首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gaseous emissions from swine (Sus scrofa) manure storage systems represent a concern to air quality due to the potential effects of hydrogen sulfide, ammonia, methane, and volatile organic compounds on environmental quality and human health. The lack of knowledge concerning functional aspects of swine manure management systems has been a major obstacle in the development and optimization of emission abatement technologies for these point sources. In this study, a classification system based on gas emission characteristics and effluent concentrations of total phosphorus (P) and total sulfur (S) was devised and tested on 29 swine manure management systems in Iowa, Oklahoma, and North Carolina in an effort to elucidate functional characteristics of these systems. Four swine manure management system classes were identified that differed in effluent concentrations of P and S, methane (CH4) emission rate, odor intensity, and air concentration of volatile organic compounds (VOCs). Odor intensity and the concentration of VOCs in air emitted from swine manure management systems were strongly correlated (r2 = 0.88). The concentration of VOC in air samples was highest with outdoor swine manure management systems that received a high input of volatile solids (Type 2). These systems were also shown to have the highest odor intensity levels. The emission rate for VOCs and the odor intensity associated with swine manure management systems were inversely correlated with CH4 and ammonia (NH3) emission rates. The emission rates of CH4, NH3, and VOCs were found to be dependent upon manure loading rate and were indirectly influenced by animal numbers.  相似文献   

2.
There is a need to know whole-farm methane (CH(4)) emissions since confined animal facilities such as beef cattle feedlots and dairy farms are emission "hot spots" in the landscape. However, measurements of whole-farm CH(4) emissions can differ between farms because of differences in contributing sources such as manure handling, number of lactating and nonlactating cows, and diet. Such differences may limit the usefulness of whole-farm emissions for national inventories and mitigation purposes unless the variance between farms is taken into account or a large number of farms can be examined. Our study describes the application of a dispersion model used in conjunction with field measurements of CH(4) concentration and stability of the air to calculate whole-farm emissions of CH(4) from three dairy farms in Alberta, Canada, during three sequential campaigns conducted in November 2004 and May and July 2005. The dairy farms ranged in herd size from 208 to 351 cows (102 to 196 lactating cows) and had different manure handling operations. The results indicate that the average CH(4) emission per cow (mixture of lactating and nonlactating) from the three dairy farms was 336 g d(-1), which was reduced to 271 g d(-1) when the emission (estimated) from the manure storage was removed. Further separation of source strength yielded an average CH(4) (enteric) emission of 363 g d(-1) for a lactating cow. The estimated CH(4) emission intensities were approximately 15 g CH(4) kg(-1) dry matter intake and 16.7 L CH(4) L(-1) of milk produced. The approach of understanding the farm-to-farm differences in CH(4) emissions as affected by diet, animal type, and manure management is essential when utilizing whole-farm emission measurements for mitigation and inventory applications.  相似文献   

3.
Potential environmental benefits of ionophores in ruminant diets   总被引:3,自引:0,他引:3  
A concern of the USEPA is the volatilization of NH3 from animal manure and CH4 produced from ruminal fermentation. Excess N in the environment has been associated with adverse effects on human health, and CH4 and N2O emissions are sources of greenhouse gases. The objectives of this paper are to summarize and quantify the benefits of ionophores, principally monensin, in decreasing NH3 and CH4 emissions to the environment and reducing resource utilization in cattle (Bos spp.) production. The data indicate that monensin in the diets of ruminants may decrease protein degradation in the rumen and may increase feed protein utilization by an average of 3.5 percentage units. These changes would have an effect in reducing N losses and decreasing fecal N and the amount of protein that must be fed to meet animal requirements. Additionally, CH4 is produced by enteric fermentation in ruminants, which is responsible for about 33 to 39% of CH4 emissions from agriculture. Ionophores can reduce CH4 production by 25% and decrease feed intake by 4% without affecting animal performance. The inclusion of monensin in beef and dairy cattle diets may benefit air quality by reducing CH4 and N emissions and water quality by reducing N in manure, which can potentially leave the farm through leaching into ground water and through runoff into surface water.  相似文献   

