首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spatial distribution of chlorinated hydrocarbons [chlorinated pesticides (CPs) and polychlorinated biphenyls (PCBs)] and polycyclic aromatic hydrocarbons (PAHs) was measured in riverine and estuarine sediment samples from Pearl River Delta, China, collected in 1997. Concentrations of CPs of the riverine sediment samples range from 12 to 158 ng/g, dry weight, while those of PCBs range from 11 to 486 ng/g. The CPs concentrations of the estuarine sediment samples are in the range 6-1658 ng/g, while concentrations of PCBs are in the range 10-339 ng/g. Total PAH concentration ranges from 1168 to 21,329 ng/g in the riverine sediment samples, whereas the PAH concentration ranges from 323 to 14,812 ng/g in the sediment samples of the Estuary. Sediment samples of the Zhujiang River and Macao harbor around the Estuary show the highest concentrations of CPs, PCBs, and PAHs. Possible factors affecting the distribution patterns are also discussed based on the usage history of the chemicals, hydrologic condition, and land erosion due to urbanization processes. The composition of PAHs is investigated and used to assess petrogenic, combustion and naturally derived PAHs of the sediment samples of the Pearl River Delta. In addition, the concentrations of a number of organic compounds of the Pearl River Delta samples indicate that sediments of the Zhujiang river and Macao harbor are most likely to pose biological impairment.  相似文献   

2.
Zhang ZL  Hong HS  Zhou JL  Huang J  Yu G 《Chemosphere》2003,52(9):1423-1430
Persistent organochlorine compounds were analyzed in surface water, porewater and surficial sediment samples from Minjiang River Estuary, which is the first large river in Fujian Province, Southeast of China. The total concentrations of 18 organochlorine pesticides were 214.4-1819, 4541-13,699 ng/l, 28.79-52.07 ng/g in surface water, porewater and sediments (dry weight) respectively, and those of 21 polychlorinated biphenyls (PCBs) in the three phases were: 203.9-2473, 3192-10,855 ng/l, 15.14-57.93 ng/g respectively. The results showed that the concentrations of these selected organochlorine pesticides and PCBs in porewater were higher than those in surface water. It may be due to the fact that these organic hydrophobic pollutants tend to stay in the sediments, and then re-suspend from the sedimentary phase to the upper water. We have analyzed the distribution characteristics of individual organochlorine pesticide components and PCBs, and found that alpha-HCH, DDE, Heptachlor, Endosulfan II, Methoxychlor were the most common organochlorine pesticides contaminants. Considering the groups of HCHs (HCHs=alpha-HCH+beta-HCH+gamma-HCH+delta-HCH) and DDTs (DDTs=DDT+DDD+DDE), the predominance of beta-HCH, DDE in all water, porewater and sediment samples was clearly observed. This observation suggested that beta-HCH was resistant to biodegradation and the DDTs had been transformed to its metabolites, DDE and DDD, of which DDE that was more un-degradable. The PCB congeners containing 3-6 chlorines had the great preponderance in the three phase. These results were compared with those present in other estuaries and harbors. A risk assessment was evaluated for the persistent organic pollutants in the Minjiang River Estuary.  相似文献   

3.
The spatial distribution, composition, and sources of polycyclic aromatic hydrocarbons (PAHs) in sediments and suspended particulate matter (SPM) from the Pearl River Estuary and adjacent coastal areas were examined. Total PAH concentrations varied from 189 to 637 ng/g in sediments and 422 to 1,850 ng/g in SPM. PAHs were dominated by 5,6-ring compounds in sediments and by 2,3-ring compounds in SPM samples. Assessment of PAH sources suggested that biomass and coal combustion is the major PAH source to the outer part of the estuary sediments and that petroleum combustion is the major PAH source to the inner part of estuary sediments. As for SPM samples, PAH isomer pair ratios indicated multiple (petroleum, petroleum combustion, and biomass and coal combustion) PAH sources, and significant temporal variations could exist for the sources of water column PAHs in the study area. The distribution of perylene in SPM samples indicated that the river was the dominant source of perylene in SPM and that perylene could be taken as an index to assess the contribution of river inflow to the total PAHs in SPM samples. The high concentration of perylene in the sediment was indicative of an in situ biogenic origin.  相似文献   

