首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cho HH  Park JW 《Chemosphere》2006,64(6):1047-1052
Effects of surfactants and natural organic matter (NOM) on the sorption and reduction of tetrachloroethylene (PCE) with zero valent iron (ZVI) were examined in this study. PCE reduction by ZVI depended on the ionic type of the surfactants. The removal of PCE and production of TCE with non-ionic Triton X-100 and cationic hexadecyltrimethyl-ammonium (HDTMA) at one-half and two times the critical micelle concentration (CMC) were 1.2-1.8 times higher than without surfactants because of the enhanced PCE partitioning and surface concentration by the sorbed surfactants. When anionic sodium dodecyl benzene sulfonate (SDDBS) at one-half and two times CMC and NOM at 20 mg l(-1) and 50 mg l(-1) concentrations were used, the removal of PCE doubled and TCE production decreased. In the presence of SDDBS, TCE production by ZVI was lower than with HDTMA and Triton X-100 while PCE removal was higher than with the other surfactants.  相似文献   

2.
Regeneration of iron for trichloroethylene reduction by Shewanella alga BrY   总被引:1,自引:0,他引:1  
Shin HY  Singhal N  Park JW 《Chemosphere》2007,68(6):1129-1134
Zero valent iron (ZVI), the primary reactive material in several permeable reactive barriers, is often oxidized to ferrous or ferric iron, resulting in decreased reactivity with time. Iron reducing bacteria can reconvert the ferric iron to its ferrous form, prolonging the reduction of chlorinated organic contaminants. In this study, the reduction of Fe(II,III) oxide and Fe(III) oxide by a strain of iron reducing bacteria of the group Shewanella alga BrY(S. alga BrY) was observed in both aqueous and solid phases. S. alga BrY preferentially reduced dissolved ferric iron over the solid ferric iron. In the presence of iron oxide the Fe(II) ions reduced by S. alga BrY efficiently reduced trichloroethylene (TCE). On the other hand, Fe(II) produced by S. alga BrY covered the reactive surfaces of ZVI iron filings and inhibited the reduction of TCE by ZVI. The formation of precipitates on the iron oxide or Fe0 surface was confirmed by scanning electron microscopy. The results suggest that iron-reducing bacteria in the oxidized Fe0 barriers can enhance the removal rate of chlorinated organic compounds and influence on the long-term performance of Fe0 reactive barriers.  相似文献   

3.
Li Z  Kirk Jones H  Zhang P  Bowman RS 《Chemosphere》2007,68(10):1861-1866
Chromate transport through columns packed with zeolite/zero valent iron (Z/ZVI) pellets, either untreated or treated with the cationic surfactant hexadecyltrimethylammonium (HDTMA), was studied at different flow rates. In the presence of sorbed HDTMA, the chromate retardation factor increased by a factor of five and the pseudo first-order rate constant for chromate reduction increased by 1.5-5 times. The increase in rate constant from the column studies was comparable to a six-fold increase in the rate constant determined in a batch study. At a fast flow rate, the apparent delay in chromate breakthrough from the HDTMA modified Z/ZVI columns was primarily caused by the increase in chromate reduction rate constant. In contrast, at a slower flow rate, the retardation in chromate transport from the HDTMA modified Z/ZVI columns mainly originated from chromate sorption onto the HDTMA modified Z/ZVI pellets. Due to dual porosity, the presence of immobile water was responsible for the earlier breakthrough of chromate in columns packed with zeolite and Z/ZVI pellets. The results from this study further confirm the role of HDTMA in enhancing sorption and reduction efficiency of contaminants in groundwater remediation.  相似文献   

4.
Zero-valent iron (ZVI) permeable-reactive barriers have become an increasingly used remediation option for the in situ removal of various organic and inorganic chemicals from contaminated groundwater. In the present study a process-based numerical model for the transport and reactions of chlorinated hydrocarbon in the presence of ZVI has been developed and applied to analyse a comprehensive data set from laboratory-scale flow-through experiments. The model formulation includes a reaction network for the individual sequential and/or parallel transformation of chlorinated hydrocarbons by ZVI, for the resulting geochemical changes such as mineral precipitation, and for the carbon isotope fractionation that occurs during each of the transformation reactions of the organic compounds. The isotopic fractionation was modelled by formulating separate reaction networks for lighter ((12)C) and heavier ((13)C) isotopes. The simulation of a column experiment involving the parallel degradation of TCE by hydrogenolysis and beta-elimination can conclusively reproduce the observed concentration profiles of all collected organic and inorganic data as well as the observed carbon isotope ratios of TCE and its daughter products.  相似文献   

