首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
张文景  曾庭华 《环境保护》1996,(10):15-17,41
本文讨论了造纸污泥同废水煤浆在采用流化床技术焚烧时的不同的排放特性,主要就NOx、SO2进行了研究,同时在一个Φ100的试验台上对造纸污泥可能形成的HCl,Cl2这类污染物进行了试验,分别给出了NOx和SO2同床温,水分,过量空气系数的依赖关系。  相似文献   

2.
煤燃烧所引起的环境问题日益引起人们的不安,对低污染的燃煤烧技术的研究和开发日益引起人们的重视。增压流化床燃烧联合循环是一种新型燃煤热力发电技术,它具有高效低污染的特殊优点,本文分析了增压流化床燃烧联合循环中NOx、SOx、CO、CO2的形成过程,介绍了在控制增压流化床燃烧联合循环的NOx、SOx、CO、CO2和粉尘排放的最新研究成果。  相似文献   

3.
人口增长胁迫下的全球土地利用变化研究   总被引:49,自引:3,他引:49  
人口和耕地、草地、森林4个因子构成一个理论上以人为中心的全球人地关系系统,在这个系统中,人口总量的变动势必引起耕地、草地和森林面积的数量增减和相互转化。该文构建了一个简单的人-地关系平衡模型,对1970~1995年和未来50年全球人口增长胁迫下土地利用变化进行了分析。结果表明:①全球25年来,在人口增长了546%的情况下,耕地面积和草地面积并没有大幅度增减。维持相对稳定的机制是以扩大灌溉面积和大量投入化肥为标志的农业技术进步使土地生产率提高了639%,从而抵消了人口增长胁迫耕地面积增加、草地和森林面积相应减少的压力。②未来50年当中,人口将增加74%,达到100×10,人均耕地、草场和森林面积将分别减少到低于013hm、034hm和037hm,在此情况下,由于将耕地面积扩大74%不大可能,现有全球土地利用(覆盖)格局能否保持稳定的关键是依靠农业技术进步使耕地生产率提高74%以上。③由于在原有维持土地覆盖变化相对稳定的机制中,扩大灌溉面积和大量投入化肥在未来难以继续发挥作用以提高土地生产率,假定现有耕地面积保持不变,现有耕地生产率水平不变,到2050年,耕地仍能养活比届时地球上预测生存人口还  相似文献   

4.
PrO/γAl2O3等稀土氧化物催化还原SO2的研究   总被引:7,自引:0,他引:7  
进行了负载于氧化铝上的镨,钕,锌,镧,钐等稀土氧化物上,CO,CH3及H2催化还原SO2反应的研究。实验着重考察了Pr-O/γ-Al2O3上CO2催化还在SO2的反应,测定了不同反应温度,不同反应物配比及不同空速下的活性,同时对Pr-o/γ-Al2O3催化剂进行了TPD,TG,XRD,XPS表征。结果表明,稀土氧化物具有非常高的CO催化还原SO2反应的活性,在500℃,CO:SO2=2:1,空速比  相似文献   

5.
中国气候变化影响研究概况   总被引:2,自引:0,他引:2  
介绍了目前我国在未来气候变化影响研究方面的概况,气候影响研究采用的方法多为政府间气候变化专业委员会(IPCC) 第二工作组提出的气候变化影响评价方法。未来气候变化影响研究是在大气中CO2 浓度加倍,或气温、降水变化的情景下,进行未来农业、林业、水资源、生态环境以及海平面上升等方面的潜在影响研究,其中有模型研究、实验室研究、宏观研究和适应对策研究等。这些研究采用的未来气候情景多为GCM 模型预测的气候情景  相似文献   

6.
本文着重介绍了超高压脉冲电晕放电分解CO2,SO4和NOx技术--脉冲活化一次全部分解CO2、SO2和NOx有害气体。应用超高压脉冲在ns内使气体全部成为活化分子。在定向作用下,分解成无害单一原子气体分子O2和N2气,单质固体微粒S和C。在以Ni为母体的B种催化剂下,大幅度降低了活化能。在180℃的常压条件下分解率均在75%~90%。  相似文献   