4.
The distribution of 16 polycyclic aromatic hydrocarbons (PAHs) was determined in water, sediment and pore water of the Jiulong River Estuary and Western Xiamen Sea, China. Total PAH concentrations varied from 6.96 to 26.9 microg/l in water, 59-1177 ng/ g dry weight in surficial sediments, and 158-949 microg/l in pore water. The PAHs were present in higher levels in pore water than in surface water, due possibly to higher concentrations of dissolved organic carbon or colloids with which the hydrophobic pollutants were strongly associated. Such a concentration gradient implies a potential flux of pollutants from sediment pore water to overlying water. The levels of PAHs in water and pore water were significantly higher than those found in 1998, suggesting recent inputs of these compounds into the area and re-working of sediment phase. The composition pattern of PAHs in the three phases was dominated by high molecular weight PAHs, in particular 5-ring PAHs. The salinity profile of dissolved PAHs suggested that they all behaved non-conservatively due to deviation from the theoretical dilution line. No correlation was found between PAH concentrations in sediment and those in pore water, and the correlation between the partition coefficients of PAHs and sediment organic carbon content was not significant, suggesting the complexity of the partition behaviour of PAHs. As a result of high PAH concentrations in water and pore water, it is likely that they may have caused mortality to certain exposed organisms.  相似文献   

5.
The concentrations of total polycyclic aromatic hydrocarbons (sigmaPAHs) and 15 individual PAH compounds in 20 surface sediments collected from four mangrove swamps in Hong Kong were analysed. sigmaPAH concentrations ranged from 356 to 11,098 ng g(-1) dry weight with mean and median values of 1992 and 1,142 ng g(-1), respectively. These values were significantly higher than those of marine bottom sediments of Hong Kong harbours, suggesting that more PAHs were accumulated in mangrove surface sediments. The concentrations of sigmaPAHs as well as individual PAH compound varied significantly among mangrove swamps. The swamps heavily polluted by livestock and industrial sewage, such as Ho Chung and Mai Po, had much higher concentrations of total PAHs and individual PAH than the other swamps. The PAH profiles were similar among four mangrove swamps, and were dominated by naphthalene (two-ring PAH), fluorene and phenanthrene (three-ring PAH). The mangrove sediments had higher percentages of low-molecular-weight PAHs. These indicated that PAHs in mangrove sediments might originate from oil or sewage contamination (petrogenic input). Ratio values of specific PAH compounds such as phenanthrene/anthracene and fluoranthene/ pyrene, were calculated to evaluate the possible source of PAH contamination in mangrove sediments. These ratios varied among samples, suggesting that mangrove sediments might have a mixed pattern of pyrolytic and petrogenic inputs of PAHs. Sediments collected from Ho Chung mangrove swamp appeared to be more dominated by pyrolytic input while those from Tolo showed strong petrogenic contamination.  相似文献   

6.
Concentrations, spatial distribution and sources of 17 polycyclic aromatic hydrocarbons (PAHs) and methylnaphthalene were investigated in surface sediments of rivers and an estuary in Shanghai, China. Total PAH concentrations, excluding perylene, ranged from 107 to 1707 ng/g-dw. Sedimentary PAH concentrations of the Huangpu River were higher than those of the Yangtze Estuary. The concentration of the Suzhou River was close to the average concentration of the Huangpu River. PAHs source analysis suggested that, in the Yangtze Estuary, PAHs at locations far away from cities were mainly from petrogenic sources. At other locations, both petrogenic and pyrogenic inputs were significant. In the Huangpu and Suzhou Rivers, pyrogenic input outweighed other sources. The pyrogenic PAHs in the upper reaches of the Huangpu River were mainly from the incomplete combustion of grass, wood and coal, and those in the middle and lower reaches were from vehicle and vessel exhaust.  相似文献   

