共查询到20条相似文献,搜索用时 17 毫秒
1.
Managing manure in no-till systems is a water quality concern because surface application of manure can enrich runoff with dissolved phosphorus (P), and incorporation by tillage increases particulate P loss. This study compared runoff from well-drained and somewhat poorly drained soils under corn (Zea mays, L.) production that had been in no-till for more than 10 yr. Dairy cattle (Bos taurus L.) manure was broadcast into a fall planted cover crop before no-till corn planting or incorporated by chisel/disk tillage in the absence of a cover crop. Rainfall simulations (60 mm h(-1)) were performed after planting, mid-season, and post-harvest in 2007 and 2008. In both years and on both soils, no-till yielded significantly less sediment than did chisel/disking. Relative effects of tillage on runoff and P loss differed with soil. On the well-drained soil, runoff depths from no-till were much lower than with chisel/disking, producing significantly lower total P loads (22-50% less). On the somewhat poorly drained soil, there was little to no reduction in runoff depth with no-till, and total P loads were significantly greater than with chisel/disking (40-47% greater). Particulate P losses outweighed dissolved P losses as the major concern on the well-drained soil, whereas dissolved P from surface applied manure was more important on the somewhat poorly drained soil. This study confirms the benefit of no-till to erosion and total P runoff control on well-drained soils but highlights trade-offs in no-till management on somewhat poorly drained soils where the absence of manure incorporation can exacerbate total P losses. 相似文献
2.
Effect of rainfall simulator and plot scale on overland flow and phosphorus transport 总被引:1,自引:0,他引:1
Rainfall simulation experiments are widely used to study erosion and contaminant transport in overland flow. We investigated the use of two rainfall simulators designed to rain on 2-m-long (2-m2) and 10.7-m-long (32.6-m2) plots to estimate overland flow and phosphorus (P) transport in comparison with watershed-scale data. Simulated rainfall (75 mm h(-1)) generated more overland flow from 2-m-long (20 L m2) than from 10.7-m-long (10 L m2) plots established in grass, no-till corn (Zea mays L.), and recently tilled fields, because a relatively greater area of the smaller plots became saturated (>75% of area) during rainfall compared with large plots (<75% area). Although average concentrations of dissolved reactive phosphorus (DRP) in overland flow were greater from 2-m-long (0.50 mg L(-1)) than 10.7-m-long (0.35 mg L(-1)) plots, the relationship between DRP and Mehlich-3 soil P (as defined by regression slope) was similar for both plots and for published watershed data (0.0022 for grassed, 0.0036 for no-till, and 0.0112 for tilled sites). Conversely, sediment, particulate phosphorus (PP), and total phosphorus (TP) concentrations and selective transport of soil fines (<2 microm) were significantly lower from 2- than 10.7-m-long plots. However, slopes of the logarithmic regression between P enrichment ratio and sediment discharge were similar (0.281-0.301) for 2- and 10.7-m-long plots, and published watershed data. While concentrations and loads of P change with plot scales, processes governing DRP and PP transport in overland flow are consistent, supporting the limited use of small plots and rainfall simulators to assess the relationship between soil P and overland flow P as a function of soil type and management. 相似文献
3.