5.
The suitability of a granulated zero valent iron (ZVI) permeable reactive barrier (PRB) remediation strategy was investigated for tribromoethene (TriBE), cis-1,2-dibromoethene (c-DBE), trans-1,2-dibromoethene (t-DBE) and vinyl bromide (VB), via batch and large-scale column experiments that were subsequently analysed by reactive transport modelling.The brominated ethenes in both batch and large-scale column experiments showed rapid (compared to controls and natural attenuation) degradation in the presence of ZVI. In the large-scale column experiment, degradation half-lives were 0.35 days for TriBE, 0.50 days for c-DBE, 0.31 days for t-DBE and 0.40 days for VB, under site groundwater flow conditions, resulting in removal of brominated ethenes within the first 0.2 m of a 1.0 m thick ZVI layer, indicating that a PRB groundwater remediation strategy using ZVI could be used successfully.In the model simulations of the ZVI induced brominated ethene degradation, assuming a dominant reductive β-elimination pathway via bromoacetylene and acetylene production, simulated organic compound concentrations corresponded well with both batch and large-scale column experimental data. Changes of inorganic reactants were also well captured by the simulations. The similar ZVI induced degradation pathway of TriBE and TCE suggests that outcomes from research on ZVI induced TCE remediation could also be applied to TriBE remediation.  相似文献   

6.
The effect of nitrate on the reduction of TCE by commercial granular iron was investigated in column experiments designed to allow for the in situ monitoring of the iron surface film with Raman spectroscopy. Three column experiments were conducted; one with an influent solution of 100 mg/l nitrate+1.5 mg/l TCE, and two control columns, one saturated directly with 100 mg/l nitrate solution, the other pre-treated with Millipore water prior to the introduction of a 100 mg/l nitrate solution. In the presence of nitrate, TCE adsorbed onto the iron, but there was little TCE reduction to end-products ethene and ethane. The iron used (Connelly, GPM, Chicago) is a product typical of those used in permeable granular iron walls. The material is covered by an air-formed high-temperature oxidation film, consisting of an inner layer of Fe(3)O(4), and an outer, passive layer of Fe(2)O(3). In the control column pre-treated with Millipore water, the passive Fe(2)O(3) layer was removed upon contact with the water in a manner consistent with an autoreduction reaction. In the TCE+nitrate column and the direct nitrate saturation column, nitrate interfered with the removal of the passive layer and maintained conditions such that high valency protective corrosion species, including Fe(2)O(3) and FeOOH, were stable at the iron surface. The lack of TCE reduction is explained by the presence of these species, as they inhibit both mechanisms proposed for TCE reduction by iron, including catalytic hydrogenation, and direct electron transfer.  相似文献   

7.
Li CW  Chen YM  Yen WS 《Chemosphere》2007,68(2):310-316
A fluidized zero valent iron (ZVI) reactor pressurized by CO(2) gas for controlling pH was employed for nitrate reduction. The proposed CO(2) pressurized system potentially has advantages of using less CO(2) gas and reaching equilibrium pH faster than CO(2)-bubbled system. However, due to weak acid nature of carbonic acid, system pH gradually increased with increasing oxidation of ZVI and reduction of nitrate. As pH increased with progress of reaction, nitrate removal rate decreased continuously. The results indicate that nitrate removal efficiency increases with increasing initial ZVI dosage but reaches plateau at ZVI doses of higher than 8.25gl(-1), and initial nitrate concentration up to 100mg l(-1) as N has minimal impact on the removal efficiency. Unlike the fluidized system with pH control by strong acid reported in our pervious study, near 100% of nitrogen recovery was observed in the current process, indicating that nitrate reduction by ZVI with different pH controlled mechanisms will have different reaction routes.  相似文献   