7.
The spatial and temporal distribution of polycyclic aromatic hydrocarbons (PAHs) has been investigated in Daya Bay, China. The total concentration of the 16 USEPA priority PAHs in surface sediments ranged from 42.5 to 158.2 ng/g dry weight with a mean concentration of 126.2 ng/g. The spatial distribution of PAHs was site-specific and combustion processes were the main source of PAHs in the surface sediments. Total 16 priority PAH concentration in the cores 8 and 10 ranged from 77.4 to 305.7 ng/g and from 118.1 to 319.9 ng/g respectively. The variation of the 16 PAH concentrations in both cores followed the economic development in China very well and was also influenced by input pathways. Some of the PAHs were petrogenic in core 8 while pyrolytic source was dominant in core 10. In addition, pyrolytic PAHs in both cores were mainly from the coal and/or grass and wood combustion.  相似文献   

8.
Martins M  Ferreira AM  Vale C 《Chemosphere》2008,71(8):1599-1606
Depth concentration profiles of PAHs, organic carbon and dissolved oxygen in non-colonised sediments and sediments colonised by Sarcocornia fruticosa from Mitrena salt marsh (Sado, Portugal) were determined in November 2004 and April 2005. Belowground biomass and PAH levels in below and aboveground material were also determined. In both periods, colonised sediments were oxygenated until 15-cm, rich in organic carbon (max 4.4%) and presented much higher PAH concentrations (max. 7.1 microg g(-1)) than non-colonised sediments (max. 0.55 microg g(-1)). Rooting sediments contained the highest PAH concentrations. The five- and six-ring compounds accounted to 50-75% of the total PAHs in colonised sediments, while only to 30% in non-colonised sediments. The elevated concentrations of PAHs in colonised sediments may be attributed to the transfer of dissolved PAH compounds towards the roots as plant uptake water and subsequent sequestration onto organically rich particles. A phase-partitioning mechanism probably explains the higher retention of the heavier PAHs. In addition oxygenated conditions of the rooting sediments favour the degradation of the lighter PAHs and explain the elevated proportion of the heavier compounds. Below and aboveground materials presented lower PAH concentrations (0.18-0.38 microg g(-1)) than colonised sediments. Only 3- and 4-PAHs were quantified in aboveground material, reflecting either preferential translocation of lighter compounds from roots or atmospheric deposition.  相似文献   

9.
Marine culture is thriving in China and represents a major component of the regional economy in coastal zones, yet the environmental quality of many of those areas has never been studied. This paper attempts to investigate the quality status of Daya Bay, a key aquaculture area in China. The levels of 16 polycyclic aromatic hydrocarbons (PAHs) were determined in water and sediment samples of the bay. The total concentrations of 16 PAHs varied from 4228 to 29325 ng l(-1) in water, and from 115 to 1134 ng g(-1) dry weight in sediments. In comparison to many other marine systems studied, the PAH levels in Daya Bay waters were relatively high, and at six sites they were sufficiently high (> 10 microg l (-1)) to cause acute toxicity. The PAH composition pattern in sediments suggest dominance by medium to high molecular weight compounds, and the ratio of certain related PAHs indicate important pyrolytic and petrogenic sources. Further analysis showed that the distribution coefficient (KD) increased with the particular organic carbon content of sediments, consistent with the PAH partition theory. The organic carbon normalised distribution coefficient (K(oc)) also increased with the compounds' octanol/water partition coefficient (K(ow)), confirming the potential applicability of the linear free energy relationships in the modelling and prediction of PAH behaviour in marine environments.  相似文献   

