首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
COGNIS TERRAMET® soil leaching and Bescorp soil washing systems have been successfully combined to remediate an ammunition test burn area at the Twin Cities Army Ammunition Plant (TCAAP), New Brighton, Minnesota. This cleanup is the first in the country to successfully combine these two technologies, and it offers a permanent solution to heavy metal remediation. Over 20,000 tons of soil were treated in the project. The cleaned soil remained on-site, and the heavy metal contaminants were removed, recovered, and recycled. Eight heavy metals were removed from the contaminated soil achieving the very stringent cleanup criteria of <175 ppm for residual lead and achieving background concentrations for seven other project metals (antimony, cadmium, chromium, copper, mercury, nickel, and silver). Initial contaminant levels were measured as high as 86,000 ppm lead and 100,000 ppm copper, with average concentrations over 1,600 ppm each. In addition, both live and spent ordnance were removed in the soil treatment plant to meet the cleanup criteria. By combining soil washing and leaching, COGNIS and Bescorp were able to assemble a process which effectively treats all the soil fractions so that all soil material can be returned on-site, no wastewater is generated, and the heavy metals are recovered and recycled. No hazardous waste requiring landfill disposal was generated during the entire remedial operation.  相似文献   

2.
有机污染土壤原位化学氧化药剂投加方式的综述   总被引:1,自引:0,他引:1       下载免费PDF全文
原位化学氧化技术是修复有机污染土壤最经济有效的技术之一。药剂的投加与分散技术是原位化学氧化修复技术的核心。药剂投加与分散方式的选择与污染场地的土壤渗透性、特征水平、污染深度、氧化剂性质、修复费用等相关。阐述了直压式注射法、注射井法、土壤置换法和高压-旋喷注射法等药剂投加与分散技术的适用性、控制参数及优缺点等,引用工程实例对药剂投加与分散技术在原位化学氧化修复过程中的应用情况进行了论证。  相似文献   

3.
Thermal remediation of contaminated soils and groundwater by injection of hot air and steam using large‐diameter auger in situ soil mixing effectively remediates volatile and semivolatile organic compounds. This technology removes large amounts of contamination during the early treatment stages, but extended treatment times are needed to achieve high removal percentages. Combining thermal treatment with another technology that can be injected and mixed into the soil, and that continues to operate after removal of the drilling equipment, improves removal efficiency, and reduces cost. Using field‐determined pseudo first‐order removal rates, the cost of the combined remediation of chlorinated volatile organic compounds (CVOCs) by thermal treatment followed by reductive dechlorination by iron powder has been estimated as 57 percent of the cost of thermal treatment alone. This analysis was applied to a case‐study remediation of 48,455 cubic yards, which confirmed the cost estimate of the combined approach and showed over 99.8 percent removal of trichloroethene and other chlorinated VOCs. © 2010 Wiley Periodicals, Inc.  相似文献   

4.
Almost everyone who has been involved in a site remediation project has seen schedules slip and costs escalate due to political pressure from the public or the press. While focusing on remediation technologies and containment techniques to control costs, many organizations have neglected a major cost driver—public opinion. This article examines community relations from the perspective of an organization trying to control costs during a site remediation project. It details the strong correlation between the cost of a site cleanup and the level of public dissatisfaction and provides an organization with specific strategies on how to use proven communications techniques to lower costs. Examination of several case studies is provided, including a study involving a site in which community representatives actively worked to reduce project costs. It is clear that any responsible cleanup must be protective of public health and the environment. But it is becoming increasingly apparent that wise allocation of available resources has a profound effect on the program's ability to ensure public and environmental safety. In many cases, it has been proven that some costly cleanups—for example, involving excavation—sometimes actually increase risk by creating an exposure pathway where none existed before. In turn, such cleanups waste resources that are needed elsewhere. The challenge in dealing with this complicated issue is to help stakeholders understand the true ramifications of the choices that are faced at each site. If these stakeholders feel uninformed, powerless, or excluded from the process, it is likely that they will be unable to enter a productive discussion. The community relations programs outlined in documents such as a Superfund guidance can be helpful in familiarizing the community with site-related issues and with gathering public input. These activities act as a baseline for the programs discussed in this article. However, existing programs are not focused on providing a strategic advantage in reaching cleanup solutions and balancing health and environmental considerations with economic considerations.  相似文献   

