首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tack AJ  Roslin T 《Ecology》2011,92(8):1594-1604
Recent studies suggest that intraspecific genetic diversity in one species may leave a substantial imprint on the surrounding community and ecosystem. Here, we test the hypothesis that genetic diversity within host-plant patches translates into consistent and ecologically important changes in the associated herbivore community. More specifically, we use potted, grafted oak saplings to construct 41 patches of four saplings each, with one, two, or four tree genotypes represented among the host plants. These patches were divided among two common gardens. Focusing first at the level of individual trees, we assess how tree-specific genotypic identity, patch-level genetic diversity, garden-level environmental variation, and their interactions affect the structure of the herbivore community. At the level of host-plant patches, we analyze whether the joint responses of herbivore species to environmental variation and genetic diversity result in differences in species diversity among tree quartets. Strikingly, both species-specific abundances and species diversity varied substantially among host-tree genotypes, among common gardens, and among specific locations within individual gardens. In contrast, the genetic diversity of the patch left a detectable imprint on local abundances of only two herbivore taxa. In both cases, the effect of genetic diversity was inconsistent among gardens and among host-plant genotypes. While the insect community differed significantly among individual host-plant genotypes, there were no interactive effects of the number of different genotypes within the patch. Overall, additive effects of intraspecific genetic diversity of the host plant explained a similar or lower proportion (7-10%) of variation in herbivore species diversity than did variation among common gardens. Combined with the few previous studies published to date, our study suggests that the impact of host-plant genetic diversity on the herbivore community can range from none to nonadditive, is generally low, and reaches its most pronounced impact at small spatial scales. Overall, our findings strengthen the emerging view that the impacts of genetic diversity are system, scale, and context dependent. As the next step in community genetics, we should then start asking not only whether genetic diversity matters, but under what circumstances its imprint is accentuated.  相似文献   

2.
Human activities are important drivers of marine ecosystem functioning. However, separating the synergistic effects of fishing and environmental variability on the prey base of nontarget predators is difficult, often because prey availability estimates on appropriate scales are lacking. Understanding how prey abundance at different spatial scales links to population change can help integrate the needs of nontarget predators into fisheries management by defining ecologically relevant areas for spatial protection. We investigated the local population response (number of breeders) of the Bank Cormorant (Phalacrocorax neglectus), a range‐restricted endangered seabird, to the availability of its prey, the heavily fished west coast rock lobster (Jasus lalandii). Using Bayesian state‐space modeled cormorant counts at 3 colonies, 22 years of fisheries‐independent data on local lobster abundance, and generalized additive modeling, we determined the spatial scale pertinent to these relationships in areas with different lobster availability. Cormorant numbers responded positively to lobster availability in the regions with intermediate and high abundance but not where regime shifts and fishing pressure had depleted lobster stocks. The relationships were strongest when lobsters 20–30 km offshore of the colony were considered, a distance greater than the Bank Cormorant's foraging range when breeding, and may have been influenced by prey availability for nonbreeding birds, prey switching, or prey ecology. Our results highlight the importance of considering the scale of ecological relationships in marine spatial planning and suggest that designing spatial protection around focal species can benefit marine predators across their full life cycle. We propose the precautionary implementation of small‐scale marine protected areas, followed by robust assessment and adaptive‐management, to confirm population‐level benefits for the cormorants, their prey, and the wider ecosystem, without negative impacts on local fisheries.  相似文献   

3.
Martinson HM  Fagan WF  Denno RF 《Ecology》2012,93(8):1779-1786
Because patch size and connectivity may strongly impact the assemblage of species that occur on a patch, the types of food-web interactions that occur among those species may also depend on spatial structure. Here, we identify whether food-web interactions among salt-marsh-inhabiting arthropods vary with patch size and connectivity, and how such changes in trophic structure might feed back to influence the spatial distribution of prey. In a multiyear survey, patch-restricted predators exhibited steeper occupancy-patch-size relationships than herbivores, and species' critical patch sizes were correlated with overall rarity. As a result, the presence of food-web modules depended strongly on patch size: large and well-connected patches supported complex food-web modules, but only the simplest modules involving the most abundant species were found on small patches. Habitat-generalist spiders dominated on small patches, and predation pressure from such species may contribute to the observed lower densities of mesopredators on small patches. Overall, patch size and connectivity influenced the types of modules present on a patch through differential loss of rare, patch-restricted predators, but predation by generalist predators may be a key mechanism influencing the spatial structure of certain prey species.  相似文献   