10.
Tonghui River, a typical river in Beijing, People's Republic of China, was studied for its water and sediment quality, by determining the levels of 16 polycyclic aromatic hydrocarbons (PAHs), 12 polychlorinated biphenyls (PCBs) and 18 organochlorine pesticides in water and sediment samples. Total PAHs, PCBs and organochlorine pesticides concentrations in water varied from 192.5 to 2651 ng/l, 31.58-344.9 ng/l and 134.9-3788 ng/l, respectively. The total PAHs, PCBs and organochlorine pesticides concentrations in surficial sediments were 127-928 ng/g, 0.78-8.47 ng/g and 1.79-13.98 ng/g dry weight, respectively. The results showed that the concentration of these selected organic pollutants in sediment was higher than those in surface water. It may be due to the fact that organic hydrophobic pollutants tend to stay in the sediments. The PAHs were dominated by 2-, 3-ring components in water samples and by 3- and 4-ring compounds in sediment. For organochlorines, alpha-HCH, delta-HCH, Heptachlor, Endosulfan II, DDT are the major organochlorine pesticides in water while Heptachlor, Dieldrin and DDE composed of 95% of total organochlorine pesticides in sediment. For HCHs (HCHs=alpha-HCH+beta-HCH+gamma-HCH+delta-HCH), the predominance of alpha-HCH of total HCHs were clearly observed in water and sediment. PCB18, PCB31 and PCB52 were predominant in water, on average these compounds collectively accounted for 67% of total PCBs. But in sediment, the predominant compounds were PCB28, PCB31 and PCB153, which accounted for 71% of total PCBs in sediment. The levels of micro pollutants in our study areas were compared with other studies.  相似文献   

11.
Polycyclic aromatic hydrocarbons in the sediments of the South China Sea   总被引:22,自引:0,他引:22  
Sixteen sediment samples, collected from the South China Sea, were analyzed for 11 parent polycyclic aromatic hydrocarbons (PAHs) using gas chromatography and gas chromatography-mass spectrometry. Total concentrations of the 11 PAHs studied in the sediments ranged from 24.7 to 275.4 ng/g with a mean of 145.9 ng/g dry sediment. PAH concentrations displayed a consistent distribution trend with the sediment organic carbon content. The linear regression analysis showed that the total concentration of PAHs in the sediment was significantly correlated to the sediment organic carbon content with a correlation coefficient of 0.735 (n=16). Special PAH compound ratios, such as phenanthrene/anthracene and fluoranthene/pyrene, were calculated to evaluate the relative importance of different origins. The collected data showed that pyrolytic input from anthropogenic combustion processes was predominant at almost all the stations investigated. Only one station, located in the proximity of oil wells, appeared to be contaminated predominantly by petrogenic input. Three anthropogenic PAHs, i.e. pyrene, benzo[a]pyrene and benzo[e]pyrene, exhibited similar distribution patterns in the studied area, implying that these compounds possess identical sources. However, perylene did not entirely follow the distribution trend of the three PAHs, suggesting that the sediment perylene probably derived from other sources such as in situ biogenic origins. Dibenzothiophene, a sulfur heterocyclic aromatic compound, was also measured in this study.  相似文献   

12.
Zhu L  Chen B  Wang J  Shen H 《Chemosphere》2004,56(11):99-1095
The concentrations of 10 polycyclic aromatic hydrocarbons (PAHs) were simultaneously measured for five times (July and November 1999–2002) in four water bodies of Hangzhou, China. To investigate possible sources of PAH contamination, sediments, soils, runoff water and atmospheric particles of the region were also analyzed for their PAH contents. The maximum levels of PAHs in the water bodies (34.4–67.7 μg/l) were found in July, while significantly lower PAH concentrations (4.7–15.3 μg/l) were measured in November. The contamination is substantial and it may have resulted in acute toxic effects on aquatic organisms. The measured PAH concentrations in sediments and soils (224–4222 ng/g), runoff water (8.3 μg/l) and air particles (2.3 μg/m3) are discussed in relation to concentrations and patterns found in the surface water bodies. Comparison of PAH levels in sediments and soils led to the conclusion that the erosion of soil material does not contribute significantly to the contamination of sediments. The atmospheric PAH deposition to water bodies in the city area of Hangzhou was estimated to be 530 tons/a, while the contribution of surface runoff water was estimated to be 30.7 tons/a. The ratios of selected PAH were then used to illuminate the possible origin of PAHs in the examined samples (petrogenic, pyrogenic).  相似文献   

