首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
耕地土壤中交换态钙镁铁锰铜锌相关关系研究   总被引:13,自引:0,他引:13  
应用主成份分析、聚类分析和相关性分析对沈阳市郊区1994个耕地土壤样本(0-20cm)的交换态钙、镁、铁、锰、铜、锌含量进行研究,结果表明,影响钙与镁、铁与锰、铜与锌分布的主因子分别在相同的主成份组中,钙与镁、铁与锰、铜与锌之间的相关系数较大,铁、锰、铜、锌之间均为极显著正相关关系,钙与铁、锰、铜、锌均为负相关关系,说明元素的生物地球化学属性对其地理分布有较大的影响。  相似文献   

2.
Monitoring hazardous air pollutants is needed for understanding their spatial and temporal distribution and ultimately to minimize their harmful effects. For the first time, the moss biomonitoring technique has been applied to air pollution monitoring in South Albania. Moss samples were collected during the period of September–October 2010, and were analyzed for total concentration of the elements Al, As, Ba, Ca, Cd, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, P, Pb, Sr, V, and Zn by inductively coupled plasma–atomic emission spectrometry. Geographical distribution maps of the elements over the sampled territory were constructed using geographic information systems technology. Multivariate statistical analysis was applied to distinguish elements mainly of anthropogenic origin from those predominantly originating from natural sources. Four factors were identified: Factor 1 reflects wind-blown mineral particles or local emissions from industry (Al, As, Ba, Ca, Cr, Cu, Fe, Mn, Ni, V, Zn); Factor 2 is related to long-range atmospheric transport of elements or local emissions from industry (Cd, Pb); Factor 3 (Na, Mg) and Factor 4 (K) reflect the natural origin of elements as crustal, marine, and vegetation components.  相似文献   

3.
由于重金属的毒理性及其对水生生态系统的重要影响,水生环境的重金属污染已成为全世界关注的问题.渭河是黄河的第一大支流,近年来随着沿岸社会经济的发展,渭河的水质受到严重的威胁,但是对渭河流域地表水重金属的污染状况缺乏全面评估.以渭河流域关中段为研究区域,采集了该流域35个地表水样品,检测了12种重金属元素(Cr、Mn、Fe...  相似文献   

4.
Acid rain is a serious environmental problem worldwide. In the present study, we investigated the effect of acid rain (1:1 equivalent basis H2SO4:HNO3) at pH values of 2.0, 4.0 and 7.0 on the fractionation of heavy metals (Cd, Cu, Fe, Mn, Ni, Pb and Zn) and major elements (K, Na, Ca, and Mg) in contaminated calcareous soils over a 2084 h period. Heavy metals and major elements in soil samples were fractionated before and after 2084 h kinetic release using a sequential extraction procedure. Before kinetic studies the predominant fractions of K, Na, Ca, Mg, Cd and Ni were mainly associated with carbonate fraction (CARB), whereas Fe, Mn and Zn were associated with the Fe–Mn oxide fraction (Fe–Mn oxide). The highest percentage of Pb and Cu were found in the exchangeable (EXC) and organic matter (OM) fractions, respectively. After kinetic study using different simulated acid rain solutions, the major fractions of heavy metals (expect of Cu) and Na was the same as before release. Upon the application of different acid rain solutions, K and Mg were found dominantly in Fe–Mn oxide fraction, whereas Ca was in the EXC fraction. The results provide valuable information regarding metal mobility and indicated that speciation of metals (Cu and Zn) and major elements in contaminated calcareous soils can be affected by acid rain.  相似文献   

5.
In Asembagus (East Java, Indonesia) irrigation water is contaminated with effluent from the hyperacid Ijen Crater Lake resulting in a low pH and high levels of various elements. As a first step towards a risk assessment, locally produced food items (rice, maize, cassava leaf, cassava root, peanuts) were collected and concentrations of As, B, Ca, Cd, Co, Cu, Fe, Mg, Mn, Mo, Ni, Pb, V, Zn were compared to samples from a reference area and with literature values. Further, concentrations in rice were compared to total soil concentrations in paddy fields. Compared to the reference area, food items produced in the contaminated area had increased levels of Cd, Co, Ni and Mn in particular, while levels of Mo were lower. In contrast, total soil concentrations of Cd and Mn in particular have decreased whereas especially Mo was increased. In combination with the observed soil acidification, it is likely that the bioavailable concentration of most elements in the contaminated soil is higher (except for Mo) due to an increased weathering rate and/or input via the contaminated irrigation water. In terms of human health, concentrations in foods were generally within normal literature values. However, it was observed that essential elements (in particular Fe) known for their inhibitory effects on e.g. Cd and Mn toxicity did not accumulate in crops whereas Cd and Mn did.  相似文献   