4.
There are approximately 2.5 million dairy cows in California. Emission inventories list dairy cows and their manure as the major source of regional air pollutants, but data on their actual emissions remain sparse, particularly for smog-forming volatile organic compounds (VOCs) and greenhouse gases (GHGs). We report measurements of alcohols, volatile fatty acids, phenols, and methane (CH4) emitted from nonlactating (dry) and lactating dairy cows and their manure under controlled conditions. The experiment was conducted in an environmental chamber that simulates commercial concrete-floored freestall cow housing conditions. The fluxes of methanol, ethanol, and CH4 were measured from cows and/or their fresh manure. The average estimated methanol and ethanol emissions were 0.33 and 0.51 g cow(-1) h(-1) from dry cows and manure and 0.7 and 1.27 g cow(-1) h(-1) from lactating cows and manure, respectively. Both alcohols increased over time, coinciding with increasing accumulation of manure on the chamber floor. Volatile fatty acids and phenols were emitted at concentrations close to their detection limit. Average estimated CH4 emissions were predominantly associated with enteric fermentation from cows rather than manure and were 12.35 and 18.23 g cow(-1) h(-1) for dry and lactating cows, respectively. Lactating cows produced considerably more gaseous VOCs and GHGs emissions than dry cows (P < 0.001). Dairy cows and fresh manure have the potential to emit considerable amounts of alcohols and CH4 and research is needed to determine effective mitigation.  相似文献   

5.
Manipulation of the diets of pigs may alter the composition of the manure and thereby the environmental and agricultural qualities of the manure. Laboratory studies were performed to quantify the effect of manipulation of pig diets on the chemical composition of the derived manure (slurry), the potential emission of methane (CH4) and ammonia (NH3) during anaerobic storage of the manure, and the potential nitrous oxide (N2O) and carbon dioxide (CO2) emission after application of the manure to soil. The diets differed in contents of crude protein and salt (CaSO4), and the type and contents of nonstarch polysaccharides (NSP). Emissions of NH3 and CH4 during storage were smaller at a low than at a high dietary protein content. The emission of NH3 was significantly related to the contents of ammonium (NH4), total N, and pH. The emission of CH4 was significantly related to contents of dry matter, total C, and volatile fatty acids in the manure. The effect of manure composition on N2O emission markedly differed between the two tested soils, which points at interactions with soil properties such as the organic matter content. These types of interactions require soil-specific recommendations for mitigation of N2O emission from soil-applied pig manure by manipulation of the diet. From the tested diets, decreasing the protein content has the largest potential to simultaneously decrease NH3 and CH4 emissions during manure storage and N2O emission from soil. An integral assessment of the environmental and agricultural impact of handling and application of pig manure as a result of diet manipulation provides opportunities for farmers to maximize the value of manures as fertilizer and soil conditioner and to minimize N and C emissions to the environment.  相似文献   

6.
Concentrated animal feeding operations emit trace gases such as ammonia (NH?), methane (CH?), carbon dioxide (CO?), and nitrous oxide (N?O). The implementation of air quality regulations in livestock-producing states increases the need for accurate on-farm determination of emission rates. The objective of this study was to determine the emission rates of NH?, CH?, CO?, and N?O from three source areas (open lots, wastewater pond, compost) on a commercial dairy located in southern Idaho. Gas concentrations and wind statistics were measured each month and used with an inverse dispersion model to calculate emission rates. Average emissions per cow per day from the open lots were 0.13 kg NH?, 0.49 kg CH?, 28.1 kg CO?, and 0.01 kg N?O. Average emissions from the wastewater pond (g m(-2) d(-1)) were 2.0 g NH?, 103 g CH?, 637 g CO?, and 0.49 g N?O. Average emissions from the compost facility (g m(-2) d(-1)) were 1.6 g NH?, 13.5 g CH?, 516 g CO?, and 0.90 g N?O. The combined emissions of NH?, CH?, CO?, and N?O from the lots, wastewater pond and compost averaged 0.15, 1.4, 30.0, and 0.02 kg cow(-1) d(-1), respectively. The open lot areas generated the greatest emissions of NH?, CO?, and N?O, contributing 78, 80, and 57%, respectively, to total farm emissions. Methane emissions were greatest from the lots in the spring (74% of total), after which the wastewater pond became the largest source of emissions (55% of total) for the remainder of the year. Data from this study can be used to develop trace gas emissions factors from open-lot dairies in southern Idaho and potentially other open-lot production systems in similar climatic regions.  相似文献   