13.
A total of 112 surface sediment samples covering virtually the entire Bohai Sea were analyzed for polycyclic aromatic hydrocarbons (PAHs), in order to provide the extensive information of recent occurrence levels, distribution, possible sources, and potential biological risk of these compounds in this area. Surface sediment samples were collected from the Bohai Sea using a stainless steel grab sampler. Sixteen PAHs were determined by a Finnigan TRACE DSQ gas chromatography/mass spectrometry. Diagnostic ratios, cluster analysis, and principal component analysis (PCA) with multivariate linear regression (MLR) were performed to identify and quantitatively apportion the major sources of sedimentary PAHs in the Bohai Sea. Concentrations of total PAHs in the Bohai Sea ranged widely from 97.2 to 300.7 ng/g (mean, 175.7?±?37.3 ng/g). High concentrations of PAHs were found in the vicinity of Luan River Estuary-Qinhuangdao Harbor, Cao River Estuary-Bohai Sea Center, and north of the Yellow River Estuary. The three-ring PAHs were most abundant, accounting for about 37?±?5 % of total PAHs. The four-ring and five-ring PAHs were the next dominant ones comprising approximately 29?±?7and 23?±?3 % of total PAHs, respectively. Concentrations of acenaphthylene, acenaphthene, and dibenz[a,h]anthracene are higher than Canadian interim marine sediment quality guideline values at most of the sites in the study area. Contamination levels of PAHs in the Bohai Sea were low in comparison with other coastal sediments in China and developed countries. The distribution pattern of PAHs and source identification implied that PAH contamination in the Bohai Sea mainly originates from petrogenic and pyrogenic sources. Further PCA/MLR analysis suggested that the contributions of spilled oil products (petrogenic), coal combustion, and traffic-related pollution were 39, 38, and 23 %, respectively. Pyrogenic sources (coal combustion and traffic-related pollution) contributed 61 % of anthropogenic PAHs to sediments, which indicates that energy consumption could be a dominant factor in PAH pollution in this area. Acenaphthylene, acenaphthene, and dibenz[a,h]anthracene are the three main species of PAHs with more ecotoxicological concern in the Bohai Sea.  相似文献   

14.
Xu J  Yu Y  Wang P  Guo W  Dai S  Sun H 《Chemosphere》2007,67(7):1408-1414
Fourteen surface sediment samples were collected from Lanzhou Reach of Yellow River, China in July 2005. The concentrations of 16 priority polycyclic aromatic hydrocarbons (PAHs) were determined by gas chromatography equipped with a mass spectrometry detector (GC-MS). Total concentrations of the PAHs ranged from 464 to 2621 ng/g dry weight. Sediment samples with the highest PAH concentrations appeared at the downstream of Lanzhou City, where there was the biggest wastewater discharge pipeline from Lanzhou Oil Refinery Factory and Lanzhou Chemical Industry Company. Municipal sewage also contributed to the PAH contamination in the sediments. A correlation existed between the sediment organic carbon content (f(oc)) and the total PAH concentrations (r(2)=0.57), suggesting that sediment organic carbon content played an important role in controlling the PAHs levels in the sediments. According to the observed molecular indices, PAHs contamination in Lanzhou Reach of Yellow River originated both from the high-temperature pyrolytic processes and from the petrogenic source, showing a mixed PAH input pattern, which was also confirmed by the results of a principal component analysis (PCA). According to the numerical effect-based sediment quality guidelines (SQGs) of the United States, the levels of PAHs at most studied sites in Lanzhou Reach of Yellow River should not exert adverse biological effects. Although at some sites (such as S10, S12, etc.) one PAH may exceed the effects range low (ERL), individual PAH did not exceed the effects range median (ERM). The results indicated that sediments in all sites should have potential biological impact, but should have no impairment.  相似文献   