5.
This is the first in a series of five articles describing the applicability, performance, and cost of technologies for the remediation of contaminated soil and water at wood preserving sites. Site‐specific treatability studies conducted under the supervision of the United States Environmental Protection Agency (US EPA), National Risk Management Research Laboratory (NRMRL), from 1995 through 1997 constitute much of the basis for the evaluations presented, although data from other treatability studies, literature sources, and actual site remediations have also been included to provide a more comprehensive evaluation of remediation technologies. This article provides an overview of the wood preserving sites studied, including contaminant levels, and a summary of the performance of the technologies evaluated. The subsequent articles discuss the performance of each technology in more detail. Three articles discuss technologies for the treatment of soils, including solidification/stabilization, biological treatment, solvent extraction and soil washing. One article discusses technologies for the treatment of liquids, water and nonaqueous phase liquids (NAPLS), including biological treatment, carbon adsorption, photolytic oxidation, and hydraulic containment. The reader should be aware that other technologies including, but not limited to, incineration, thermal desorption, and base catalyzed dehalogenation, also have application for treating contaminants on wood preserving sites. They are not discussed in these five articles since the focus was to evaluate lesser known and hopefully lower cost approaches. However, the reader should include consideration of these other technologies as part of any evaluation or screening of technologies applicable to remediation of wood preserving sites.  相似文献   

6.
Although vapor extraction systems (VES) certainly help remediate volatile hydrocarbons (e.g., gasoline in unsaturated soils), recent studies have found that much of the related hydrocarbon removal is due to aerobic biodegradation, not simple volatilization. In many cases, more than 50 percent of the hydrocarbon removal by these systems is due to biodegradation. By emphasizing biodegradation and minimizing volatilization, the costs of system operation can be reduced, especially for off-gas treatment. Maximizing biodegradation also supports more efficient site remediation because not only are the volatile hydrocarbons cleaned up, but the less volatile contaminants are also cleaned up—by biodegradation. More complete site cleanups are possible through bioventing, especially when cleanup criteria are related to total petroleum hydrocarbons. This article explores the major environmental conditions that influence biodegradation, analyzes several bioventing case histories, and calculates biodegradation's remedial costs.  相似文献   

7.
Wood preserving facilities have used a variety of compounds, including pentachlorophenol (PCP), creosote, and certain metals, to extend the useful life of wood products. Past operations and waste management practices resulted in soil and water contamination at a portion of the more than 700 wood preserving sites in the United States (EPA, 1997). Many of these sites are currently being addressed under federal, state, or voluntary cleanup programs. The U.S. Environmental Protection Agency (EPA) National Risk Management Research Laboratory (NRMRL) has responded to the need for information aimed at facilitating remediation of wood preserving sites by conducting treatability studies, issuing guidance, and preparing reports. This article presents a practical methodology and computer model for screening the performances and comparing the costs of seven innovative technologies that could be used for the treatment of contaminated soils at user‐specified wood preserving sites. The model incorporates a technology screening function and a cost‐estimating function developed from literature searches and vendor information solicited for this study. This article also provides background information on the derivation of various assumptions and default values used in the model, common contaminants at wood preserving sites, and recent trends in the cleanup of such sites. © 2001 John Wiley & Sons, Inc.  相似文献   

8.
A huge commercial environmental industry, currently estimated at some $130 billion in size in the United States alone, has sprung up to manage and remediate environmental problems. Hundreds of innovative remediation technologies are being developed under EPA's SITE program, which has provided R&D funding for more than 100 new treatment technologies. Despite the obvious demand, numerous regulatory, marketing, technical, and financial barriers have impeded progress in the field of remediation technology development. Developers of remediation technologies are faced with a significant challenge to overcome these barriers and successfully bring a technology to market. This article examines the barriers to technology development and offers strategic planning alternatives for long-term economic success and commercial viability of remediation technologies.  相似文献   