4.
5.
The Great Barrier Reef is an iconic ecosystem, known globally for its rich marine biodiversity that includes many thousands of tropical breeding seabirds. Despite indications of localized declines in some seabird species from as early as the mid-1990s, trends in seabird populations across the reef have never been quantified. With a long history of human impact and ongoing environmental change, seabirds are likely sentinels in this important ecosystem. Using 4 decades of monitoring data, we estimated site-specific trends for 9 seabird species from 32 islands and cays across the reef. Trends varied markedly among species and sites, but probable declines occurred at 45% of the 86 species-by-site combinations analyzed compared with increases at 14%. For 5 species, we combined site-specific trends into a multisite trend in scaled abundance, which revealed probable declines of Common Noddy (Anous stolidus), Sooty Tern (Onychoprion fuscatus), and Masked Booby (Sula dactylatra), but no long-term changes in the 2 most widely distributed species, Greater Crested Tern (Thalasseus bergii) and Brown Booby (Sula leucogaster). For Brown Booby, long-term stability largely resulted from increases at a single large colony on East Fairfax Island that offset declines at most other sites. Although growth of the Brown Booby population on East Fairfax points to the likely success of habitat restoration on the island, it also highlights a general vulnerability wherein large numbers of some species are concentrated at a small number of key sites. Identifying drivers of variation in population change across species and sites while ensuring long-term protection of key sites will be essential to securing the future of seabirds on the reef.  相似文献   

6.
Facilitation and competition are ecological interactions that are crucial for the organization of plant communities. Facilitative interactions tend to occur among distantly related species, while the strength of competition tends to decrease with phylogenetic distance. The balance between both types of interactions will ultimately determine the specific composition of multispecies associations. Although multispecies patches are the arena in which coexistence develops among different phylogenetic groups within communities, the specific processes that occur across life stages have not been explored. Here we study how different species, in composing discrete patches in central Mexico, exert competitive or facilitative effects on seeds and seedlings. We relate these interactions to phylogenetic relationships among nurse species and beneficiary species, and among members of the patches. Survivorship and growth rates of the columnar cactus Neobuxbaumia mezcalaensis were highly positively related to increasing phylogenetic distance to different nurse species, to the presence of related species in patches, and to mean phylogenetic distances to the rest of the species in the patch. Each of these three elements influenced N. mezcalaensis differently, with different nurse species varying substantially in their early effects on emergence, and the nearest relatives and species composition of patches varying in their late effects on survival and growth. Our results emphasize that evolutionary relationships among co-occurring species in vegetation clumps exert direct and indirect effects on plants, affecting individual performance and species coexistence.  相似文献   

7.
Kitzberger T  Chaneton EJ  Caccia F 《Ecology》2007,88(10):2541-2554
Resource pulses often involve extraordinary increases in prey availability that "swamp" consumers and reverberate through indirect interactions affecting other community members. We developed a model that predicts predator-mediated indirect effects induced by an epidemic prey on co-occurring prey types differing in relative profitability/preference and validated our model by examining current-season and delayed effects of a bamboo mass seeding event on seed survival of canopy tree species in mixed Patagonian forests. The model shows that predator foraging behavior, prey profitability, and the scale of prey swamping influence the character and strength of short-term indirect effects on various alternative prey. When in large prey-swamped patches, nonselective predators decrease predation on all prey types. Selective predators, instead, only benefit prey of similar quality to the swamping species, while very low or high preference prey remain unaffected. Negative indirect effects (apparent competition) may override such positive effects (apparent mutualism), especially for highly preferred prey, when prey-swamped patches are small enough to allow predator aggregation and/or predators show a reproductive numerical response to elevated food supply. Seed predation patterns during bamboo (Chusquea culeou) masting were consistent with predicted short-term indirect effects mediated by a selective predator foraging in large prey-swamped patches. Bamboo seeds and similarly-sized Austrocedrus chilensis (ciprés) and Nothofagus obliqua (roble) seeds suffered lower predation in bamboo flowered than nonflowered patches. Predation rates on the small-seeded Nothofagus dombeyi (coihue) and the large-seeded Nothofagus alpina (rauli) were independent of bamboo flowering. Indirect positive effects were transient; three months after bamboo seeding, granivores preyed heavily upon all seed types, irrespective of patch flowering condition. Moreover, one year after bamboo seeding, predation rates on the most preferred seed (rauli) was higher in flowered than in nonflowered patches. Despite rapid predator numerical responses, short-term positive effects can still influence community recruitment dynamics because surviving seeds may find refuge beneath the litter produced by bamboo dieback. Together, our theoretical analysis and experiments indicate that indirect effects experienced by alternative prey during and after prey-swamping episodes need not be universal but can change across a prey quality spectrum, and they critically depend on predator-foraging rules and the spatial scale of swamping.  相似文献   

