首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 729 毫秒
1.
Vineyard soils have been contaminated by Cu as a consequence of the long-term use of Cu salts as fungicides against mildew. This work aimed at identifying which soil parameters were the best related to Cu bioavailability, as assessed by measuring the concentrations of Cu in shoots and roots of tomato cropped (in lab conditions) over a range of 29 (24 calcareous and five acidic) Cu-contaminated topsoils from a vine-growing area (22-398 mg Cu kg(-1)). Copper concentrations in tomato shoots remained in the adequate range and were independent of soil properties and soil Cu content. Conversely, strong, positive correlations were found between root Cu concentration, total soil Cu, EDTA- or K-pyrophosphate-extractable Cu and organic C contents in the 24 calcareous soils, suggesting a prominent role of organic matter in the retention and bioavailability of Cu. Such relations were not observed when including the five acidic soils in the investigated population, suggesting a major pH effect. Root Cu concentration appeared as a much more sensitive indicator of soil Cu bioavailability than shoot Cu concentration. Simple extractions routinely used in soil testing procedures (total and EDTA-extractable Cu) were adequate indicators of Cu bioavailability for the investigated calcareous soils, but not when different soil types were considered (e.g. acidic versus calcareous soils).  相似文献   

2.
A glasshouse study of the coastal shrub Limoniastrum monopetalum was carried out to evaluate its tolerance and capacity to accumulate copper. We investigate the effects of Cu from 0 to 60 mmol l?1 on the growth, photosynthetic apparatus, and nutrient uptake of L. monopetalum, by measuring gas exchange, chlorophyll fluorescence parameters, photosynthetic pigments, and total copper, nitrogen, phosphorus, sulfur, calcium, and magnesium content in the plant tissues. Although L. monopetalum did not survive at 60 mmol l?1 Cu, the species demonstrated a high tolerance to Cu-induced stress, since all plants survived external Cu concentrations of up to 35 mmol l?1 and displayed similar growth in the Cu-enriched medium as in the control treatment of up to the external level of 15 mmol Cu l?1 (1,000 mg Cu l?1). The reduced growth registered in plants exposed to 35 mmol Cu l?1 can be attributed to reduced photosynthetic carbon assimilation associated with the adverse effect of the metal on the photochemical apparatus and a reduction in the absorption of essential nutrients. Copper tolerance was associated with the capacity of the plant to accumulate the metal in its roots and effectively prevent its translocation to photosynthetic tissues. L. monopetalum has the characteristics of a Cu-excluder plant and could be used in the revegetation of Cu-contaminated soils.  相似文献   

3.
The repeated use of copper (Cu) fungicides to control vine downy mildew has led to long-term accumulation of Cu in vineyard soils which now raises the issue of the potential bioavailability of Cu for various living organisms including plant species. The bioavailable Cu can be defined as the portion of soil Cu that can be taken up by roots, for a given plant species. In order to evaluate the bioavailability of Cu to plants, a pot experiment was conducted in glasshouse conditions with a crop species (maize) and 12 soils sampled in the upper horizon of 10 vineyard plots (total Cu ranging from 38 to 251 mg kg-1) and two woodland plots (control soils that had not received any Cu application; total Cu amounting to 20-26 mg kg-1). These soils were selected for their diverse physical (large range of particle size distribution) and chemical (from acid to calcareous soils) properties. After 35 days of growth, plant shoots were harvested for analysis. The roots were separated from soil particles for further analysis. The concentrations of Cu in the roots and aerial parts of the maize were then compared with the amounts of Cu extracted from the soil by a range of conventional extractants. Observed Cu concentrations in maize roots which have grown in contaminated vineyard soils were very high (between 90 and 600 mg kg-1), whereas Cu concentrations in the aerial parts varied only slightly and remained low (< 18 mg kg-1). Root Cu concentrations observed for maize increased with increasing total Cu content in the soil and with decreasing soil CEC. Cu accumulation in maize roots may be as high in calcareous soils as in acid soils, suggesting that soil pH had little influence. In the case of the vineyard soils studied, the lack of correlation found for maize between Cu concentrations in roots and in the aerial parts, suggests that an analysis of the aerial parts would not be a good indicator of plant Cu uptake, as it provides no insight into the real amount of Cu transferred from the soil to the plant. For maize, our results show that extraction with organic complexing agents (EDTA, DTPA) and extraction with ammonium acetate seem to provide a reasonably good estimate of root Cu concentration.  相似文献   