8.
Halide salts accelerate degradation of high explosives by zerovalent iron   总被引:1,自引:0,他引:1  
Zerovalent iron (Fe(0), ZVI) has drawn great interest as an inexpensive and effective material to promote the degradation of environmental contaminants. A focus of ZVI research is to increase degradation kinetics and overcome passivation for long-term remediation. Halide ions promote corrosion, which can increase and sustain ZVI reactivity. Adding chloride or bromide salts with Fe(0) (1% w/v) greatly enhanced TNT, RDX, and HMX degradation rates in aqueous solution. Adding Cl or Br salts after 24h also restored ZVI reactivity, resulting in complete degradation within 8h. These observations may be attributed to removal of the passivating oxide layer and pitting corrosion of the iron. While the relative increase in degradation rate by Cl(-) and Br(-) was similar, TNT degraded faster than RDX and HMX. HMX was most difficult to remove using ZVI alone but ZVI remained effective after five HMX reseeding cycles when Br(-) was present in solution.  相似文献   

9.
Zero-valent iron (ZVI) permeable reactive barriers (PRBs) have become popular for the degradation of chlorinated ethenes (CEs) in groundwater. However, a knowledge gap exists pertaining to the longevity of ZVI. The present investigation addresses this situation by suggesting a numerical simulation model that is intended to be used in conjunction with field or column tests in order to describe long-term ZVI performance at individual sites. As ZVI aging processes are not yet completely understood and are still subject to research, we propose a phenomenological modelling technique instead of a common process-based approach. We describe ZVI aging by parameters that characterise the extent and rate of ZVI reactivity change depending on the propagation of the precipitation front through ZVI. We approximate degradation of CEs by pseudo-first order kinetics accounting for the formation of partially dechlorinated products, and describe ZVI reactivity change by scaling the degradation rate constants. Three independent modelling studies were carried out to test the suitability of the conceptual and numerical model to describe the observations of accelerated column tests. All three tests indicated that ZVI reactivity declined with an increasing number of exchanged pore volumes. Measured and modelled concentrations showed good agreement, thereby proving that resolving spatial as well as temporal changes in ZVI reactivity is reasonable.  相似文献   

10.
An important issue of concern for permeable reactive iron barriers is the long-term efficiency of the barriers due to the long operational periods required. Mineral precipitation resulting from the anaerobic corrosion of the iron filings and bacteria present in the barrier may play an important role in the long-term performance. An integrated study was performed on the Vapokon permeable reactive barrier (PRB) in Denmark by groundwater and iron core sample characterization. The detailed field groundwater sampling carried out from more than 75 well screens up and downstream the barrier showed a very efficient removal (>99%) for the most important CAHs (PCE, TCE and 1,1,1-TCA). However, significant formation of cis-DCE within the PRB resulted in an overall insufficient efficiency for cis-DCE removal. The detailed analysis of the upstream groundwater revealed a very heterogeneous spatial distribution of contaminant loading into the PRB, which resulted in that only about a quarter of the barrier system is treating significant loads of CAHs. Laboratory batch experiments using contaminated groundwater from the site and iron material from the core samples revealed that the aged iron material performed equally well as virgin granular iron of the same type based on determined degradation rates despite that parts of the cored iron material were covered by mineral precipitates (especially iron sulfides, carbonate green rust and aragonite). The PCR analysis performed on the iron core samples indicated the presence of a microbial consortium in the barrier. A wide range of species were identified including sulfate and iron reducing bacteria, together with Dehalococcoides and Desulfuromonas species indicating microbial reductive dehalogenation potential. The microbes had a profound effect on the performance of the barrier, as indicated by significant degradation of dichloromethane (which is typically unaffected by zero valent iron) within the barrier.  相似文献   

11.
零价铁与厌氧微生物协同还原地下水中的硝基苯   总被引:1,自引:0,他引:1  
通过间歇式实验,考察了零价铁与厌氧微生物协同还原地下水中硝基苯的效果。实验结果表明,由零价铁腐蚀为厌氧微生物提供H2电子供体还原硝基苯的效果明显优于零价铁和微生物单独作用,硝基苯去除率分别提高21.8%和57.0%。弱酸性条件有利于协同反应进行,当初始pH为5.0和6.0时,4 d后硝基苯去除率比初始pH为7.0时的提高74.4%和35.2%。增加零价铁投加量可提高协同还原的效果,零价铁最佳投加量为250 mg/L。零价铁腐蚀产生的Fe2+无法作为电子供体被微生物利用,但可作为无机营养元素促进协同过程。由于零价铁产H2速率受表面覆盖物影响不明显,在地下水修复过程中可保证协同效果并延长零价铁的使用寿命。  相似文献   