8.
Pelagic seabirds obtain food from oceans where the availability of their prey changes rapidly both seasonally and spatially. Here, we investigated changes in the trophic habits of the critically endangered Balearic shearwater (Puffinus mauretanicus) through the breeding season and tested for dietary differences between sexes and age classes. We analysed δ15N and δ13C values in blood of adults during the pre-incubation, incubation and chick-rearing periods and of their chicks. Using a two-isotope mixing model, we estimated dietary contributions based on isotope values from potential prey species which included small pelagic species available naturally and demersal fish species available only from trawling discards. Balearic shearwaters showed clear isotopic and dietary variation through the breeding season. During pre-incubation, breeding adults appeared to exploit demersal fish, whereas during the incubation and chick-rearing period, they fed mainly on pelagic anchovies (Engraulis encrasicolus) and pilchards (Sardina pilchardus). Similarly, chicks were fed mainly with anchovies, a resource with a high energetic value. This variation in the dietary habits of adult shearwaters during the breeding season was probably related to both natural and fishery-induced seasonal changes in the availability of potential prey species within their main feeding grounds. However, changes in the nutritional requirements of the shearwaters could also play an important role. Indeed, diet differed between sexes during pre-incubation: females fed less on trawling discards and more on small pelagic fish than males. This sexual segregation in diet could be the consequence of higher nutritional requirements of females during this period. Our study reveals the differential importance of both trawling discards and small pelagic fish species for a pelagic seabird depending on the breeding period and illustrates the importance of considering the entire breeding season when making inferences about the importance of specific prey in seabird dietary studies.  相似文献   

9.
Seabirds are the most threatened group of marine animals; 29% of species are at some risk of extinction. Significant threats to seabirds occur on islands where they breed, but in many cases, effective island conservation can mitigate these threats. To guide island‐based seabird conservation actions, we identified all islands with extant or extirpated populations of the 98 globally threatened seabird species, as recognized on the International Union for Conservation of Nature Red List, and quantified the presence of threatening invasive species, protected areas, and human populations. We matched these results with island attributes to highlight feasible island conservation opportunities. We identified 1362 threatened breeding seabird populations on 968 islands. On 803 (83%) of these islands, we identified threatening invasive species (20%), incomplete protected area coverage (23%), or both (40%). Most islands with threatened seabirds are amenable to island‐wide conservation action because they are small (57% were <1 km2), uninhabited (74%), and occur in high‐ or middle‐income countries (96%). Collectively these attributes make islands with threatened seabirds a rare opportunity for effective conservation at scale. La Biogeografía de Aves Marinas Amenazadas Globalmente y las Oportunidades de Conservación en Islas  相似文献   

10.
Ecosystem change often affects the structure of aquatic communities thereby regulating how much and by what pathways energy and critical nutrients flow through food webs. The availability of energy and essential nutrients to top predators such as seabirds that rely on resources near the water's surface will be affected by changes in pelagic prey abundance. Here, we present results from analysis of a 25-year data set documenting dietary change in a predatory seabird from the Laurentian Great Lakes. We reveal significant declines in trophic position and alterations in energy and nutrient flow over time. Temporal changes in seabird diet tracked decreases in pelagic prey fish abundance. As pelagic prey abundance declined, birds consumed less aquatic prey and more terrestrial food. This pattern was consistent across all five large lake ecosystems. Declines in prey fish abundance may have primarily been the result of predation by stocked piscivorous fishes, but other lake-specific factors were likely also important. Natural resource management activities can have unintended consequences for nontarget ecosystem components. Reductions in pelagic prey abundance have reduced the capacity of the Great Lakes to support the energetic requirements of surface-feeding seabirds. In an environment characterized by increasingly limited pelagic fish resources, they are being offered a Hobsonian choice: switch to less nutritious terrestrial prey or go hungry.  相似文献   