6.
Geochemical mapping of soils and selected plant species has been carried out in the Mole National Park, Ghana. The distribution of the essential nutrients: cobalt, copper and manganese is largely controlled by bedrock geology, while the geochemical dispersion of Ca, I, Fe, Mg, Mo, P, K, Se, Na and Zn has been modified by soil and hydromorphic processes. From selective extraction experiments, Fe, Mn and Co are found to be largely fixed in the soil mineral fraction. Larger proportions of Cu, I, Mo, Se and Zn are EDTA extractable and have a high chelation potential.Cobalt, Cu and Mn were preferentially concentrated in grass species while molybdenum and selenium are concentrated in browse plants. Copper uptake is antagonistic to Fe, Mo and Zn accumulation in all plant and grass samples. Similarly, Se and Mn appear antagonistic and Fe uptake is antagonistic to Co, Cu, Mn, Mo and Zn.The low concentration of P points to a potential dietary deficiency of this element throughout the park. Cobalt deficiency may also occur due to a love extractability of these elements in the soils and low concentration in plants. However, the lack of data on the elemental requirements of wildlife allows only tentative conclusions to be drawn.  相似文献   

7.
Eighteen representative sites for the Austrian grain-growing and eight for the potato-growing zones (soils and crops) were investigated. On each site, total element contents (B, Ba, Ca, Cd, Co, Cu, Fe, K, Li, Mg, Mn, Mo, Na, P, Sr and Zn) were determined in 4–12 varieties of winter wheat (n = 136), 6 varieties of spring durum wheat (n = 30), 5 varieties of winter durum wheat (n = 15), 7 varieties of rye (n = 49), 5 varieties of spring barley (n = 30) and 5 varieties of potatoes (n = 40). Element accumulations in grain species and potato tubers varied significantly with site conditions, with the main exceptions for B in potatoes and wheat as well as for Zn, Cu and Co in durum wheat. On average, across all investigated sites, differences in varieties occurred concerning the elements Ca, Cd, Ba, Sr and Zn (except Zn in potatoes and winter durum). A rough estimation revealed that an average Austrian consumer of wheat, rye and potatoes meets more than 50% of the needs of daily element intake for K, P and Mg, between 36 and 72% for Fe, Zn and Cu, and more than 100% for Co, Mo and Mn. In particular, the elements Ca and Na have to be added from other sources.  相似文献   

8.
姬松茸中Cu,Zn,Ag,Cd和Hg累积特性的初步研究   总被引:3,自引:1,他引:2  
对三种不同产地的姬松茸子实体,经过微波消解后,采用电感耦合等离子体发射光谱法(ICP- OES)、原子吸收光谱法(AAS)和原子荧光光谱法(AFS)测定了其中Ag,Al,As,Au,B,Ba,Bi,Ca,Cd,Cr,Co,Cu,Fe,Hg,K,La,Mg,Mn,Mo,Na,M,P,Pb,Rb,S,Sb,Se,Sn,Sr,Ti,V和Zn等32种元素的含量,并用高效液相色谱和电感耦合等离子质谱联用技术(HPLC-ICP-MS)分析了其中Hg元素的形态.另外,还探讨了Cu,Zn,Ag,Cd,Hg及一些相关元素在姬松茸子实体不同部位的分布特征.研究表明:与一些常见种类的大型真菌相比,姬松茸对Cu,Zn,Ag,Cd,Hg具有较强的累积能力,累积的Hg主要以Hg~(2 )形态存在,CH_3Hg~ 占总Hg比例在15%以下.Cu,Zn,Ag,Cd和Hg在姬松茸子实体不同部位的分布特征为:从菌柄下部到上部、从菌盖中心到边缘元素含量逐渐增加;P有助于提高姬松茸对Cu,Zn,Ag,Cd,Hg的累积能力,而Ca似乎起拮抗作用.  相似文献   