12.
Chen YM  Li CW  Chen SS 《Chemosphere》2005,59(6):753-759
A fluidized zero valent iron (ZVI) reactor is examined for nitrate reduction. Using the system, the pH of solution can be maintained at optimal conditions for rapid nitrate reduction. For hydraulic retention times of 15 min, the nitrate reduction efficiency increases with increasing ZVI dosage. At ZVI loadings of 33 gl-1, results indicate that the nitrate removal efficiency increases from less than 13% for systems without pH control to more than 92% for systems operated at pH of 4.0. By maintaining pH at 4.0, we are able to decrease the hydraulic retention time to 3 min and still achieve more than 87% nitrate reduction. The recovery of total nitrogen added as nitrate, ammonium, and nitrite was less than 50% for the system operated at pH4.0, and was close to 100% for a system without pH control. The possibility of nitrate and ammonium adsorption onto iron corrosion products was ruled out by studying the behavior of their adsorption onto freshly hydrous ferric oxide at variable pH. Results indicate the probable formation of nitrogen gas species during reaction in pH4.0.  相似文献   

13.
A new approach to simultaneously remove nitrogen monoxide (NO) and sulfur dioxide (SO2) by zero valent iron (ZVI) was investigated. Three different parameters, temperature, flux, and ZVI dosage, were tested in fluidized ZVI column studies containing 500 ppmv of NO and SO2, respectively. Under the ZVI dosage of 0.5 g at flux of 0.6 L/cm2 x min for temperature 573 K, there is neither NO nor SO2 reduction. For 623 K and 673 K, complete removal for NO and > 90% removal for SO2 were achieved. For temperatures of 723 K and 773 K, 100% removal was achieved for both NO and SO2. The amounts of NO or SO2 reduction (as milligrams of NO or SO2 per gram ZVI) increased as temperature increased, and linearities were observed with both correlation coefficients > 0.97. Compared with NO, SO2 had earlier breakthrough because of a slower diffusion rate and less reactivity but higher mass reduction because of a higher molecular weight for SO2 (64 g/mol for SO2 and 30 g/mol for NO). At same temperature, both NO and SO2 reductions (as milligrams of NO or SO2 per gram of ZVI) were constant regardless of either flux or ZVI dosage variation, but breakthrough time was affected by both flux and ZVI dosage. A parameter weight of ZVI/flux (W/F) was developed to represent these two parameters at the same time to assess the breakthrough time of NO and SO2. Higher breakthrough time was achieved for higher W/F value. Moreover, interestingly, longer breakthrough time and more NO and SO2 mass reduction were achieved for combined NO and SO2 than individual NO or SO2 treated by ZVI, and both oxidation and reduction reactions occurred instead of a reduction reaction only. Chemical reactions among ZVI/NO, ZVI/ SO2, and ZVI/NO/SO2 were also proposed and verified by X-ray diffraction analyses.  相似文献   

14.
Debromination of decabromodiphenyl ether (deca-BDE) by microbe and by zero-valent iron (ZVI) has been reported previously. However, no study has indicated the presence of microorganisms and their effect on ZVI-mediated reduction of deca-BDE. Synergistic degradation of deca-BDE by an enrichment culture and ZVI was studied. It was found that synergistic effects enhanced the debromination of deca-BDE as well as promoting the reduction of lower brominated products. ZVI stimulated microbial debromination by serving as an electron donor. Correlation analysis also confirmed that ZVI was capable of enhancing microbial population in the debromination of deca-BDE. Conversely, the enrichment culture produced acid which maintained pH stability and stimulated the oxidation of ZVI. The enrichment culture supplied its energy requirements by the oxidation of ZVI and concomitant reduction of deca-BDE, but incapable of growth and reduction of BDE-209 without ZVI and vice versa. Compared to the initial culture, the microbial community of the enrichment culture became dominated by several bacterial genera based on the results of 16S rRNA-gene pyrosequencing.  相似文献   