11.
Globally, seabirds are vulnerable to anthropogenic threats both at sea and on land. Seabirds typically nest colonially and show strong fidelity to natal colonies, and such colonies on low-lying islands may be threatened by sea-level rise. We used French Frigate Shoals, the largest atoll in the Hawaiian Archipelago, as a case study to explore the population dynamics of seabird colonies and the potential effects sea-level rise may have on these rookeries. We compiled historic observations, a 30-year time series of seabird population abundance, lidar-derived elevations, and aerial imagery of all the islands of French Frigate Shoals. To estimate the population dynamics of 8 species of breeding seabirds on Tern Island from 1980 to 2009, we used a Gompertz model with a Bayesian approach to infer population growth rates, density dependence, process variation, and observation error. All species increased in abundance, in a pattern that provided evidence of density dependence. Great Frigatebirds (Fregata minor), Masked Boobies (Sula dactylatra), Red-tailed Tropicbirds (Phaethon rubricauda), Spectacled Terns (Onychoprion lunatus), and White Terns (Gygis alba) are likely at carrying capacity. Density dependence may exacerbate the effects of sea-level rise on seabirds because populations near carrying capacity on an island will be more negatively affected than populations with room for growth. We projected 12% of French Frigate Shoals will be inundated if sea level rises 1 m and 28% if sea level rises 2 m. Spectacled Terns and shrub-nesting species are especially vulnerable to sea-level rise, but seawalls and habitat restoration may mitigate the effects of sea-level rise. Losses of seabird nesting habitat may be substantial in the Hawaiian Islands by 2100 if sea levels rise 2 m. Restoration of higher-elevation seabird colonies represent a more enduring conservation solution for Pacific seabirds.  相似文献   

12.
Altermatt F  Holyoak M 《Ecology》2012,93(5):1125-1133
Natural ecosystems often show highly productive habitats that are clustered in space. Environmental disturbances are also often nonrandomly distributed in space and are either intrinsically linked to habitat quality or independent in occurrence. Theoretical studies predict that configuration and aggregation of habitat patch quality and disturbances can affect metacommunity composition and diversity, but experimental evidence is largely lacking. In a metacommunity experiment, we tested the effects of spatially autocorrelated disturbance and spatial aggregation of patch quality on regional and local richness, among-community dissimilarity, and community composition. We found that spatial aggregation of patch quality generally increased among-community dissimilarity (based on two measures of beta diversity) of communities containing protozoa and rotifers in microcosms. There were significant interacting effects of landscape structure and location of disturbances on beta diversity, which depended in part on the specific beta diversity measures used. Effects of disturbance on composition and richness in aggregated landscapes were generally dependent on distance and connectivity among habitat patches of different types. Our results also show that effects of disturbances in single patches cannot directly be extrapolated to the landscape scale: the predictions may be correct when only species richness is considered, but important changes in beta diversity may be overlooked. There is a need for biodiversity and conservation studies to consider the spatial aggregation of habitat quality and disturbance, as well as connectivity among spatial aggregations.  相似文献   

13.
Belmaker J  Ziv Y  Shashar N  Connolly SR 《Ecology》2008,89(10):2829-2840
The size of the regional species pool may influence local patterns of diversity. However, it is unclear whether certain spatial scales are less sensitive to regional influences than others. Additive partitioning was used to separate coral-dwelling fish diversity to its alpha and beta components, at multiple scales, in several regions across the Indo-Pacific. We then examined how the relative contribution of these components changes with increased regional diversity. By employing specific random-placement null models, we overcome methodological problems with local-regional regressions. We show that, although alpha and beta diversities within each region are consistently different from random-placement null models, the increase in beta diversities among regions was similar to that predicted once heterogeneity in coral habitat was accounted for. In contrast, alpha diversity within single coral heads was limited and increased less than predicted by the null models. This was correlated with increased intraspecific aggregation in more diverse regions and is consistent with ecological limitations on the number of coexisting species at the local scale. These results suggest that, apart from very small spatial scales, variation in the partitioning of fish diversity along regional species richness gradients is driven overwhelmingly by the corresponding gradients in coral assemblage structure.  相似文献   

14.
Freestone AL  Inouye BD 《Ecology》2006,87(10):2425-2432
Understanding the large-scale distribution of species diversity requires distinguishing two of the primary factors that cause compositional differences: dispersal limitation and environmental variation. In a community with a naturally discontinuous spatial structure, we asked (1) at what scale(s) nonrandom variation in species composition occurs and (2) at what scale(s) such variation is associated with spatial separation, indicative of dispersal limitation, and at what scale(s) variation is associated with environmental heterogeneity? We sampled 50 seeps (small wetlands) on five serpentine outcrops. Using a randomization model, we showed that additive beta diversity (a measure of community dissimilarity) was lower than random within seeps and higher than random among both seeps and outcrops. Using Mantel tests, we showed that plant community dissimilarity, in both the full seep assemblage as well as in a subset of seep endemics, at the two larger scales was associated with different forms of environmental heterogeneity and, at the largest scale, was also associated with geographic distance. We conclude that diversity in this system is shaped by multiple scales of heterogeneity and by dispersal limitation at the largest scale.  相似文献   