15.
The concentrations of organochlorine pesticides and PCBs were determined in surface sediments and freshwater molluscs (Angulyagra sp.) from water canals in the region of Hanoi city. Results obtained show that the concentration of sigma DDT compounds in sediments range from 7 to 80 ng/g (dry weight) and from 6 to 864 ng/g (dry weight) in the soft tissues of molluscs. The concentrations of sigma DDTs were higher in populated sites and much lower in rural sites, indicating that the DDT has been used for mosquito control and not as a crop protection chemical. Hexachlocyclohexanes (HCHs) have also been widely used in the region but the current environmental concentrations are much lower than those of DDT's, which is due to the less persistence of those compounds. Polychlorinated biphenyls (PCBs) were measured, for example as aroclor 1254, in concentrations up to 40 ng/g (dry weight) and up to 76 ng/g (dry weight) in sediments and molluscs, respectively. Molluscs from water canals are a very popular food in the region. Taking into consideration the high DDT levels measured in these molluscs their consumption is worrisome and may expose the population to high levels of endocrine disrupting substances. Current PCB levels in sediments are lower than usually measured in industrialized countries. Therefore, PCB concentrations in aquatic molluscs are still also relatively low. These snails do not have enzyme ability to metabolize most of the CB congeners and, thus, are passive accumulators and a significant transfer pathway of CBs to consumers. Therefore, measures to phase out the use of these persistent and bioaccumulable chemicals should be adopted in order to prevent further environmental contamination.  相似文献   

16.
Polycyclic aromatic hydrocarbon (PAH) concentrations were measured in Spartina alterniflora plants grown in pots of contaminated sediment, plants grown in native sediment at a marsh contaminated with up to 900 microg/g total PAHs, and from plants grown in uncontaminated control sediment. The roots and leaves of the plants were separated, cleaned, and analyzed for PAHs. PAH compounds were detected at up to 43 microg/g dry weight in the root tissue of plants grown in pots of contaminated soil. PAH compounds were detected at up to 0.2 microg/g in the leaves of plants grown in pots of contaminated soil. Concentrations less than 0.004 microg/g were detected in the leaves of plants grown at a reference site. Root concentration factor (RCF) values ranged from 0.009 to 0.97 in the potted plants, and from 0.004 to 0.31 at the contaminated marsh site. Stem concentration factor (SCF) values ranged from 0.00004 to 0.03 in the potted plants and 0.0002 to 0.04 at the contaminated marsh. No correlation was found between the RCF value and PAH compound or chemical properties such as logKOW. SCF values were higher for the lighter PAHs in the potted plants, but not in the plants collected from the contaminated marsh. PAH concentrations in the roots of the potted plants are strongly correlated with soil concentrations, but there is less correlation for the roots grown in natural sediments. Additional plants were grown directly in PAH-contaminated water and analyzed for alkylated PAH homologs. No difference was found in leaf PAH concentrations between plants grown in contaminated water and control plants.  相似文献   

17.
Polycyclic aromatic hydrocarbons (PAHs) in a sediment core taken from intertidal flat in the Yangtze Estuary were determined by gas chromatography-mass spectrometry. The results indicate that the total concentration of PAHs ranged from 0.08 to 11.74 microg/g. The concentration levels of total and individual PAHs changed dramatically with depth. The concentrations of PAHs were relatively high above 35 cm depth and remained constantly low below this depth. The historical record of PAHs in the core shows subsurface maximum (one or more peak values), followed by decreased levels to the surface and with depth. And, PAH sediment record in the core profile is in agreement with historically sewage discharge events during the 1980s to 1990s. The distribution of target molecule acenephthene, the fluoranthene/pyrene ratio, the proportion of 2-3-ring and 4-5-ring PAHs, and alkylated naphthalene to parent naphthalene in the core profile show that the sources in this area are characterized by petroleum-derived PAH contamination (mainly sewage discharge and the river runoff) and the incorporation of atmospheric inputs. Studies indicate the PAH profile pattern in this site in comparison with other regions appear to reflect its particular local position (near the sewage outlet). Moreover, physico-chemical conditions and sedimentation rate as well as biodegradation also affect the PAH concentration levels in the core sediments.  相似文献   