7.
于冬夏两季监测了哈尔滨,长春,锦西部队营区大气中SO2,CO,NOx,TSP及苯并芘浓度。结果表明,3市上述5项指标夏季均在标准以下;冬季长春市NOx,TSP超过标准,5项指标冬季均高于夏季;1日内SO2,NOx,TSP变化规律为早>晚>中,CO为早<中<晚;不同纬度城市浓度变化规律不明显。以沈阳大气质量指数评价夏季长春营区属“中污染”,合为“轻污染”,冬季3市均为“中污染”。  相似文献   

8.
造纸污泥与废水煤浆流化床焚烧排放特性   总被引:1,自引:0,他引:1  
本文讨论了造纸污泥同废水煤浆在采用流化床技术焚烧时的不同的排放特性,主要就NOx、SO2进行了研究,同时在一个Φ100的试验台上对造纸污泥可能形成的HCl、Cl2这类污染物进行了试验,分别给出了NOx与SO2同床温、水分、过量空气系数的依赖关系。试验证明,造纸污泥同废水煤浆的排放规律具有一定的相似性,但燃料特性仍是影响排放规律的重要因素之一。  相似文献   

9.
烟气中SO2/NOx同时吸收催化脱除的研究   总被引:11,自引:2,他引:9  
根据同时脱硫脱硝的要求,对以CUO为主要活性组分催化剂的制备和反应过程进行研究,活性测试的结果表明,催化剂的最佳活化温度和活化时间分别为450℃和2h。当反应温度为400℃,空间速度为2×10^4h^-1以及CuSO4/CuO摩尔比和Cu/S分别保持在1.46和0.83以上时,SO2和NOx的脱除率可达90%以上。  相似文献   

10.
上海市大气中NMHC,NOx,O3和SO2变化规律   总被引:7,自引:0,他引:7  
通过对上海市大气中光化学主要污染物如NMHC、NOx、O3及SO2等的日变化监测,发现NOx、O3的日浓度变化与气象条件密切相关,高浓度O3多出现在晴朗少云,气温较高的大气条件下同步监测发现,O3与NOx呈负相关,相关系数r=-0.785;dmj SO2gn NMHCe tve vb r ghd sh ud ,sh ud txi ovt r=  相似文献   

11.
Climate change is projected to lead to shift of forest types leading to irreversible damage to forests by rendering several species extinct and potentially affecting the livelihoods of local communities and the economy. Approximately 47% and 42% of tropical dry deciduous grids are projected to undergo shifts under A2 and B2 SRES scenarios respectively, as opposed to less than 16% grids comprising of tropical wet evergreen forests. Similarly, the tropical thorny scrub forest is projected to undergo shifts in majority of forested grids under A2 (more than 80%) as well as B2 scenarios (50% of grids). Thus the forest managers and policymakers need to adapt to the ecological as well as the socio-economic impacts of climate change. This requires formulation of effective forest management policies and practices, incorporating climate concerns into long-term forest policy and management plans. India has formulated a large number of innovative and progressive forest policies but a mechanism to ensure effective implementation of these policies is needed. Additional policies and practices may be needed to address the impacts of climate change. This paper discusses an approach and steps involved in the development of an adaptation framework as well as policies, strategies and practices needed for mainstreaming adaptation to cope with projected climate change. Further, the existing barriers which may affect proactive adaptation planning given the scale, accuracy and uncertainty associated with assessing climate change impacts are presented.  相似文献   

12.
We make an assessment of the impact of projected climate change on forest ecosystems in India. This assessment is based on climate projections of the Regional Climate Model of the Hadley Centre (HadRM3) and the dynamic global vegetation model IBIS for A2 and B2 scenarios. According to the model projections, 39% of forest grids are likely to undergo vegetation type change under the A2 scenario and 34% under the B2 scenario by the end of this century. However, in many forest dominant states such as Chattisgarh, Karnataka and Andhra Pradesh up to 73%, 67% and 62% of forested grids are projected to undergo change. Net Primary Productivity (NPP) is projected to increase by 68.8% and 51.2% under the A2 and B2 scenarios, respectively, and soil organic carbon (SOC) by 37.5% for A2 and 30.2% for B2 scenario. Based on the dynamic global vegetation modeling, we present a forest vulnerability index for India which is based on the observed datasets of forest density, forest biodiversity as well as model predicted vegetation type shift estimates for forested grids. The vulnerability index suggests that upper Himalayas, northern and central parts of Western Ghats and parts of central India are most vulnerable to projected impacts of climate change, while Northeastern forests are more resilient. Thus our study points to the need for developing and implementing adaptation strategies to reduce vulnerability of forests to projected climate change.  相似文献   