15.
Permeable walls of granular iron are a new technology developed for the treatment of groundwater contaminated with dissolved chlorinated solvents. Degradation ofthe chlorinated solvents involves a charge transfer process in which they are reductively dechlorinated, and the iron is oxidized. The iron used in the walls is an impure commercial material that is covered with a passive layer of Fe2O3, formed as a result of a high-temperature oxidation process used in the production of iron. Understanding the behaviour of this layer upon contact with solution is important, because Fe2O3 inhibits mechanisms involved in contaminant reduction, including electron transfer and catalytic hydrogenation. Using a glass column specially designed to allow for in situ Raman spectroscopic and open circuit potential measurements, the passive layer of Fe2O3 was observed to be largely removed from the commercial product, Connelly iron, upon contact with Millipore water and with a solution of Millipore water containing 1.5 mg/l trichloroethylene (TCE). It has been previously shown that Fe2O3 is removed from iron surfaces upon contact with solution by an autoreduction reaction; however, prior to this work, the reaction has not been shown to occur on the impure commercial iron products used in permeable granular iron walls. The rate of removal was sufficiently rapid such that the initial presence of Fe2O3 at the iron surface would have no consequence with respect to the performance of an in situ wall. Subsequent to the removal of Fe2O3 layer, magnetite and green rust formed at the iron surface as a result of corrosion in both the Millipore water and the solution containing TCE. The formation of these two species, rather than higher valency iron oxides and oxyhydroxides, is significant for the technology. The former can interfere with contaminant degradation because they inhibit electron transfer and catalytic hydrogenation. Magnetite and green rust, in contrast, will not inhibit the mechanisms involved in contaminant reduction, and hence their formation is beneficial to the long-term performance of the iron material.  相似文献   

16.
Multiple contaminant mixtures in groundwater may not efficiently be treated by a single technology if contaminants possess rather different properties with respect to sorptivity, solubility, and degradation potential. An obvious choice is to use sequenced units of the generally accepted treatment materials zero valent iron (ZVI) and granular activated carbon (GAC). However, as the results of this modelling study suggest, the required dimensions of both reactor units may strongly differ from those expected on the grounds of a contaminant-specific design. This is revealed by performing an analysis for a broad spectrum of design alternatives through numerical experiments for selected patterns of contaminant mixtures consisting of monochlorobenzene, tetrachloroethylene, trichloroethylene (TCE), cis-1,2-dichloroethylene (cis-DCE), and vinyl chloride (VC). It is shown that efficient treatment can be achieved only if competitive sorption effects in the GAC unit as well as the formation of intermediate products in the ZVI unit are carefully taken into account. Cost-optimal designs turned out to vary extremely depending on the prevailing conditions concerning contaminant concentrations, branching ratios, and unit costs of both reactor materials. Where VC is the critical contaminant, due to high initial concentration or extensive production as an intermediate, two options are cost-effective: an oversized ZVI unit with an oversized GAC unit or a pure GAC reactor.  相似文献   

17.
Technical developments have now made it possible to emplace granular zero-valent iron (Fe(0)) in fractured media to create a Fe(0) fracture reactive barrier (Fe(0) FRB) for the treatment of contaminated groundwater. To evaluate this concept, we conducted a laboratory experiment in which trichloroethylene (TCE) contaminated water was flushed through a single uniform fracture created between two sandstone blocks. This fracture was partly filled with what was intended to be a uniform thickness of iron. Partial treatment of TCE by iron demonstrated that the concept of a Fe(0) FRB is practical, but was less than anticipated for an iron layer of uniform thickness. When the experiment was disassembled, evidence of discrete channelised flow was noted and attributed to imperfect placement of the iron. To evaluate the effect of the channel flow, an explicit Channel Model was developed that simplifies this complex flow regime into a conceptualised set of uniform and parallel channels. The mathematical representation of this conceptualisation directly accounts for (i) flow channels and immobile fluid arising from the non-uniform iron placement, (ii) mass transfer from the open fracture to iron and immobile fluid regions, and (iii) degradation in the iron regions. A favourable comparison between laboratory data and the results from the developed mathematical model suggests that the model is capable of representing TCE degradation in fractures with non-uniform iron placement. In order to apply this Channel Model concept to a Fe(0) FRB system, a simplified, or implicit, Lumped Channel Model was developed where the physical and chemical processes in the iron layer and immobile fluid regions are captured by a first-order lumped rate parameter. The performance of this Lumped Channel Model was compared to laboratory data, and benchmarked against the Channel Model. The advantages of the Lumped Channel Model are that the degradation of TCE in the system is represented by a first-order parameter that can be used directly in readily available numerical simulators.  相似文献   