4.
We studied the relation of trace element concentrations in soil to those in house mice (Mus musculus), common reed (Phragmites australis) and ladybugs (Coccinella septempunctata at five disposal facilities for dredged material. The sites had a wide range of soil trace element concentrations, acid soils and a depauperate fauna. They were very poor wildlife habitat because they were dominated by the common reed. Bioassay earthworms exposed to surface soils from three of the five sites died, whereas those exposed to four of five soils collected a meter deep survived, presumably because the deeper, unoxidized soil, was not as acid. Concentrations of Ni and Cr in the biota from each of the sites did not seem to be related to the concentrations of the same elements in soil. Although Pb, Zn and Cu concentrations in biota were correlated with those in soil, the range of concentrations in the biota was quite small compared to that in soil. The concentrations of Pb detected in mice were about as high as the concentrations previously reported in control mice from other studies. Mice from the most contaminated site (530 ppm Pb in soil) contained only slightly more Pb (8 ppm dry wt) than did mice (2-6 ppm dry wt) from sites containing much less Pb (22-92 ppm in soil). Despite the acid soil conditions, very little Cd was incorporated into food chains. Rather, Cd was leaching from the surface soil. We concluded that even the relatively high concentrations of trace elements in the acid dredged material studied did not cause high concentrations of trace elements in the biota.  相似文献   

5.
Potentially hazardous trace elements such as Cd, Cu, Cr, Ni and Zn are expected to accumulate in biosolids–amended soil and remain in the soil for a long period of time. In this research, uptake of metals by food plants including cabbage, carrot, lettuce and tomato grown on soils 10 years after biosolids application was studied. All the five metals were significantly accumulated in the biosolids-amended soils. The accumulation of metal in soil did not result in significant increase in concentrations of Cu, Cr and Ni in the edible plant tissues. However, the Cd and Zn concentrations of the edible tissues of plants harvested from the biosolids receiving soils were significantly enhanced in comparison with those of the unaffected soils. The plant uptake under Greenfield sandy loam soil was generally higher than those under the Domino clayey loam soil. The metal concentration of edible plant tissue exhibited increasing trends with respect to the concentrations of the ambulated metals. The extents of the increases were plant species dependent. The indigenous soil metals were absorbed by the plants in much higher rates than those of the biosolids–receiving soils. It appeared that the plant uptake of the indigenous soil-borne metal and the added biosolids-borne metals are independent of one another and mathematically are additive.  相似文献   

6.
The copper (Cu) resistance of 1-year-old seedlings of heather (Calluna vulgaris) was tested in a greenhouse experiment. The plant material originated from seeds collected from three peatland sites located 1.2 km to the NW, and 2.5 and 5.5 km to the NE of the Harjavalta Cu-nickel (Ni) smelter, SW Finland. The plants were watered with a nutrient solution containing five different levels of Cu (1, 10, 22, 46 and 100 mg l(-1)). Cu clearly decreased the length growth of shoots, shoot and root biomass of C. vulgaris. More than 50% of the seedlings exposed to the highest Cu treatment died. C. vulgaris accumulated high amounts of Cu, the living old roots containing a maximum of 2200 mg kg(-1) Cu and the living stems 1300 mg kg(-1) Cu. Discolouring leaves contained higher Cu concentrations than green leaves. The results indicate Cu accumulation in roots and root-to-shoot transport. Some differences were found between the responses of the three seed provenances, but none of the populations proved to be more resistant to Cu than the others in all the measured responses.  相似文献   