7.
Stored poultry manure can be a significant source of ammonia (NH) and greenhouse gases (GHGs), including nitrous oxide (NO), methane (CH), and carbon dioxide (CO) emissions. Amendments can be used to modify physiochemical properties of manure, thus having the potential to reduce gas emissions. Here, we lab-tested the single and combined effects of addition of reed straw, zeolite, and superphosphate on gas emissions from stored duck manure. We showed that, over a period of 46 d, cumulative NH emissions were reduced by 61 to 70% with superphosphate additions, whereas cumulative NO emissions were increased by up to 23% compared with the control treatment. Reed straw addition reduced cumulative NH, NO, and CH emissions relative to the control by 12, 27, and 47%, respectively, and zeolite addition reduced cumulative NH and NO emissions by 36 and 20%, respectively. Total GHG emissions (as CO-equivalents) were reduced by up to 27% with the additions of reed straw and/or zeolite. Our results indicate that reed straw or zeolite can be recommended as amendments to reduce GHG emissions from duck manure; however, superphosphate is more effective in reducing NH emissions.  相似文献   

8.
Much animal manure is being applied to small land areas close to animal confinements, resulting in environmental degradation. This paper reports a study on the emissions of ammonia (NH3), methane (CH4), and nitrous oxide (N2O) from a pasture during a 90-d period after pig slurry application (60 m3 ha-1) to the soil surface. The pig slurry contained 6.1 kg total N m-3, 4.2 kg of total ammoniacal nitrogen (TAN = NH3 + NH4) m-3, and 22.1 kg C m-3, and had a pH of 8.14. Ammonia was lost at a fast rate immediately after slurry application (4.7 kg N ha-1 h-1), when the pH and TAN concentration of the surface soil were high, but the loss rate declined quickly thereafter. Total NH3 losses from the treated pasture were 57 kg N ha-1 (22.5% of the TAN applied). Methane emission was highest (39.6 g C ha-1 h-1) immediately after application, as dissolved CH4 was released from the slurry. Emissions then continued at a low rate for approximately 7 d, presumably due to metabolism of volatile fatty acids in the anaerobic slurry-treated soil. The net CH4 emission was 1052 g C ha-1 (0.08% of the carbon applied). Nitrous oxide emission was low for the first 14 d after slurry application, then showed emission peaks of 7.5 g N ha-1 h-1 on Day 25 and 15.8 g N ha-1 h-1 on Day 67, and decline depending on rainfall and nitrate (NO3) concentrations. Emission finally reached background levels after approximately 90 d. Nitrous oxide emission was 7.6 kg N ha-1 (2.1% of the N applied). It is apparent that of the two major greenhouse gases measured in this study, N2O is by far the more important tropospheric pollutant.  相似文献   

9.
Ammonia (NH(3)) emissions from animal systems have become a primary concern for all of livestock production. The purpose of this research was to establish the relationship of nitrogen (N) emissions to specific components of swine production systems and to determine accurate NH(3) emission factors appropriate for the regional climate, geography, and production systems. Micrometeorological instrumentation and gas sensors were placed over two lagoons in North Carolina during 1997-1999 to obtain information for determining ammonia emissions over extended periods and without interfering with the surrounding climate. Ammonia emissions varied diurnally and seasonally and were related to lagoon ammonium concentration, acidity, temperature, and wind turbulence. Conversion of significant quantities of ammonium NH(4)(+) to dinitrogen gas (N(2)) were measured in all lagoons with the emission rate largely dependent on NH(4)(+) concentration. Lagoon NH(4)(+) conversion to N(2) accounted for the largest loss component of the N entering the farm (43% as N(2)); however, small amounts of N(2)O were emitted from the lagoon (0.1%) and from field applications (0.05%) when effluent was applied nearby. In disagreement with previous and current estimates of NH(3) emissions from confined animal feeding operation (CAFO) systems, and invalidating current assumptions that most or all emissions are in the form of NH(3), we found much smaller NH(3) emissions from animal housing (7%), lagoons (8%), and fields (2%) using independent measurements of N transformation and transport. Nitrogen input and output in the production system were evaluated, and 95% of input N was accounted for as output N from the system.  相似文献   