15.
Pringle RM 《Ecology》2008,89(1):26-33
Ecologists increasingly recognize the ability of certain species to influence ecological processes by engineering the physical environment, but efforts to develop a predictive understanding of this phenomenon are in their early stages. While many believe that the landscape-scale effects of ecosystem engineers will be to increase habitat diversity and therefore the abundance and richness of other species, few generalities exist about the effects of engineering at the scale of the engineered patch. According to one hypothesis, activities that increase structural habitat complexity within engineered patches will have positive effects on the abundance or diversity of other organisms. Here I show that, by damaging trees and increasing their structural complexity, browsing elephants create refuges used by a common arboreal lizard. Observational surveys and a lizard transplant experiment revealed that lizards preferentially occupy trees with real or simulated elephant damage. A second experiment showed that lizards vacate trees when elephant-engineered refuges are removed. Furthermore, local lizard densities increased with (and may be constrained by) local densities of elephant-damaged trees. This facilitative effect of elephants upon lizards via patch-scale habitat modification runs contrary to previously documented negative effects of the entire ungulate guild on lizards at the landscape scale, suggesting that net indirect effects of large herbivores comprise opposing trophic and engineering interactions operating at different spatial scales. Such powerful megaherbivore-initiated interactions suggest that anthropogenic changes in large-mammal densities will have important cascading consequences for ecological communities.  相似文献   

16.
Seabirds have been particularly affected by invasive non-native species, which has led to the implementation of numerous eradication campaigns for the conservation of these keystone and highly vulnerable species. Although the benefits of eradication of invasive non-native species for seabird conservation have been demonstrated, the recovery kinetics of different seabird populations on islands after eradication remains poorly evaluated. We conducted long-term monitoring of the number of breeding pairs of seven seabird species on a small atoll, Surprise Island, New Caledonia (southwestern tropical Pacific). Marine avifauna of the island were surveyed yearly 4 years before to 4 years after rodent eradication (conducted in 2005), and we conducted multiple one-time surveys from ∼10 years before and ∼15 years after eradication. We sought to determine how different seabird species responded to the eradication of invasive rodents in an insular environment. Three species responded positively (two- to 10-fold increase in population size) to eradication with differences in lag time and sensitivity. The number of breeding pairs increased (effect sizes = 0.49–0.95 and 0.35–0.52) for two species over 4 years post-eradication due to immigration. One species had a longer (at least 5 years) response time than all others; breeding pairs increased for over 10 years after eradication. Long-term sampling was necessary to observe the responses of the seabird populations on the island because of the delayed response of a species to eradication not visible in the first years after eradication. Our results confirmed the positive effects of eradication of invasive non-native species on seabirds and emphasize the importance of mid- and long-term pre- and posteradication surveys to decipher the mechanisms of seabird recovery and confirm the benefits of eradication for conservation purposes.  相似文献   

17.
Micro-evolutionary processes that underpin genetic and morphological variation in highly mobile pelagic vertebrates are virtually unknown. Previous findings preferentially invoke vicariant isolation due to large-scale physical barriers such as continental landmasses, followed by genetic drift. However increasingly, evidence for divergence by non-random processes (e.g. selection, plasticity) is being presented. Wedge-tailed shearwaters are wide-ranging seabirds with breeding colonies located such that they experience a variety of environmental pressures and conditions. Previous work on this species has provided evidence of inter-colony divergence of adult morphology and foraging modes, as well as chick developmental patterns, suggesting that reinforcement among colonies is possible. In order to evaluate the micro-evolutionary processes driving this observed variation, our study compared patterns of gene flow with morphological and environmental variation among four colonies of wedge-tailed shearwater breeding within the Indo-Pacific Ocean basin. Estimates of gene flow differed according to the genetic marker used; most likely, this is a function of different mutation rates. Nuclear introns suggest that gene flow among wedge-tailed shearwater breeding colonies within the Indo-Pacific Ocean basin is substantial, however microsatellite markers imply that gene flow is reduced. In general, levels of genetic divergence were relatively low and did not correlate with geographic distance, morphological distance or environmental differences (sea-surface temperature and chlorophyll a concentration) among colonies. We suggest that genetic drift alone is unlikely to be the major source of morphological variation seen in this species. Instead, we propose that non-random processes (selection, plasticity) underpin morphological diversity seen in this and possibly other seabird species.  相似文献   