7.
Response types in Collembola towards copper in the microenvironment   总被引:7,自引:0,他引:7  
Laboratory studies were carried out to cast light on differences in density responses among collembolan species to copper (Cu)-polluted environments. In a recolonisation experiment, mesofauna originating from a copper (Cupolluted arable field were allowed to colonise defaunated Cu-contaminated and uncontaminated soil cores for 3 months. The abundances of Pseudosinella alba and gamasid mites were higher in the uncontaminated soil, whereas the majority of other collembolans tended to be more abundant in the Cu-enriched soil. Behavioural experiments were conducted to test the ability of single Collembola species to distinguish between filter paper and food soaked in water, Cu, and calcium (Ca) solutions. Onychiurus armatus avoided both Cu and Ca, whereas Folsomia quadrioculata and Folsomia manolachei showed a significant preference for Cu. Isotomurus palustris was not able to distinguish between Cu and water. The results are compared and discussed with regard to other studies on the occurrence and behaviour of Collembola in Cu-contaminated environments. We suggest that microsite selection according to preference or avoidance of high salinity of pore water may partly explain the community structure of Collembola in Cu-polluted soils which are characterised by an increase of euedaphic species. More studies have to be carried out to generalise this concept and to explore to what extent reduced predation by gamasid mites contribute to the success of certain Collembola in Cu-contaminated sites.  相似文献   

8.
Zhang YF  He LY  Chen ZJ  Wang QY  Qian M  Sheng XF 《Chemosphere》2011,83(1):57-62
One hundred Cu-resistant-endophytic bacteria were isolated from Cu-tolerant plants grown on Cu mine wasteland, of which, eight Cu-resistant and 1-aminocyclopropane-1-carboxylate (ACC) deaminase-producing endophytic bacteria were obtained based on the ACC deaminase activity of the bacteria and characterized with respect to metal resistance, production of ACC deaminase, indole-3-acetic acid (IAA) as well as siderophores and mineral phosphate solubilization. Ralstonia sp. J1-22-2, Pantoea agglomerans Jp3-3, and Pseudomonas thivervalensis Y1-3-9 with higher ACC deaminase activity (ranging from 213 to 370 μM α-ketobutyrate mg(-1)h(-1)) were evaluated for promoting plant growth and Cu uptake of rape grown in quartz sand containing 0, 2.5, and 5 mg kg(-1) of Cu in pot experiments. The eight bacteria were found to exhibit different multiple heavy metal resistance characteristics, to show different levels of ACC deaminase activity and to produce indole acetic acid. Seven bacteria produced siderophores and solubilized inorganic phosphate. Pot experiments showed that inoculation with the strains (J1-22-2, Jp3-3, and Y1-3-9) was found to increase the biomass of rape. Increases in above-ground tissue Cu contents of rape cultivated in 2.5 and 5 mg kg(-1) of Cu-contaminated substrates varied from 9% to 31% and from 3 to 4-fold respectively in inoculated-rape plants compared to the uninoculated control. The maximum Cu uptake of rape was observed after inoculation with P. agglomerans Jp3-3. The results show that metal-resistant and plant growth promoting endophytic bacteria play an important role in plant growth and Cu uptake which may provide a new endophytic bacterial-assisted phytoremediation of Cu-contaminated environment.  相似文献   

9.
This is the first test of a highly charged swelling mica's (Na-2-mica) ability to reduce the plant-absorbed Cu in Cu-contaminated soils from Chile. Perennial ryegrass (Lolium perenne L.) was grown in two acid soils (Sector 2: pH 4.2, total Cu = 172 mg Cu kg−1 and Sector 3: pH 4.2, total Cu = 112 mg Cu kg−1) amended with 0.5% and 1% (w/w) mica, and 1% (w/w) montmorillonite. At 10 weeks of growth, both mica treatments decreased the shoot Cu of ryegrass grown in Sector 2 producing shoot Cu concentrations above 21-22 mg Cu kg−1 (the phytotoxicity threshold for that species), yet the mica treatments did not reduce shoot Cu concentrations when grown in Sector 3, which were at a typical level. The mica treatments improved shoot growth in Sector 3 by reducing free and extractable Cu to low enough levels where other nutrients could compete for plant absorption and translocation. In addition, the mica treatments improved root growth in both soils, and the 1% mica treatment reduced root Cu in both soils. This swelling mica warrants further testing of its ability to assist re-vegetation and reduce Cu bioavailability in Cu-contaminated surface soils.  相似文献   