Penn CJ Mullins GL Zelazny LW Warren JG McGrath JM 《Journal of environmental quality》2004,33(4):1431-1439
Many states have passed legislation that regulates agricultural P applications based on soil P levels and crop P uptake in an attempt to protect surface waters from nonpoint P inputs. Phytase enzyme and high available phosphorus (HAP) corn supplements to poultry feed are considered potential remedies to this problem because they can reduce total P concentrations in manure. However, less is known about their water solubility of P and potential nonpoint-source P losses when land-applied. This study was conducted to determine the effects of phytase enzyme and HAP corn supplemented diets on runoff P concentrations from pasture soils receiving surface applications of turkey manure. Manure from five poultry diets consisting of various combinations of phytase enzyme, HAP corn, and normal phytic acid (NPA) corn were surface-applied at 60 kg P ha(-1) to runoff boxes containing tall fescue (Festuca arundinacea Schreb.) and placed under a rainfall simulator for runoff collection. The alternative diets caused a decrease in manure total P and water soluble phosphorus (WSP) compared with the standard diet. Runoff dissolved reactive phosphorus (DRP) concentrations were significantly higher from HAP manure-amended soils while DRP losses from other manure treatments were not significantly different from each other. The DRP concentrations in runoff were not directly related to manure WSP. Instead, because the mass of manure applied varied for each treatment causing different amounts of manure particles lost in runoff, the runoff DRP concentrations were influenced by a combination of runoff sediment concentrations and manure WSP. 相似文献
4.
Phosphorus (P) loss in overland flow varies with spatial distribution of soil P, management, and hydrological pathways. The effect of flow time, flowpath length, and manure position on P loss in overland flow from two central Pennsylvania soils packed in boxes of varying length (0.5, 1.0, 1.5, 2.75, and 4.0 m long x 15 cm wide x 5 cm deep) were examined by collecting flow samples at 5-min intervals for 30 min (50 mm h(-1) rainfall) without and with 75 kg P ha(-1) applied as swine (Sus scrofa) manure over 0.5 m of the box slope length at distances of 0 to 3.5 m from the downslope collection point. Dissolved reactive P concentration was more closely related to the proportion of clay in sediment of overland flow before (r = 0.98) than after (r = 0.56) manure application. This was attributed to the transport of larger, low-density particles after applying manure. The concentration of dissolved and particulate P fractions decreased with increasing flowpath length, due to dilution rather than sorption of P by surface soil during overland flow. Total P loss (mainly as particulate P) from the Watson channery silt loam (fine-loamy, mixed, active, mesic Typic Fragiudult) was more than from Berks channery silt loam (loamy-skeletal, mixed, active, mesic Typic Dystrudept), even with manure applied. Thus, while P loss in overland flow is affected by where manure is applied relative to flowpath length, initial soil P concentration should not be discounted when looking at areas of potential P loss within a watershed. 相似文献
5.
Growing interest in corn (Zea mays L.) silage utilization on Wisconsin dairy farms may have implications for nutrient losses from agricultural lands. Increasing the silage cutting height will increase residue cover and could reduce off-site migration of sediments and associated constituents compared with conventional silage harvesting. We examined the effects of residue level and manure application timing on phosphorus (P) losses in runoff from no-till corn. Treatments included conventional corn grain (G) and silage (SL; 10- to 15-cm cutting height) and nonconventional, high-cut (60-65 cm) silage (SH) subjected to different manure application regimes: no manure (N) or surface application in fall (F) or spring (S). Simulated rainfall (76 mm h(-1); 1 h) was applied in spring and fall for two years (2002-2003), runoff from 2.0- x 1.5-m plots was collected, and subsamples were analyzed for dissolved reactive phosphorus (DRP), total phosphorus (TP), and P mass distribution in four particle size classes. Total P and DRP loads were inversely related to percent residue cover, but both TP and DRP concentrations were unaffected by residue level. Manure application increased DRP concentrations in spring runoff by two to five times but did not significantly affect DRP loads, since higher concentrations were offset by lower runoff volumes. Spring manure application reduced TP loads in spring runoff by 77 to 90% compared with plots receiving no manure, with the extent of reductions being greatest at the lower residue levels (<24%). The TP concentration in sediments increased as particle size decreased. Manure application increased the TP concentration of the 0- to 2-microm fraction by 79 to 125%, but elevated the 2- to 10- and 10- to 50-microm fractions to a lesser extent. Recent manure additions were most influential in enriching transported sediments with P. By itself, higher residue cover achieved by high-cutting silage was often insufficient to lower P losses; however, the combination of manure application and higher residue levels significantly reduced P losses from corn fields harvested for silage. 相似文献
6.