10.
Storage of manure makes a significant contribution to global methane (CH4) emissions. Anaerobic digestion of pig and cattle manure in biogas reactors before outside storage might reduce the potential for CH4 emissions. However, manure pre-stored at 15 to 20 degrees C in buildings before anaerobic digestion may be a significant source of CH4 and could reduce the potential CH4 production in the biogas reactor. Degradation of energy-rich organic components in slurry and emissions of CH4 and carbon dioxide (CO2) from aerobic and anaerobic degradation processes during pre-storage were examined in the laboratory. Newly mixed slurry was added to vessels and stored at 15 and 20 degrees C for 100 to 220 d. During storage, CH4 and CO2 emissions were measured with a dynamic chamber technique. The ratio of decomposition in the subsurface to that at the surface indicated that the aerobic surface processes contributed significantly to CO2 emission. The measured CH4 emission was used to calculate the methane conversion factor (MCF) in relation to storage time and temperature, and the total carbon-C emission was used to calculate the decrease in potential CH4 production by anaerobic digestion following pre-storage. The results show substantial methane and carbon dioxide production from animal manure in an open fed-batch system kept at 15 to 20 degrees C, even for short storage times, but the influence of temperature was not significant at storage times of <30 d. During long-term storage (90 d), a strong influence of temperature on the MCF value, especially for pig manure, was observed.  相似文献   

11.
In animal production systems (poultry, beef, and swine), current production, storage, and disposal techniques present a challenge to manage wastes to minimize the emissions of trace gases within relatively small geographical areas. Physical and chemical parameters were measured on primary and secondary lagoons on three different swine farming systems, three replicates each, in the Central Great Basin of the United States to determine ammonia (NH3) emissions. Nutrient concentrations, lagoon water temperature, and micrometeorological data from these measurements were used with a published process model to calculate emissions. Annual cycling of emissions was determined in relation to climatic factors and wind speed was found the predominating factor when the lagoon temperatures were above about 3 degrees C. Total NH3 emissions increased in the order of smallest to largest: nursery, sow, and finisher farms. However, emissions on an animal basis increased from nursery animals being lowest to sow animals being highest. When emissions were compared to the amount of nitrogen (N) fed to the animals, NH3 emissions from sows were lowest with emissions from finisher animals highest. Ammonia emissions were compared to similar farm production systems in the humid East of the United States and found to be similar for finisher animals but had much lower emissions than comparable humid East sow production. Published estimates of NH3 emissions from lagoons ranged from 36 to 70% of feed input (no error range) compared to our emissions determined from a process model of 9.8% with an estimated range of +/-4%.  相似文献   