18.
The assessment of polycyclic aromatic hydrocarbons (PAHs) contamination in surface sediments from the Yangtze estuary which is a representative area affected by anthropogenic activity (rapid industrialization, high-population density, and construction of dams upstream) in the world was systematically conducted. Fifty-one samples were analyzed by high-performance liquid chromatography (HPLC). The ??PAHs in all sediments varied from 76.9 to 2,936.8?ng?g?1. Compared with other estuaries in the world, the PAH levels in the Yangtze estuary are low to moderate. Phenanthrene, acenaphthylene, fluoranthene, and pyrene were relatively abundant. The ??PAH levels and composition varied obviously in different estuarine zones due to different sources. The highest ??PAHs concentration was observed in the nearshore of Chongming Island. The PAH composition showed that four to six ring PAHs were mainly found in the nearshore areas, while two to three ring PAHs were in the farther shore zones. The PAHs in the Yangtze estuary were derived primarily from combustion sources. A mixture of petroleum combustion and biomass combustion mainly from coal combustion and vehicle emission was the main source of PAHs from the nearshore areas, while the spill, volatilization, or combustion of petroleum from shipping process and shoreside discharge were important for PAHs in the farther shore areas. The result of potential ecotoxicological risk assessment based on sediment quality guidelines indicated low PAH ecological risk in the Yangtze estuary. The study could provide foundation for the protection of water quality of the Yangtze estuary by inducing main sources input.  相似文献   

19.
Pesticides and PCBs in sediments and fish from the Salton Sea, California, USA   总被引:13,自引:0,他引:13  
The Salton Sea, the largest manmade lake in California, is officially designated by the State of California as an agricultural drainage reservoir. The purpose of this study was to determine organochlorine and organophosphorous pesticides, as well as polychlorinated biphenyl (PCB) concentrations in sediments and fish tissues in the Salton Sea and evaluate the relative ecological risk of these compounds. Sediment samples were taken during 2000-2001 and fish tissues (Tilapia mossambique, Cynoscion xanthulu) were collected in May 2001. All samples were analyzed for 12 chlorinated pesticides, 6 organophosphorus pesticides, and 55 polychlorinated biphenyl (PCB) congeners. SigmaDichlorodiphenyltrichloroethane (SigmaDDT) and total PCB concentrations observed in sediments ranged from 10 to 40 and 116 to 304 ng/g dry wt, respectively. DDT/DDD ratios in sediments and fish tissues of the northern Sea in 2001 indicated recent DDT exposure. Lindane, dieldrin, dichlorodiphenylethane (DDE) and total PCB concentrations detected in sediments exceeded probable effect levels established for freshwater ecosystems, and pp-DDE and total PCB concentrations were higher than effect range-median values developed for marine and estuarine sediments. In fish liver, concentrations of endrin and SigmaDDT exceeded threshold effect level established for invertebrates. SigmaDDT concentrations detected in fish tissues were higher than threshold concentrations for the protection of wildlife consumers of aquatic biota. DDE concentrations in fish muscles tissues were above the 50 ng/g concentration threshold for the protection of predatory birds. Dimethoate, diazinon, malathion, chlorpyrifos, disulfoton varied from < or = 0.15 to 9.5 ng/g dry wt in sediments and from < or = 0.1 to 80.3 ng/g wet wt in fish tissues. Disulfoton was found in relatively high concentrations (up to 80.3 ng/g) in all organs from Tilapia and Corvina. These results demonstrate continued contamination of specific organochlorine compounds in sediments and resident fish species of the Salton Sea.  相似文献   

20.

Purpose

The aim of this study was assess co-exposure to DDT, DDE (main DDT metabolite), and PAHs (1-hydroxypyrene) in areas where biomass is used to cook and to heat homes and where DDT was used to combat malaria transmission.

Methods

During 2009, we analyzed a total of 190 blood and urine samples from children living in six communities in Mexico. Quantitative analyses of DDT and DDE were performed using gas chromatography coupled with mass spectrometry. Analyses of 1-hydroxypyrene were performed by HPLC using a fluorescence detector.

Results

In this work, we found high levels of DDT and its principal metabolite (DDE) in the blood of children living in four communities in Chiapas located in the southeastern region of Mexico (range, Conclusion This study demonstrates that children in these communities were exposed to DDT and its metabolites, and to other contaminants generated by the combustion of firewood. Therefore, the complex mixture studied in this study (PAHs and DDT/DDE) requires further research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号