9.
Mechanical blending of contaminated soil with amendments has recently reemerged as an important treatment technology. From its original application using large‐diameter augers in the early 1990s to the current use of rotary drum blenders, soil blending is being used as an alternative to other remediation technologies like amendment injection and soil vapor and groundwater extraction. Shallow (approximately 10 m below ground surface [bgs] or less) soil blending also offers an alternative to excavation and disposal. Soil blending has been used to remediate a site with various contaminants including, but not limited to, chlorinated solvents, petroleum, and metals. The types of soils susceptible to soil blending vary from sands and gravels to silts and clays to fractured rock and combinations of all of these. The types of amendments blended include oxidants, reducing agents, biological enhancements, and stabilizing amendments. Soil blending systems deliver the power to the mixing head to adequately mix the soil and amendment to enhance remediation effectiveness. Since long‐term contamination is often a result of heterogeneously distributed residual contaminant in localized source zones that are difficult to access, the typical aim of soil blending is to homogenize the soil while effectively distributing amendment to these zones made accessible by blending. By effectively homogenizing the soil, however, soil blending will increase the void ratio and disrupt the shear strength and bearing capacity of the soil so an important component of a soil blending technology is proper recovery of these geotechnical parameters. This can be achieved by using well‐known soil improvement techniques such as amending all or a portion of the blended area with Portland cement or lime. Several case studies of soil blending treatments of different contaminants and amendments in various soil types are provided.  相似文献   

10.
The establishment of soil cleanup levels is a primary concern in site remediation projects. Soil cleanup levels provide targets that drive the remediation process from technology selection through closure. Several state regulatory agencies are currently in the process of developing scientifically based soil cleanup standards. The underlying premise in the derivation of such standards is to ensure that the site will not pose a threat to human health and the environment after remediation has been completed. To accomplish this, remediation project managers must consider several contaminant transport pathways. This article presents the salient features of a model named IMPACT, which was developed to assist in the derivation of soil cleanup levels. IMPACT considers the soil-to-groundwater pathway and predicts the cleanup levels in a contaminated soil layer in the vadose zone such that groundwater quality standards are met at any point in the aquifer.  相似文献   

11.
Leaking underground storage tank systems at service stations have resulted in tens of thousands of petroleum releases and associated groundwater chemical plumes often extending hundreds of feet off‐site. Technical and engineering approaches to assess and clean up releases from underground tanks, product lines, and dispensers using technologies such as soil vapor extraction, air sparging, biostimulation, and monitored natural attenuation are well understood and widely published throughout the literature. This article summarizes life‐cycle environmental response costs typically encountered using site‐specific cost estimation or metric‐based cost categories considering the overall complexity of site conditions: (1) simple sites where response actions require smaller scale assessments and/or remediation and have limited or no off‐site impacts; (2) average sites where response actions require larger scale assessments and/or remediation typical of petroleum releases; (3) complex sites where response actions require greater on‐site and/or off‐site remediation efforts; and (4) mega sites where petroleum plumes have impacted public or private water supplies or where petroleum vapors have migrated into occupied buildings. Associated cleanup cost estimates rely upon appropriate combinations of individual work elements and the duration of operation, maintenance, and monitoring activities. These cost estimates can be offset by state reimbursement funds, coverage in purchase agreements, and insurance policies. A case study involving a large service station site portfolio illustrates the range of site complexity and life‐cycle environmental response costs. © 2014 Wiley Periodicals, Inc.  相似文献   

12.
Surfactants and cosolvents are useful for enhancing the apparent solubility of dense nonaqueous‐phase liquid (DNAPL) compounds during surfactant‐enhanced aquifer remediation (SEAR). In situ chemical oxidation (ISCO) with permanganate, persulfate, and catalyzed hydrogen peroxide has proven to be a cost‐effective and viable remediation technology for the treatment of a wide range of organic contaminants. Coupling compatible remedial technologies either concurrently or sequentially in a treatment train is an emerging concept for more effective cleanup of DNAPL‐contaminated sites. Surfactants are effective for DNAPL mass removal but not useful for dissolved plume treatment. ISCO is effective for plume control and treatment but can be less effective in areas where large masses of DNAPL are present. Therefore, coupling SEAR with ISCO is a logical next step for source‐zone treatment. This article provides a critical review of peer‐reviewed scientific literature, nonreviewed professional journals, and conference proceedings where surfactants/cosolvents and oxidants have been utilized, either concurrently or sequentially, for DNAPL mass removal. © 2010 Wiley Periodicals, Inc.  相似文献   