9.
检测分析了5种水培蔬菜中4种常量金属元素、18种稀有金属元素以及10种重金属元素含量,并与对照组陆生蔬菜金属元素含量进行比较,评价水培蔬菜的食用安全性。结果表明,污染水体中水培蔬菜的金属元素富集水平是不同的。常量金属元素平均富集系数为2~150倍;稀有元素平均富集量总体上高于陆生蔬菜;重金属元素富集系数大多在10倍左右,与陆生蔬菜重金属元素含量相比,两者均在同一水平,低于国家2001年10月1日执行的蔬菜农产品安全质量标准。  相似文献   

10.
To know the interrelationship between some metals in different ecosystem components (water, sediment, aquatic plant and fish), many samples from these components were collected from four bights at the Nasser Lake, Egypt, and analyzed for Fe, Mn, Zn, Ca, Mg, Pb, Cd, Ni, Co, Cu and Cr using atomic absorption spectrophotometer. Different distribution factors (bioaccumulation factor – BF, discrimination factor – DF and enrichment factor – EF) were applied on the results of analysis. Data showed that the relatively high concentration of measured metals in water samples are derived from fish farms, and discharge of tourism and trade ships. Applying single leaching sequential technique on sediment samples, using different extracting solutions, revealed a strong ability of trace metals to adsorb on or co-precipitate with amorphous Fe/Mn oxides. High concentrations of Fe, Mn, Co and Ni were measured in the intestine while high Cd and Cr concentrations were recorded in the stomach in both Tilapia (nilotica and galilea). Tilapia galilea accumulated high Pb, Cu and Zn concentrations in their stomach, while in nilotica high concentrations of Pb, Cu and Zn were measured in the intestine, liver and muscles, respectively. Myriophyllum spicatum (an aquatic plant) in the lake recorded high concentrations of Fe, Mn and Zn. Bioaccumulation factors of studied elements in the different bights components indicate that the elevated concentration of measured elements in the aquatic plant and Tilapia (nilotica and galilea) are derived from water, reflecting the increase of human activities in Nasser Lake in recent years. However, the present study concluded that all the elements studied were still below the natural back-ground levels, except Zn and Cu.  相似文献   

11.
采用ICP法测定了不同地区何首乌植物及其生境土壤中的15种元素(Al、B、Ba、Ca、Cu、Fe、K、Mg、Mn、Na、Ni、P、Sr、Ti、Zn),分析比较了各种元素在不同地区何首乌体内和生境土壤中的分布规律及不同地区何首乌对无机元素的吸收富集能力.结果表明,不同地区何首乌和土壤中无机元素含量存在着显著差异,德庆、井冈山、靖西三地何首乌的Mn含量较高;不同地区何首乌对元素的富集系数无显著性差异,而何首乌对不同无机元素的富集系数则有显著差异,主要表现在对Ca、K、Mg、Sr的吸收富集能力较强.表6参14  相似文献   

12.
Major and trace elements were determined in nzu (calabash clay) from Abia State, Nigeria, by atomic absorption spectrophotometry. Mean calcium content was 1900 ± 100 mg/kg dry weight, followed by Na 1400 ± 96, Fe 1500 ± 480, K 260 ± 150, and Mg 100 ± 48 mg/kg. The mean concentration of Zn was 35 ± 5, Cu 16 ± 2.0, Mn 17 ± 5.0, Cr 10 ± 1.0, Ni 9.0 ± 2.0, Cd 4.3 ± 1.7, Co 3.9 ± 1.1, and Pb 3.0 ± 0.8 mg/kg. The contents of Ba and V were <0.4 mg/kg. The mean Pb content was higher than the WHO safe limit (0.4 mg/kg) and EU (1 mg/kg) limit for food. Estimates of daily intake of Cd, Cr, Fe, and Ni upon consuming 30–80g of nzu were above the recommended daily intake values. The Ba, Ca, Co, K, Mg, Na, and Zn contents should not exceed the recommended daily intake while Cd, Ni, and Pb would pose health risks, especially in pregnancy. The total target hazard quotient indicated potential health risks to consumers.  相似文献   