12.
Fermentation in the rumen of cattle produces methane (CH4). Methane may play a role in global warming scenarios. The linking of grazing management strategies to more efficient beef production while reducing the CH4 emitted by beef cattle is important. The sulfur hexafluoride (SF6) tracer technique was used to determine the effects of best management practices (BMP) grazing compared with continuous grazing on CH4 production in several Louisiana forages during 1996-1998. Cows and heifers (Bos taurus) grazed common bermudagrass [Cynodon dactylon (L.) Pers.], bahiagrass (Paspalum notatum Flugge), and ryegrass (Lolium multiflorum Lam.) pastures and were wintered on bahiagrass hay with supplements of protein molasses blocks (PMB), cottonseed meal and corn (CSMC), urea and corn (URC), or limited ryegrass grazing (LRG). Daily CH4 emissions were between 89 and 180 g d(-1) for young growing heifers and 165 to 294 g d(-1) for mature Simbrah cows. Heifers on "ad lib" ryegrass in March and April produced only one-tenth the CH4 per kg of gain as heifers on LRG of 1 h. Using BMP significantly reduced the emission of CH4 per unit of animal weight gain. Management-intensive grazing (MIG) is a BMP that offers the potential for more efficient utilization of grazed forage crops via controlled rotational grazing and more efficient conversion of forage into meat and milk. Projected CH4 annual emissions in cows reflect a 22% reduction from BMP when compared with continuous grazing in this study. With the BMP application of MIG, less methane was produced per kilogram of beef gain.  相似文献   

13.
Methane and carbon dioxide emission from two pig finishing barns   总被引:3,自引:0,他引:3  
Agricultural activities are an important source of greenhouse gases. However, comprehensive, long-term, and high-quality measurement data of these gases are lacking. This article presents a field study of CH(4) and CO(2) emission from two 1100-head mechanically ventilated pig (Sus scrofa) finishing barns (B1 and B2) with shallow manure flushing systems and propane space heaters from August 2002 to July 2003 in northern Missouri. Barn 2 was treated with soybean oil sprinkling, misting essential oils, and misting essential oils with water to reduce air pollutant emissions. Only days with CDFB (complete-data-full-barn), defined as >80% of valid data during a day with >80% pigs in the barns, were used. The CH(4) average daily mean (ADM) emission rates were 36.2 +/- 2.0 g/d AU (ADM +/- 95% confidence interval; animal unit = 500 kg live mass) from B1 (CDFB days = 134) and 28.8 +/- 1.8 g/d AU from B2 (CDFB days = 131). The CO(2) ADM emission rates were 17.5 +/- 0.8 kg/d AU from B1 (CDFB days = 146) and 14.2 +/- 0.6 kg/d AU from B2 (CDFB days = 137). The treated barn reduced CH(4) emission by 20% (P < 0.01) and CO(2) emission by 19% (P < 0.01). The CH(4) and CO(2) released from the flushing lagoon effluent were equivalent to 9.8 and 4.1% of the CDFB CH(4) and CO(2) emissions, respectively. The emission data were compared with the literature, and the characteristics of CH(4) and CO(2) concentrations and emissions were discussed.  相似文献   

14.
Storage of cattle slurry leads to emissions of methane (CH(4)), nitrous oxide (N(2)O), ammonia (NH(3)), and carbon dioxide (CO(2)). On dairy farms, winter is the most critical period in terms of slurry storage due to cattle housing and slurry field application prohibition. Slurry treatment by separation results in reduced slurry dry matter content and has considerable potential to reduce gaseous emissions. Therefore, the efficiency of slurry separation in reducing gaseous emissions during winter storage was investigated in a laboratory study. Four slurry fractions were obtained: a solid and a liquid fraction by screw press separation (SPS) and a supernatant and a sediment fraction by chemically enhanced settling of the liquid fraction. Untreated slurry and the separated fractions were stored in plastic barrels for 48 d under winter conditions, and gaseous emissions were measured. Screw press separation resulted in an increase of CO(2) (650%) and N(2)O (1240%) emissions due to high releases observed from the solid fraction, but this increase was tempered by using the combined separation process (CSP). The CSP resulted in a reduction of CH(4) emissions ( approximately 50%), even though high emissions of CH(4) (46% of soluble C) were observed from the solid fraction during the first 6 d of storage. Screw press separation increased NH(3) emissions by 35%, but this was reduced to 15% using the CSP. During winter storage greenhouse gas emissions from all treatments were mainly in the form of CH(4) and were reduced by 30 and 40% using SPS and CSP, respectively.  相似文献   