10.
We investigated the response of Pinus halepensis seedlings to the application of biosolids enriched with Cu, Ni and Zn on three Mediterranean forest soils under semiarid conditions. One-year-old seedlings were planted in lysimeters on soils developed from marl, limestone and sandstone which were left unamended, amended with biosolids, or amended with biosolids enriched in Cu, Ni and Zn. Enriched biosolids increased plant heavy metal concentration, but always below phytotoxic levels. Seedlings receiving unenriched biosolids showed a weak reduction in Cu and Zn concentration in needles, negatively affecting physiological status during drought. This effect was alleviated by the application of enriched sludge. Sewage sludge with relatively high levels of Cu, Zn and Ni had minor effects on plant performance on our experimental conditions. Results suggest that micronutrient limitations in these soils may be alleviated by the application of biosolids with a higher Cu, Zn and Ni content than those established by current regulations.  相似文献   

11.
Plant uptake and dissipation of weathered PBDEs in the soils of e-waste recycling sites were investigated in a greenhouse study. Eighteen PBDE congeners (tri- through deca-) were detected in the plant tissues. The proportion of lower brominated PBDEs (mono- through hexa-) in plant roots was higher than that in the soils. A concentration gradient was observed of PBDEs in plants with the highest concentrations in the roots followed by the stems and lowest in the leaves. Reduction rates of the total PBDEs in the soils ranged from 13.3 to 21.7% after plant harvest and lower brominated PBDEs were associated with a higher tendency to dissipate than the higher brominated PBDEs. This study provides the first evidence for plant uptake of weathered PBDEs in the soils of e-waste recycling sites and planting contributes to the removal of PBDEs in e-waste contaminated soils.  相似文献   

12.
Wetland plants such as Typha latifolia and Phragmites australis have been indicated to show a lack of evolution of metal tolerance in metal-contaminated populations. The aim of the present study is to verify whether other common wetland plants such as Alternanthera philoxeroides and Beckmannia syzigachne, also possess the same characteristics. Lead and zinc tolerances in populations of six species collected from contaminated and clean sites were examined by hydroponics. In general, the contaminated populations did not show higher metal tolerance and accumulation than the controls. Similar growth responses and tolerance indices in the same metal treatment solution between contaminated and control populations suggest that metal tolerance in wetland plants are generally not further evolved by contaminated environment. The reasons may be related to the special root anatomy in wetland plants, the alleviated metal toxicity by the reduced rooting conditions and the relatively high innate metal tolerance in some species.  相似文献   

13.
Monitoring soil pollution is a key aspect in sustainable management of contaminated land but there is often debate over what should be monitored to assess ecological risk. Soil pore water, containing the most labile pollutant fraction in soils, can be easily collected in situ offering a routine way to monitor this risk. We present a compilation of data on concentration of trace elements (As, Cd, Cu, Pb, and Zn) in soil pore water collected in field conditions from a range of polluted and non-polluted soils in Spain and the UK during single and repeated monitoring, and propose a simple eco-toxicity test using this media. Sufficient pore water could be extracted for analysis both under semi-arid and temperate conditions, and eco-toxicity comparisons could be effectively made between polluted and non-polluted soils. We propose that in-situ pore water extraction could enhance the realism of risk assessment at some contaminated sites.  相似文献   