13.
Optimizing the beneficial mineral elements in rice grains is of interest for rice breeders. To study the environmental effects on mineral accumulation in rice grains, we grew a double-haploid (DH) population derived from the cross between cultivars Chunjiang 06 (CJ06, a japonica rice) and TN1 (an indica rice) under two different ecological environments (Lingshui and Hangzhou, China) and determined the content of Ca, Fe, K, Mg, Mn, P, and Zn in brown rice. These contents show transgressive variation among the DH lines. Subsequently, the quantitative trait loci (QTLs) for mineral accumulation in rice grain were mapped on the chromosomes using CJ06/TN1 population. For the 7 mineral elements investigated, 23 and 9 QTLs were identified for Lingshui and Hangzhou, respectively. Of these, 24 QTLs were reported for the first time in this study and 8 QTLs are consistent with previous reports. Only 2 QTLs for Mg accumulation have been detected in both environments, indicating that mineral accumulation QTLs in rice grains are largely environment dependent. Additionally, co-localizations of QTLs for Mn and Zn, Mg and P, and Mg and Mn accumulation have been observed, implying that these loci might be involved in the accumulation of different elements. Furthermore, the QTLs for the accumulation of Fe, K, Mg, Mn, P, and Zn were mapped to a region close to each other on chromosomes 8 and 9, suggesting that clusters of genes exist on chromosomes 8 and 9. Further characterization of these QTLs will provide a better understanding of the molecular mechanism responsible for mineral accumulation in rice grains.  相似文献   

14.
In the developing world, vegetables are commonly grown in suburban areas irrigated with untreated wastewater containing potentially harmful elements (PHEs). In Pakistan, there is no published work on the bioaccessibility aspect of PHEs and dietary minerals (DMs) in sewage-irrigated soil or the vegetables grown on such soils in Pakistan. Several industrial districts of Pakistan were selected for assessment of the risk associated with the ingestion of vegetables grown over sewage-irrigated soils. Both the total and bioaccessible fraction of PHEs (Cd, Co, Cr, Ni, and Pb) and DMs (Fe, Cu, Mn, Zn, Ca, Mg, and I) in soils and vegetable samples were measured. The concentrations of these PHEs and DMs in sewage-irrigated and control soils were below published upper threshold limits. However, compared to control soils, sewage irrigation over the years decreased soil pH (7.7 vs 8.1) and enhanced dissolved organic carbon (1.8 vs 0.8 %), which could enhance the phyto-availability of PHEs and DMs to crops. Of the PHEs and DMs, the highest transfer factor (soil to plant) was noted for Cd and Ca, respectively. Concentrations of PHEs in most of the sewage-irrigated vegetables were below the published upper threshold limits, except for Cd in the fruiting portion of eggplant and bell pepper (0.06–0.08 mg/kg Cd, dry weight) at three locations in Gujarat and Kasur districts. The bioaccessible fraction of PHEs can reduce the context of dietary intake measurements compared to total concentrations, but differences between both measurements were not significant for Cd. Since the soils of the sampled districts are not overly contaminated compared to control sites, vegetables grown over sewage-irrigated soils would provide an opportunity to harvest mineral-rich vegetables potentially providing consumers 62, 60, 12, 104, and 63 % higher dietary intake of Cu, Mn, Zn, Ca, and Mg, respectively. Based on Fe and vanadium correlations in vegetables, it is inferred that a significant proportion of total dietary Fe intake could be contributed by soil particles adhered to the consumable portion of vegetables. Faecal sterol ratios were used to identify and distinguish the source of faecal contamination in soils from Gujranwala, Gujarat, and Lahore districts, confirming the presence of human-derived sewage biomarkers at different stages of environmental alteration. A strong correlation of some metals with soil organic matter concentration was observed, but none with sewage biomarkers.  相似文献   