15.
About 80% of dairy cattle N intake is excreted in urine and feces. Urinary-N is about 75% urea, whereas fecal-N is mostly organic. Urinary-N (urea) can only be volatilized when it is hydrolyzed to ammonia (NH3) in a process catalyzed by urease, which is predominantly found in feces. Minimizing contact between urine and feces may be an effective approach to reducing urea hydrolysis and subsequent NH3 emissions. Previous studies have reported 5 to 99% NH3 emissions mitigation within barns from separation of feces and urine. The objective ofthis study was to compare NH3 emissions mitigation via separation of urine and feces in postcollection storage to a conventional scrape manure handling method where urine and feces are comingled. Laboratory scale studies were conducted to evaluate NH3 emissions from simulated postcollection storag of three waste streams: (i) idealistically separated feces and urine (no contact between urine and feces), (ii) realistically separated urine and feces (limited contact of urine and feces), and (iii) conventionally scraped manure (control). From the results of these studies, NH3 losses ranking in descending order was as follows: aggregate of realistically separated waste streams (3375.9 +/- 54.8 mg), aggregate of idealistically separated urine and feces (3047.0 +/- 738.0 mg), and scrape manure (2034.0 +/- 106.5 mg), respectively. Therefore, on the basis of these results, the extra effort of separating the waste streams would not enhance mitigation of NH3 losses from postcollection storage of the separated waste streams compared to the conventional scrape manure collection system.  相似文献   

16.
In the United States, swine (Sus scrofa) operations produce more than 14 Tg of manure each year. About 30% of this manure is stored in anaerobic lagoons before application to land. While land application of manure supplies nutrients for crop production, it may lead to gaseous emissions of ammonia (NH3) and nitrous oxide (N2O). Our objectives were to quantify gaseous fluxes of NH3 and N2O from effluent applications under field conditions. Three applications of swine effluent were applied to soybean [Glycine max (L.) Merr. 'Brim'] and gaseous fluxes were determined from gas concentration profiles and the flux-gradient gas transport technique. About 12% of ammonium (NH4-N) in the effluent was lost through drift or secondary volatilization of NH3 during irrigation. An additional 23% was volatilized within 48 h of application. Under conditions of low windspeed and with the wind blowing from the lagoon to the field, atmospheric concentrations of NH3 increased and the crop absorbed NH3 at the rate of 1.2 kg NH3 ha(-1) d(-1), which was 22 to 33% of the NH3 emitted from the lagoon during these periods. Nitrous oxide emissions were low before effluent applications (0.016 g N2O-N ha(-1) d(-1)) and increased to 25 to 38 g N2O-N ha(-1) d(-1) after irrigation. Total N2O emissions during the measurement period were 4.1 kg N2O-N ha(-1), which was about 1.5% of total N applied. The large losses of NH3 and N2O illustrate the difficulty of basing effluent irrigation schedules on N concentrations and that NH3 emissions can significantly contribute to N enrichment of the environment.  相似文献   

17.
Greenhouse gas balance for composting operations   总被引:1,自引:0,他引:1  
The greenhouse gas (GHG) impact of composting a range of potential feedstocks was evaluated through a review of the existing literature with a focus on methane (CH(4)) avoidance by composting and GHG emissions during composting. The primary carbon credits associated with composting are through CH(4) avoidance when feedstocks are composted instead of landfilled (municipal solid waste and biosolids) or lagooned (animal manures). Methane generation potential is given based on total volatile solids, expected volatile solids destruction, and CH(4) generation from lab and field incubations. For example, a facility that composts an equal mixture of manure, newsprint, and food waste could conserve the equivalent of 3.1 Mg CO(2) per 1 dry Mg of feedstocks composted if feedstocks were diverted from anaerobic storage lagoons and landfills with no gas collection mechanisms. The composting process is a source of GHG emissions from the use of electricity and fossil fuels and through GHG emissions during composting. Greenhouse gas emissions during composting are highest for high-nitrogen materials with high moisture contents. These debits are minimal in comparison to avoidance credits and can be further minimized through the use of higher carbon:nitrogen feedstock mixtures and lower-moisture-content mixtures. Compost end use has the potential to generate carbon credits through avoidance and sequestration of carbon; however, these are highly project specific and need to be quantified on an individual project basis.  相似文献   