14.
Five organic matters, three phosphate compounds, zerovalent iron grit (ZVIG, 2% by soil weight), two alkaline compounds, and two commercial formulations were incorporated, singly and some combined with ZVIG, into a highly Cu-contaminated topsoil (Soil P7, 2600 mg Cu kg−1) from a wood treatment facility. Formulations and two composts were also singly incorporated into a slightly Cu-contaminated topsoil (Soil P10, 118 mg Cu kg−1) from the facility surrounding. This aimed to reduce the labile pool of Cu and its accumulation in beans cultivated on potted soils in a climatic chamber. Lowest Cu concentration in soil solution occurred in P7 soils amended with activated carbon (5%) and ZVIG, singly and combined. Basic slag (3.9%) and compost of sewage sludge (5%) combined with ZVIG promoted shoot production and limited foliar Cu accumulation. For amended P10 soils, no changes occurred in soil solution and foliar Cu concentrations, but one compost increased shoot production.  相似文献   

15.
We investigated root versus canopy uptake of nickel and copper by mountain birch, Betula pubescens subsp. czerepanovi, close to a nickel-copper smelter on the Kola Peninsula, northwest Russia. To distinguish between aerial contamination of leaf surfaces by dust particles and root-derived contamination of leaves by soluble metals, we transplanted seedlings from a control site to clean and metal-contaminated soils and exposed these seedlings both in clean and polluted sites. Patterns of leaf surface contamination and root uptake were similar for nickel and copper; however, nickel but not copper was effectively translocated from roots to shoots and leaves. The majority (80-95%) of nickel and copper found in birch foliage in the heavily contaminated site was due to deposition of dust particles on leaf surfaces; 32-40% of foliar nickel and 9-19% of foliar copper were in water soluble forms. Washing of fresh leaves removed only a minor part of surface contaminants; boiling of unwashed leaves in distilled water for 15 min removed >90% of soluble nickel and copper.  相似文献   

16.
Jiang LY  Yang XE  He ZL 《Chemosphere》2004,55(9):1179-1187
Phytoremediation is a promising approach for cleaning up soils contaminated with heavy metals. Information is needed to understand growth response and uptake mechanisms of heavy metals by some plant species with exceptional capability in absorbing and superaccumulating metals from soils. Greenhouse study, field trial, and old mined area survey were conducted to evaluate growth response and Cu phytoextraction of Elsholtzia splendens in contaminated soils, which has been recently identified to be tolerant to high Cu concentration and have great potential in remediating contaminated soils. The results from this study indicate that the plant exhibited high tolerance to Cu toxicity in the soils, and normal growth was attained up to 80 mg kg(-1) available soil Cu (the NH4OAc extractable Cu) or 1000 mg kg(-1) total Cu. Under the field conditions, a biomass yield of 9 ton ha(-1) was recorded at the soil available Cu level of 77 mg kg(-1), as estimated by the NH4OAc extraction method. Concentration-dependent uptake of Cu by the plant occurred mainly at the early growth stage, and at the late stage, there is no difference in shoot Cu concentrations grown at different extractable soil Cu levels. The extractability of Cu from the highly polluted soil is much greater by the roots than that by the shoots. The NH4OAc extractable Cu level in the polluted soil was reduced from 78 to 55 mg kg(-1) in the soil after phytoextraction and removal of Cu by the plant species for one growth season. The depletion of extractable Cu level in the rhizosphere was noted grown in the mined area, even at high Cu levels, the NH4OAc extractable Cu in the rhizosphere was 30% lower than that in the bulk soil. These results indicate that phytoextraction of E. splendens can effectively reduce the plant-available Cu level in the polluted soils.  相似文献   

17.
Pioneer plant species were observed growing on mined areas despite unfavourable conditions such as extreme pH, high salinity and phytotoxic levels of several elements. This study evaluated the contribution of pioneer species to the accumulation of soil organic matter (SOM). We collected 51 samples from 17 non-vegetated, natural and pioneer-vegetated sites in five highly saline mined areas in the Sierra de Cartagena (Spain). The composition of SOM was determined using total C, N and S elemental anlayzer, pyrolysis and solid state (13)C NMR spectroscopy. Results showed that pioneer species like Lygeum spartum had contributed approximately 11 kg SOM kg(-1) soil into the Balsa Rosa sites since 1991; it will take approximately 120 years of continuous growth for this plant to increase the SOM level comparable to natural site. In the Portman Bay area, Sarconia ramosissima and Phragmites australis can contribute SOM equivalent to present day SOM in natural sites in the next 30 years. Low quality SOM (C/N>20) deposited by pioneer plants was dominated by lignin-derived organic compounds such as phenols, guaiacols, syringols and aromatics while polyssacharides and alkyls were the major components in high quality SOM (C/N<20). The addition of SOM to mine wastes is similar to early stages of soil formation and with time, we expect the formation of well-developed Ah horizon on the surface of mine wastes. The presence of P. australis on several sites makes it a very good candidate for successful revegetation of hostile conditions found in many mined sites.  相似文献   