13.
Over decades of economic development, China's industrialization has led to significant environmental issues due to unregulated discharges into air, water, and soil. As cities continue to expand (i.e., urbanization trend) and awareness/concerns about environmental pollution rises, many industrial facilities along the edge of or within the city boundaries have been relocated or closed. This urbanization trend leaves behind idled and abandoned land that is contaminated from the former industrial activities and unregulated discharges. China released its first nationwide soil quality survey in April 2014, and the survey suggests that soil conditions in China represent a significant challenge. China has encouraged local engineering firms to demonstrate soil treatment technologies through pilot‐scale studies, but the outcomes of many demonstrations have not been promising due to the lack of remediation experience and underdeveloped technical guidelines that are needed to guide the remediation processes. During the past decade, some local soil remediation experience has been established, but it is limited for certain technologies that address their primary contaminants of concern: heavy metals and persistent organic pollutants. In 2014, national technical guidelines were published regarding environmental investigation, risk assessment, monitoring, and remediation; however, regulations and funding systems are still underdeveloped. Thus, the remediation processes that should maximize economic and environmental benefits are not streamlined. This article provides an overview of the latest regulatory developments, remediation technologies applied, technology trends, and market opportunities in China. The provided information aims to allow international remediation practitioners to better understand and appreciate this unique and emerging remediation market, which is growing fast, and to highlight the importance of developing a sustainable model that not only provides for cleanup of the environment but also supports economic development. ©2015 Wiley Periodicals, Inc.  相似文献   

14.
Although standard methods of monitoring the progress of in-situ remediation may provide general results for the most permeable zones affected by soil vapor extraction or bioventing, they are essentially unsuccessful at providing information on the degree of heterogeneity within the remediation zone and on the existence of “hot spots.” Data are presented that suggest that monitoring the concentrations of fixed and biogenic gases and measuring soil permeability on a small-scale basis may circumvent the common problems associated with assessing the progress of in-situ remediation. The costs of these monitoring techniques are minor compared to those of designing and operating an in-situ remediation system, and may save additional time and costs by identifying problem areas early in the cleanup process.  相似文献   

15.
In 1995 the University of Tennessee's Waste Management Research and Education Institute and Canon Inc. began an analysis of the extent to which remediation firms and research centers have implemented bioremediation strategies, particularly for the cleanup of trichloroethylene (TCE) in soil and groundwater. The research involved the mailing of surveys to a select, representative group of environmental professionals involved in TCE cleanup activities. The survey was divided into two parts. Part I gathered cost information for TCE cleanup, using both bioremediation and “conventional” cleanup technologies. Part II asked the survey recipients to relate their opinions on the use of nonindigenous microorganisms for bioremediation, especially their assessment of the effectiveness, reliability, safety, and predictability of this approach. The results of this survey are discussed in this article.  相似文献   

16.
Because remediation techniques and technologies are themselves generally viewed as contaminant source by hazardous waste laws and regulations, permits are required to use them, even if it is only to contain or remove a site's principal contaminants. Referring to such major environmental laws as the Clean Air Act, the Clean Water Act, RCRA, TSCA, and CERCLA, this article outlines the steps needed to translate cleanup projects into the appropriate permits.  相似文献   