18.
Beef cattle feedlots face serious environmental challenges associated with manure management, including greenhouse gas, odor, NH3, and dust emissions. Conditions affecting emissions are poorly characterized, but likely relate to the variability of feedlot surface moisture and manure contents, which affect microbial processes. Odor compounds, greenhouse gases, nitrogen losses, and dust potential were monitored at six moisture contents (0.11, 0.25, 0.43, 0.67, 1.00, and 1.50 g H2O g(-1) dry matter [DM]) in three artificial feedlot soil mixtures containing 50, 250, and 750 g manure kg(-1) total (manure + soil) DM over a two-week period. Moisture addition produced three microbial metabolisms: inactive, aerobic, and fermentative at low, moderate, and high moisture, respectively. Manure content acted to modulate the effect of moisture and enhanced some microbial processes. Greenhouse gas (CO2, N2O, and CH4) emissions were dynamic at moderate to high moisture. Malodorous volatile fatty acid (VFA) compounds did not accumulate in any treatments, but their persistence and volatility varied depending on pH and aerobic metabolism. Starch was the dominant substrate fueling both aerobic and fermentative metabolism. Nitrogen losses were observed in all metabolically active treatments; however, there was evidence for limited microbial nitrogen uptake. Finally, potential dust production was observed below defined moisture thresholds, which were related to manure content of the soil. Managing feedlot surface moisture within a narrow moisture range (0.2-0.4 g H2O g(-1) DM) and minimizing the accumulation of manure produced the optimum conditions that minimized the environmental impact from cattle feedlot production.  相似文献   

19.
Livestock manure is a significant source of ammonia (NH3) emissions. In the atmosphere, NH3 is a precursor to the formation of fine aerosols that contribute to poor air quality associated with human health. Other environmental issues result when NH3 is deposited to land and water. Our study documented the quantity of NH3 emitted from a feedlot housing growing beef cattle. The study was conducted between June and October 2006 at a feedlot with a one-time capacity of 22,500 cattle located in southern Alberta, Canada. A backward Lagrangian stochastic (bLS) inverse-dispersion technique was used to calculate NH3 emissions, based on measurements of NH3 concentration (open-path laser) and wind (sonic anemometer) taken above the interior of the feedlot. There was an average of 3146 kg NH3 d(-1) lost from the entire feedlot, equivalent to 84 microg NH3 m(-2) s(-1) or 140 g NH3 head(-1) d(-1). The NH3 emissions correlated with sensible heat flux (r2 = 0.84) and to a lesser extent the wind speed (r2 = 0.56). There was also evidence that rain suppressed the NH3 emission. Quantifying NH3 emission and dispersion from farms is essential to show the impact of farm management on reducing NH3-related environmental issues.  相似文献   

20.
Reliable estimation of nutrient concentrations is required to manage animal manure for protecting waters while sustaining crop production. This study was conducted to investigate sample variability and reliable nutrient analysis for several manure types and handling systems. Serial samples were collected from dairy, swine, and broiler poultry operations while manure was being loaded onto hauler tanks or spreaders for field application. Samples were analyzed for total solids (TS), total nitrogen (N), ammoniacal nitrogen (NH4-N), total phosphorus (P), and potassium (K). The least number of samples needed for reliable testing of total N and P, defined as +/- 10% of the experimental means with 99% probability, was obtained for each farm using a computer-intensive random resampling technique. Sample variability within farms, expressed as the coefficient of variation (CV), was mostly 6 to 8% for farms that used agitation of manure storages but several times higher (20-30%) on farms where no agitation was applied during the sampling period. Results from the random resampling procedure indicated that for farms that used agitation, three to five samples were adequate for a representative composite for reliable testing of total N and P; whereas for farms without agitation, at least 40 samples would be required. Data also suggest that using book values for manure nutrient estimations could be problematic because the discrepancies between book standards and measured farm data varied widely from a small amount to several fold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号