less than the maximum size which could have been swallowed. Feeding larvae were found at all times of the day, but the incidence of feeding was lowest before dawn. Feeding increased at sunrise, declined until late in the morning, and then increased again to a maximum around sunset. There was evidence of feeding by moonlight, particularly by whiting and bib larvae. There was little difference between the English Channel and Southern Bight in regard to the food eaten.  相似文献   

20.
The dinoflagellate symbionts (zooxanthellae) present in many reef corals aid in the survival of the symbiotic unit in nitrogen deficient tropical waters by providing additional routes of nitrogen uptake and metabolism. The enzymatic pathway of ammonia assimilation from seawater and the re-assimilation of coral ammonium waste by zooxanthellae was studied by examining the affinity of glutamine synthetase for one of its substrates, ammonia. Glutamine synthetase activity was measured in dinoflagellates of the species Symbiodinium microadriaticum found in symbiotic association with various marine coelenterates. Michaelis-Menten kinetics for the substrate ammonia were determined for freshly isolated dinoflagellates from Condylactis gigantea (apparent NH3 Km=33 M) and for cultured dinoflagellates from Zoanthus sociatus (apparent NH3 Km=60 M). On the basis of the low apparent Kms for NH3, it appears that ammonia assimilation by these symbiotic dinoflagellates occurs via the glutamine synthetase/glutamate synthase pathway. Additionally, the uptake of exogenous ammonium by an intact coelenterate-dinoflagellate symbiosis was strongly inhibited by 0.5 mM methionine sulfoximine, and inhibitor of glutamine synthetase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号