17.
The Army National Guard initiated an Innovative Technology Evaluation (ITE) Program in March 2000 to study potential remedial technologies for the cleanup of explosives‐contaminated soil and groundwater at the Camp Edwards site on the Massachusetts Military Reservation. The soil technologies chosen for the ITE program were: soil washing, chemical oxidation, chemical reduction, thermal desorption/destruction (LTTD), bioslurry, composting, and solid phase bioremediation. The technologies were evaluated based on their ability to treat both washed and untreated soil. A major factor considered was the ability to degrade explosives, such as RDX, found in particulate form in the soils. The heterogeneous nature of explosives in soils dictates that the preferred technology must be able to treat explosives in all forms, including the particulate form. Groundwater remediation technologies considered include: in situ cometabolic reduction, two forms of in situ chemical oxidation, Fenton‐like oxidation and potassium permanganate. This article presents the results of each of the remedial technologies evaluated and discusses which technologies met the established ITE performance goals. © 2003 Wiley Periodicals, Inc.  相似文献   

18.
Remediation of recalcitrant compounds at sites with high concentrations of volatile organic compounds (VOCs) or nonaqueous‐phase liquids (NAPLs) can present significant technical and financial (long‐term) risk for stakeholders. Until recently, however, sustainability has not been included as a significant factor to be considered in the feasibility and risk evaluation for remediation technologies. The authors present a framework for which sustainability can be incorporated into the remediation selection criteria focusing specifically on off‐gas treatment selection for soil vapor extraction (SVE) remediation technology. SVE is generally considered an old and standard approach to in situ remediation of soils at a contaminated site. The focus on off‐gas treatment technology selection in this article allows for more in‐depth analysis of the feasibility evaluation process and how sustainable practices might influence the process. SVE is more commonly employed for recovery of VOCs from soils than other technologies and generally employs granular activated carbon (GAC), catalytic, or thermal oxidation, or an emerging alternative technology known as cryogenic‐compression and condensation combined with regenerative adsorption (C3–Technology). Of particular challenge to the off‐gas treatment selection process is the potential variety of chemical constituents and concentrations changing over time. Guidance is available regarding selection of off‐gas treatment technology (Air Force Center for Environmental Excellence, 1996; U.S. Environmental Protection Agency, 2006). However, there are common shortcomings of off‐gas treatment technology guidance and applications; practitioners have rarely considered sustainability and environmental impact of off‐gas treatment technology selection. This evaluation includes consideration of environmental sustainability in the selection of off‐gas treatment technologies and a region‐specific (Los Angeles, California) cost per pound and time of remediation comparisons between GAC, thermal oxidation, and C3–Technology. © 2008 Wiley Periodicals, Inc.  相似文献   

19.
This paper presents a summary of the comparative analysis of two polychlorinated biphenyl (PCB) detoxification technologies that were evaluated in pilot scale equipment. Two treatment technologies, base catalyzed decomposition (BCD) and gas phase chemical reduction, treated materials removed from the PCB landfill in Warren County, North Carolina. There has been a remarkable amount of public opposition to this landfill. Very stringent performance criteria for soil cleanup of PCBs and dioxins and for air emissions from the treatment equipment were used, along with a number of other factors to evaluate the two technologies. The BCD technology was selected as the best performing one for this project.  相似文献   

20.
Directionally drilled horizontal wells offer the opportunity for significant cost savings and technical advantages over alternative trenched well and vertical well soil and groundwater remediation systems in many cases. The magnitude of the cost savings is a function of the remediation technology deployed and the values placed on the reduction of site impacts, dramatic reduction in the time required to achieve site remediation goals and requirements, the ability of horizontal well remediation to easily treat normally recalcitrant contaminants such as MTBE, and the ability to drill under paved areas, operating plants, residential areas, landfills, lagoons, waterways, ponds, basins, and other areas that are normally difficult or impossible to access with conventional drilling or trenching methods. In addition to improvements in site access capabilities, horizontal wells have been found capable of addressing contaminants that vertical wells do not readily treat, even with the same remediation technology deployed, especially if air‐based remediation technologies are deployed. With biosparging, for example, greater treatment capabilities of horizontal wells over vertical wells are attributed to greater oxygen flux over a broader area, a larger treatment zone, and extremely prolonged residence of groundwater contaminants in the aerobic treatment area, typically months or years. This article describes the use of directionally drilled horizontal wells for application of a variety of treatment technologies and includes costs of various options with a detailed comparison of biosparging options. © 2002 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号