13.
Prediction of future forest carbon (C) stocks as influenced by forest management and climate is a crucial issue in the search for strategies to mitigate and adapt to global change. It is hard to quantify the long-term effect of specific forest practices on C stocks due to the high number of processes affected by forest management. This work aims to quantify how forest management impacts C stocks in Mediterranean mountain forests based on 25 combinations of site index, tree species composition and thinning intensity in three different climate scenarios using the CO2Fix v.3.2 model Masera et al. (Ecol Modell 164:177–199, 2003). The study area is an ecotonal zone located in Central Spain, and the tree species are Scots pine (Pinus sylvestris L.) and Pyrenean oak (Quercus pyrenaica Willd.). Our results show a strong effect of tree species composition and a negligible effect of thinning intensity. Mixed stands have the highest total stand C stocks: 100 % and 15 % more than pure oak and pine stands respectively, and are here suggested as a feasible and effective mitigation option. Climate change induced a net C loss compared to control scenarios, when reduction in tree growth is taken into account. Mixed stands showed the lowest reduction in forest C stocks due to climate change, indicating that mixed stands are also a valid adaptation strategy. Thus converting from pure to mixed forests would enhance C sequestration under both current and future climate conditions.  相似文献   

14.
Due to large scale afforestation programs and forest conservation legislations, India’s total forest area seems to have stabilized or even increased. In spite of such efforts, forest fragmentation and degradation continues, with forests being subject to increased pressure due to anthropogenic factors. Such fragmentation and degradation is leading to the forest cover to change from very dense to moderately dense and open forest and 253 km2 of very dense forest has been converted to moderately dense forest, open forest, scrub and non-forest (during 2005–2007). Similarly, there has been a degradation of 4,120 km2 of moderately dense forest to open forest, scrub and non-forest resulting in a net loss of 936 km2 of moderately dense forest. Additionally, 4,335 km2 of open forest have degraded to scrub and non-forest. Coupled with pressure due to anthropogenic factors, climate change is likely to be an added stress on forests. Forest sector programs and policies are major factors that determine the status of forests and potentially resilience to projected impacts of climate change. An attempt is made to review the forest policies and programs and their implications for the status of forests and for vulnerability of forests to projected climate change. The study concludes that forest conservation and development policies and programs need to be oriented to incorporate climate change impacts, vulnerability and adaptation.  相似文献   

15.
Preventing dangerous climate change requires actions on several sectors. Mitigation strategies have focused primarily on energy, because fossil fuels are the main source of global anthropogenic greenhouse gas emissions. Another important sector recently gaining more attention is the forest sector. Deforestation is responsible for approximately one fifth of the global emissions, while growing forests sequester and store significant amounts of carbon. Because energy and forest sectors and climate change are highly interlinked, their interactions need to be analysed in an integrated framework in order to better understand the consequences of different actions and policies, and find the most effective means to reduce emissions. This paper presents a model, which integrates energy use, forests and greenhouse gas emissions and describes the most important linkages between them. The model is applied for the case of Finland, where integrated analyses are of particular importance due to the abundant forest resources, major forest carbon sink and strong linkage with the energy sector. However, the results and their implications are discussed in a broader perspective. The results demonstrate how full integration of all net emissions into climate policy could increase the economic efficiency of climate change mitigation. Our numerical scenarios showed that enhancing forest carbon sinks would be a more cost-efficient mitigation strategy than using forests for bioenergy production, which would imply a lower sink. However, as forest carbon stock projections involve large uncertainties, their full integration to emission targets can introduce new and notable risks for mitigation strategies.  相似文献   

16.
SimulatingsensitivitiesofChangbaiMountainforeststopotentialclimatechange¥YanXiaodong;ZhaoShidong(InstituteofAppliedEcology.Ch...  相似文献   