18.
Chen XH  Zhao B 《Chemosphere》2007,68(8):1548-1555
A glasshouse experiment was carried out to study the effect of mycorrhizal formation by Gigaspora margarita, Glomus intraradices or Acaulospora laevis on plant growth and lanthanum (La) uptake of Astragalus sinicus L. in soils spiked with La at five levels (0, 1, 5, 10 and 20 mg kg(-1)). La application decreased mycorrhizal infection frequency and activity of fungal succinate dehydrogenase and alkaline phosphatase. Increasing La concentrations in soil led to increased La accumulation in tissues of both mycorrhizal and non-mycorrhizal plants, but inoculation with Gig. margarita or G. intraradices reduced La concentrations in shoots and roots at higher concentrations of La in the soil. Plant biomass and P concentrations in shoots and roots were reduced by La application, but increased by inoculation with Gig. margarita or G. intraradices. The results showed that appropriate AM fungi colonization could be effective in alleviating La toxicity in A. sinicus.  相似文献   

19.
In Kazakhstan, there is a problem of finding ways to clean local sites contaminated with pesticides. In particular, such sites are the deserted and destroyed storehouses where these pesticides were stored; existing storehouses do not fulfill sanitary standards. Phytoremediation is one potential method for reducing risk from these pesticides. Genetic heterogeneity of populations of wild and weedy species growing on pesticide-contaminated soil provides a source of plant species tolerant to these conditions. These plant species may be useful for phytoremediation applications. In 2008–2009 and 2011, we surveyed substances stored in 80 former pesticide storehouses in Kazakhstan (Almaty oblast) to demonstrate an inventory process needed to understand the obsolete pesticide problem throughout the country, and observed a total of 354.7 t of obsolete pesticides. At the sites, we have found organochlorine pesticides residues in soil including metabolites of dichlorodiphenyltrichloroethane and isomers of hexachlorocyclohexane. Twenty-four of the storehouse sites showed pesticides concentrations in soil higher than maximum allowable concentration which is equal to 100 μg kg?1 in Kazakhstan. Seventeen pesticide-tolerant wild plant species were selected from colonizing plants that grew into/near the former storehouse’s pesticides. The results have shown that colonizing plant annual and biannual species growing on soils polluted by pesticides possess ability to accumulate organochlorine pesticide residues and reduce pesticide concentrations in soil. Organochlorine pesticides taken up by the plants are distributed unevenly in different plant tissues. The main organ of organochlorine pesticide accumulation is the root system. The accumulation rate of organochlorine pesticides was found to be a specific characteristic of plant species and dependent on the degree of soil contamination. This information can be used for technology development of phytoremediation of pesticide-contaminated soils.  相似文献   

20.
Concentrations of Pb, Cd, Cu, Ni, Fe, Zn, Mn, Ca, P, Mg and S were measured in tissues of mink (Mustela vision) and river otter (Lutra canadensis) from five areas of Ontario, Canada. Bone Pb levels in both species were lowest in animals from the collection site most remote from industrial activity and atmospheric deposition of pollutants. Mean liver and kidney Cd levels were also different between collection sites and may reflect natural and/or anthropogenic sources. Copper levels in liver, but not kidney, were elevated in mink and otter from the heavily Cu-contaminated Sudbury region. However, tissue levels did not reflect environmental loading of other metals, such as Fe, Ni and Zn, in the Sudbury area. This may be a function of effective homeostatic regulation in mammals, or low potential for biomagnification of these elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号