18.
Experimental studies provide evidence that, in spatially and temporally heterogeneous environments, individuals track variation in breeding habitat quality to adjust breeding decisions to local conditions. However, most experiments consider environmental variation at one spatial scale only, while the ability to detect the influence of a factor depends on the scale of analysis. We show that different breeding decisions by adults are based on information about habitat quality at different spatial scales. We manipulated (increased or decreased) local breeding habitat quality through food availability and parasite prevalence at a small (territory) and a large (patch) scale simultaneously in a wild population of Great Tits (Parus major). Females laid earlier in high-quality large-scale patches, but laying date did not depend on small-scale territory quality. Conversely, offspring sex ratio was higher (i.e., biased toward males) in high-quality, small-scale territories but did not depend on large-scale patch quality. Clutch size and territory occupancy probability did not depend on our experimental manipulation of habitat quality, but territories located at the edge of patches were more likely to be occupied than central territories. These results suggest that integrating different decisions taken by breeders according to environmental variation at different spatial scales is required to understand patterns of breeding strategy adjustment.  相似文献   

19.
Response to habitat fragmentation may not be generalized among species, in particular for plant communities with a variety of dispersal traits. Calcareous grasslands are one of the most species‐rich habitats in Central Europe, but abandonment of traditional management has caused a dramatic decline of calcareous grassland species. In the Southern Franconian Alb in Germany, reintroduction of rotational shepherding in previously abandoned grasslands has restored species diversity, and it has been suggested that sheep support seed dispersal among grasslands. We tested the effect of rotational shepherding on demographic and genetic connectivity of calcareous grassland specialist plants and whether the response of plant populations to shepherding was limited to species dispersed by animals (zoochory). Specifically, we tested competing dispersal models and source and focal patch properties to explain landscape connectivity with patch‐occupancy data of 31 species. We fitted the same connectivity models to patch occupancy and nuclear microsatellite data for the herb Dianthus carthusianorum (Carthusian pink). For 27 species, patch connectivity was explained by dispersal by rotational shepherding regardless of adaptations to zoochory, whereas population size (16% species) and patch area (0% species) of source patches were not important predictors of patch occupancy in most species. [Correction made after online publication, February 25, 2014: Population size and patch area percentages were mistakenly inverted, and have now been fixed.] Microsite diversity of focal patches significantly increased the model variance explained by patch occupancy in 90% of the species. For D. carthusianorum, patch connectivity through rotational shepherding explained both patch occupancy and population genetic diversity. Our results suggest shepherding provides dispersal for multiple plant species regardless of their dispersal adaptations and thus offers a useful approach to restore plant diversity in fragmented calcareous grasslands. Efectos del Pastoreo Rotacional sobre la Conectividad Genética y Demográfica de Plantas de Pastizales Calcáreos  相似文献   

20.
Abstract:  We evaluated the importance of small (<5 ha) forest patches for the conservation of regional plant diversity in the tropical rainforest of Los Tuxtlas, Mexico. We analyzed the density of plant species (number of species per 0.1 ha) in 45 forest patches of different sizes (1–700 ha) in 3 landscapes with different deforestation levels (4, 11, and 24% forest cover). Most of the 364 species sampled (360 species, 99%) were native to the region, and only 4 (1%) were human-introduced species. Species density in the smallest patches was high and variable; the highest (84 species) and lowest (23 species) number of species were recorded in patches of up to 1.8 ha. Despite the small size of these patches, they contained diverse communities of native plants, including endangered and economically important species. The relationship between species density and area was significantly different among the landscapes, with a significant positive slope only in the landscape with the highest deforestation level. This indicates that species density in a patch of a given size may vary among landscapes that have different deforestation levels. Therefore, the conservation value of a patch depends on the total forest cover remaining in the landscape. Our findings revealed, however, that a great portion of regional plant diversity was located in very small forest patches (<5 ha), most of the species were restricted to only a few patches (41% of the species sampled were distributed in only 1–2 patches, and almost 70% were distributed in 5 patches) and each landscape conserved a unique plant assemblage. The conservation and restoration of small patches is therefore necessary to effectively preserve the plant diversity of this strongly deforested and unique Neotropical region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号