18.
Reductive dechlorination of trichloroethene (TCE) by zero-valent iron produces a systematic enrichment of 13C in the remaining substrate that can be described using a Rayleigh model. In this study, fractionation factors for TCE dechlorination with iron samples from two permeable reactive barriers (PRBs) were established in batch experiments. Samples included original unused iron as well as material from a barrier in Belfast after almost 4 years of operation. Despite the variety of samples, carbon isotope fractionations of TCE were remarkably similar and seemed to be independent of iron origin, reaction rate, and formation of precipitates on the iron surfaces. The average enrichment factor for all experiments was -10.1 per thousand (+/- 0.4 per thousand). These results indicate that the enrichment factor provides a powerful tool to monitor the reaction progress, and thus the performance, of an iron-reactive barrier over time. The strong fractionation observed may also serve as a tool to distinguish between insufficient residence time in the wall and a possible bypassing of the wall by the plume, which should result in an unchanged isotopic signature of the TCE. Although further work is necessary to apply this stable isotope method in the field, it has potential to serve as a unique monitoring tool for PRBs based on zero-valent iron.  相似文献   

19.
Chemical reaction between nitric oxide (NO) andzero valent iron (ZVI) was studied in a packed-bed column process with high temperatures based on ZVI strong reducing abilities. For six controlled temperatures of 523-773 K and 400 ppm of NO (typical flue gas temperature and concentration), under short empty bed contacttime ([EBCT] 0.0226-0.0679 sec), NO was completely removed for temperature of 573-773 K but not for 523 K. Break-through curves were conducted for the five working temperatures, and the results indicated that NO reductions by ZVI were varied from 2 to 26.7 mg NO/g ZVI. Higher temperature and longer EBCT achieved better NO removal efficiency. X-ray diffraction (XRD) and electron spectroscopy for chemical analysis (ESCA) were conducted to analyze the crystal structure and oxidation state of the reacted ZVI. Three layers of iron species were detected by XRD: ZVI, Fe3O4, and Fe2O3. ZVI was the most prevalent species, and Fe3O4 and Fe2O3 were less from the XRD analysis. By ESCA, the oxidation state on the reacted ZVI surface was determined, and the species was identifled as Fe2O3, which is the most oxidizing species for iron. Therefore, three layers from the ZVI core to the ZVI surface can be identified: ZVI, Fe3O4, and Fe2O3. Combining the results from XRD and ESCA, the mechanisms for ZVI and NO can be proposed as two consecutive reactions from lower oxidation state (ZVI) in the core to higher oxidation state on the iron surface (Fe2O3): 3Fe + 4NO<--(high temperature)-->Fe3O4 + 2N2 (A1), 4Fe3O4 + 2NO<--(high temperature)-->6Fe2O3 + N2* (A2) Because there was only <5% ZVI used to remove NO comparing to theoretical ZVI used based on the proposed stoichiometry, it can be concluded that the heterogeneous reaction only occurred on the ZVI surface instead of on bulk of the ZVI.  相似文献   

20.
Anaerobic dechlorination is an effective degradation pathway for higher chlorinated polychlorinated biphenyls (PCBs). The enhanced reductive dechlorination of PCB-contaminated soil by anaerobic composting with zero-valent iron (ZVI) was studied, and preliminary reasons for the enhanced reductive dechlorination with ZVI were investigated. The results show that the addition of nanoscale ZVI can enhance dechlorination during in-vessel anaerobic composting. After 140 days, the average number of removed Cl per biphenyl with 10 mg g?1 of added nanoscale ZVI was 0.63, enhancing the dechlorination by 34 % and improving the initial dechlorination speed. The ZVI enhances dechlorination by providing a suitable acid base environment, reducing volatile fatty acid inhibition and stimulating the microorganisms. The C/N ratios for treatments with the highest rate of ZVI addition were smaller than for the control, indicating that ZVI addition can promote compost maturity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号