15.
冀北山地山杨桦木林生态系统水化学特征研究   总被引:4,自引:0,他引:4  
刘阳  杨新兵  陈波  赵心苗  田超  张建华 《生态环境》2011,20(11):1665-1669
降水是森林生态系统的一个主要的养分输入源,观测并分析降水化学对于准确地估算森林生态系统养分循环的养分元素浓度与量显得极为重要。对冀北山地山杨桦木林穿透雨、树干茎流和枯透水中的Ca、Fe、K、Mg、Mn、Zn共6种养分元素进行了测定。结果表明:(1)大气降水经过林冠层后其水化学特征明显发生了变化,化学元素含量均有不同程度增加,化学元素含量排序为Ca〉K〉Mg〉Fe〉Mn〉Zn,其中Mn元素的增长倍数最多。树干径流各项指标均增长很多,化学元素含量排序为K〉Ca〉Mg〉Fe〉Mn〉Zn。枯落物水中K和Ca元素浓度增加最大。(2)大气降雨中Zn的变异系数最大,达2.853;K和Ca元素的变异系数最小,为0.158、0.163。穿透雨、树干茎流和枯透水中最大变异系数分别为Mn元素0.717、Zn元素为1.588、Fe元素为0.553。(3)经过淋洗后水样中各元素的浓度均有所增加,穿透水、树干径流和枯透水中K、Ca增加较多,Fe、Zn的淋溶量较少。  相似文献   

16.
Chemical composition of plant silica phytoliths   总被引:1,自引:0,他引:1  
Silica phytoliths are a subgroup of biogenic opal. Silica phytoliths are formed in many plant species and remain preserved in soil and sediments after plant decay. The chemical composition of fossil phytoliths may reveal ancient plant taxa, soil composition and climate. However, actually detailed knowledge on silica phytolith composition is scarce. Here we present result of instrumental neutron activation analysis of barley awns, stems and leaves, and barley phytoliths. The elements of interest were Na, Mg, Al, Si, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Zn, As, Br, Rb, Sb, Cs, Ba, La, Ce, Sm, Eu, Tb, Dy, Yb, Hf, Ta, W, Th, and U. We compared three phytolith extraction methods: dry ashing, acid digestion, and acid digestion followed by incineration. We found that sole acid digestion is inefficient to remove organic matter. By contrast both dry ashing and acid digestion followed by incineration are suitable for phytolith analysis. Comparison of phytoliths with their source plant material shows that phytoliths are enriched in terrigenous elements such as Al, Sc, Ti, V, Cs, Fe, rare earth elements, and depleted in the major inorganic constituents of plants such as K, Ca, Mg, Mn, Cl and Br.  相似文献   

17.
武汉月湖水体主要元素与浮游植物的PCA与CCA分析   总被引:1,自引:0,他引:1  
通过2007年1—12月对武汉月湖不同的取样点进行监测,并选择汉江琴台段水域作为研究对照,调查了月湖水体硅藻、蓝藻与水体主要元素的种类,采用PCA、CCA分析法探讨了月湖水体硅藻、蓝藻与水体元素种类的关系。结果表明:月湖水体中所含元素全年监测出28种;汉江琴台段水域中所含元素全年监测出27种。经PCA分析表明,月湖水体中累计贡献率较大为磷(P)、砷(As)、铁(Fe)、铜(Cu)、锰(Mn);汉江琴台段水域累计贡献率较大为硅(Si)、锑(Sb)、镉(Cd)、钒(V)、钡(Ba)、Ag(银)、钼(Mo)。月湖水体中蓝藻密度大于硅藻,汉江琴台段水域硅藻密度大于蓝藻。经CCA分析表明,月湖硅藻密度与硒(Se)、锶(Sr)、银(Ag)、Ba、铝(Al)呈正相关关系;月湖蓝藻密度与P、Cu、铬(Cr)呈正相关关系,月湖蓝藻密度与镁(Mg)、镍(Ni)、钙(Ca)、锌(Zn)、硫(S)呈负相关关系。CCA分析中,汉江琴台段硅藻密度与铅(Pb)、硼(B)、As、Cr、Zn、Al、Cu、Mn、Fe、P呈负相关关系,汉江琴台段硅藻密度与Mo、Ca、钴(Co)、V、Sr、Ag呈正相关关系;汉江琴台段蓝藻密度与钠(Na)、S、Mg、Ni、钾(K)呈负相关关系。月湖水体缺乏可溶硅(dissolved silicon,DSi),硅藻会提升对其他元素(Se、Sr、Ag、Ba、Al)的吸收能力,这些元素会起到缺乏元素(Si)近似的作用,替代性可能出现。水中各种元素的组态是导致月湖浮游植物群落发生演变的重要原因之一。  相似文献   