17.
This paper reviews integrated economic and ecological models that address impacts and adaptation to climate change in the forest sector. Early economic model studies considered forests as one out of many possible impacts of climate change, while ecological model studies tended to limit the economic impacts to fixed price-assumptions. More recent studies include broader representations of both systems, but there are still few studies which can be regarded fully integrated. Full integration of ecological and economic models is needed to address forest management under climate change appropriately. The conclusion so far is that there are vast uncertainties about how climate change affects forests. This is partly due to the limited knowledge about the global implications of the social and economical adaptation to the effects of climate change on forests.  相似文献   

18.
利用1982~2006年的NOAA AVHRR-GIMMS和MODIS 2种数据集的归一化植被指数(NDVI)数据对东北多年冻土区植被NDVI年际动态和空间差异进行分析,并结合气象数据和土地利用/覆被数据分析了植被NDVI对气候变化和土地利用/覆被变化的响应.研究表明,东北多年冻土区植被NDVI值较高,且空间差异明显;森林为该区主要植被类型,NDVI值较高,主要分布于大小兴安岭和伊春地区;草地集中分布于西南部, NDVI值相对较低.东北多年冻土区过去25a间植被生长的变化趋势为:伴随着气温的显著升高和降水量减少,植被NDVI显著下降.较气温而言,降水量是影响植被NDVI的主要因子(r = 0.77, P < 0.01).在气候变化和人类活动的双重作用下,东北多年冻土区植被NDVI在1982~2006年间表现为4个阶段:1982~1990年,植被NDVI虽有小幅波动,但整体上呈持续增加的趋势;1990~1993年,植被NDVI呈迅速下降趋势; 1993~1997年,植被NDVI呈现回升态势,表现出缓慢上升的趋势;1998~2006年,植被NDVI呈现总体下降趋势.不同植被类型表现出不同的NDVI年际变化规律,尤以草地NDVI值波动最大.植被NDVI变化空间异质性显著.气候变化和多年冻土退化影响了东北多年冻土区植被NDVI动态.年均气温升高和年降水量降低影响了植被的生长.从像元尺度来看,研究区植被NDVI与气温和降水均具有较显著的相关性.研究区土地利用/覆被变化的分析结果表明,不同的土地利用类型间的转变对植被NDVI的大小和空间分布产生了重要影响.  相似文献   

19.
Mitigation needs adaptation: Tropical forestry and climate change   总被引:1,自引:0,他引:1  
The relationship between tropical forests and global climate change has so far focused on mitigation, while much less emphasis has been placed on how management activities may help forest ecosystems adapt to this change. This paper discusses how tropical forestry practices can contribute to maintaining or enhancing the adaptive capacity of natural and planted forests to global climate change and considers challenges and opportunities for the integration of tropical forest management in broader climate change adaptation. In addition to the use of reduced impact logging to maintain ecosystem integrity, other approaches may be needed, such as fire prevention and management, as well as specific silvicultural options aimed at facilitating genetic adaptation. In the case of planted forests, the normally higher intensity of management (with respect to natural forest) offers additional opportunities for implementing adaptation measures, at both industrial and smallholder levels. Although the integration in forest management of measures aimed at enhancing adaptation to climate change may not involve substantial additional effort with respect to current practice, little action appears to have been taken to date. Tropical foresters and forest-dependent communities appear not to appreciate the risks posed by climate change and, for those who are aware of them, practical guidance on how to respond is largely non-existent. The extent to which forestry research and national policies will promote and adopt management practices in order to assist production forests adapt to climate change is currently uncertain. Mainstreaming adaptation into national development and planning programs may represent an initial step towards the incorporation of climate change considerations into tropical forestry.  相似文献   

20.
全球气候变化对森林生态系统的影响   总被引:52,自引:1,他引:52  
人类活动所引起的温室效应及由此造成的全球气候变化和对全球生态环境的影响正越来越引起人们的关注。作为全球陆地生态系统一个重要组分的森林对未来气候变化的响应更是人们关注的重点。文中系统地论述了未来气候变化对森林生态系统树种组成、林分结构、分布和生产力的潜在响应,提出了今后需要加强的一些研究领域。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号