18.
Eleven metals (Ca, Mg, Fe, Zn, Cu, Mn, Cd, Co, Cr, Ni and Pb) were estimated in hair samples of metal arc welders and a control group with the same socioeconomic background. Nitric acid–perchloric acid wet digestion procedure was adopted for the estimation of endogenous metal contents by ICP-AE technique. The study exhibited the following increasing order of the metal concentrations: Cd??1, dry weight, respectively. On average, the levels of Mn, Ni, Pb and Fe were found to be 1.5–2.4 times higher in the hair of welders compared with controls. Besides age and exposure which were strongly correlated, Cu–Mg, Mn–Mg, Ca–Co and Cd–Zn also showed significantly positive correlations. The identification of metal sources, done by cluster and principal component analyses, revealed four factors: age and exposure; Cu, Mg, Mn and Fe; Ca and Co; Cd, Zn, Ni and Pb. High levels of Fe were found to have a depleting impact on Co levels. The arc welders were feared to accumulate heavy metals in their bodies due to long-term endogenous exposure.  相似文献   

19.

Selected toxic elements (total As, Cd, Cr, Hg, Pb, Sr, U and V) and essential elements (Co, Cu, Fe, Mn and Zn) were analyzed using an inductively coupled plasma mass spectrometry (ICP-MS) in unpolished and milled rice collected from Kazakhstan and milled rice from Spain and Portugal to evaluate the potential health risk to the population. Arsenic species (arsenite, arsenate, arsenobetaine, dimethylarsinate and monomethilarsonate) were analyzed using HPLC-IC-MS. From 146 samples analyzed, none of them exceeded the maximum limit set by the European Legislation for Cd or Pb or values recommended by the Codex Alimentarius. Concentrations of Sr, U and V were below LOD and those of Hg, Pb, Co and Cr between <LOD and 0.54 mg/kg (highest concentration of Cr) in milled rice. Portuguese rice samples contained the highest mean concentration of As, Hg, Pb, Co, Cr, Cu, Mn and Zn. The highest mean of arsenobetaine (0.001 mg/kg), dimethylarsinate (0.27 mg/kg) and monomethilarsonate (0.02 mg/kg) was found in Spanish rice and that of arsenite (0.30 mg/kg) in Kazakh rice. Inorganic As in samples from Kazakhstan was above the ML (0.2 mg/kg) proposed by FAO/WHO, but in seven samples from Spain and in four from Portugal were above the limit. The estimated weekly intake of total or inorganic As(III, V), Cd, Hg and Pb for rice consumption by Kazakh, Spanish and Portuguese adults and children was lower than the provisional tolerable weekly intake established by Joint FAO/WHO Expert Committee on Food Additives and the European Food Safety Authority.

  相似文献   

20.
Jharia (India) a coal mining town has been affected by the consequences of mining and associated activities. Samples of outdoor fallen dust were collected at different locations of Jharia covering four different zones: commercial, petrol pump, high traffic, and residential areas. The dust samples were analysed for different trace elements (As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Se, and Zn). The highest concentration of the elements in the dust samples are Mn (658 mg/kg), Zn (163.6 mg/kg), Cr (75.4 mg/kg), Pb (67.8 mg/kg), Ni (66 mg/kg), Cu (56.8 mg/kg), Co (16.9 mg/kg), As (4.1 mg/kg), and Cd (0.78 mg/kg). The concentration of selenium was below detection limit. Except Cd, contents of all the other elements in the dust samples were significantly lower in the residential area. High amount of Ni (145 mg/kg) and Pb (102 mg/kg) was observed in the high traffic and petrol pump areas, respectively. The exposure risk assessment strategies are helpful in predicting the potential health risk of the trace elements in the street dust. Selected receptors for risk assessment were infants, toddlers, children, teens, and adults. The calculated hazard quotient (HQ) for lifetime exposure was <1.0 for all the elements studied, indicating no risks from these elements for adults Among the receptors, toddlers were found to be more vulnerable, with HQ for Co, Cr, and Pb > 0.1. The finding predicts potential health risk to toddlers and children.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号