Concern over nonpoint-source phosphorus (P) losses from agricultural lands to surface waters has resulted in scrutiny of factors affecting P loss potential. A rainfall simulation study was conducted to quantify the effects of alternative P sources (dairy manure, poultry manure, swine slurry, and diammonium phosphate), application methods, and initial soil P concentrations on runoff P losses from three acidic soils (Buchanan-Hartleton, Hagerstown, and Lewbeach). Low P (12 to 26 mg kg(-1) Mehlich-3 P) and high P (396 to 415 mg kg(-1) Mehlich-3 P) members of each soil were amended with 100 kg total P ha(-1) from each of the four P sources either by surface application or mixing, and subjected to simulated rainfall (70 mm h(-1) to produce 30 min runoff). Phosphorus losses from fertilizer and manure applied to the soil surface differed significantly by source, with dissolved reactive phosphorus (DRP) accounting for 64% of total phosphorus (TP) (versus 9% for the unamended soils). For manure amended soils, these losses were linearly related to water-soluble P concentration of manure (r2 = 0.86 for DRP, r2 = 0.78 for TP). Mixing the P sources into the soil significantly decreased P losses relative to surface P application, such that DRP losses from amended, mixed soils were not significantly different from the unamended soil. Results of this study can be applied to site assessment indices to quantify the potential for P loss from recently manured soils. 相似文献
7.
Phosphorus runoff from agricultural fields has been linked to fresh-water eutrophication. However, edge-of-field P losses can be modified by benthic sediments during stream flow by physiochemical processes associated with Al, Fe, and Ca, and by biological assimilation. We investigated fluvial P when exposed to stream-bed sediments (top 3 cm) collected from seven sites representing forested and agricultural areas (pasture and cultivated), in a mixed-land-use watershed. Sediment was placed in a 10-m-long, 0.2-m-wide fluvarium to a 3-cm depth and water was recirculated over the sediment at 2 L s(-1) and 5% slope. When overland flow (4 mg dissolved reactive phosphorus [DRP] and 9 mg total phosphorus [TP] L(-1)) from manured soils was first recirculated, P uptake was associated with Al and Fe hydrous oxides for sediments from forested areas (pH 5.2-5.4) and by Ca for sediments from agricultural areas (pH 6.5-7.2). A large increase (up to 200%) in readily available P NH4Cl fraction was noted. After 24 h, DRP concentration in channel flow was related to sediment solution P concentration at which no net sorption or desorption of P occurs (EPC0) (r2 = 0.77), indicating quasi-equilibrium. When fresh water (approximately 0.005 mg P L(-1) mean base flow DRP at seven sites) was recirculated over the sediments for 24 h, P release kinetics followed an exponential function. Microbial biomass P accounted for 34 to 43% of sediment P uptake from manure-rich overland flow. Although abiotic sediment processes played a dominant role in determining P uptake, biotic process are clearly important and both should be considered along with the location and management of landscape inputs for remedial strategies to be effective. 相似文献
8.
The National Phosphorus Project rainfall simulator was used to quantify overland flow and P transport from nine sites distributed throughout the watershed of a New York City Watershed Agriculture Program collaborating dairy farm. Observed concentrations of total dissolved phosphorus (TDP) were low (0.007-0.12 mg L(-1)) in flow from deciduous forest, extensively managed pasture, and hillside seeps; moderate (0.18-0.64 mg L(-1)) in flow from intensively managed pastures, a hayfield, and a cow path; and extremely high (11.6 mg L(-1)) in flow from a manured barnyard. Concentrations of TDP from sites without fresh manure were strongly correlated with soil test P (TDP [mg L(-1)] = 0.0056 + 0.0180 x Morgan's soil test phosphorus [STP, mg kg(-1)]; R2 = 84%). Observed concentrations of suspended solids were low (16-137 mg L(-1)) in flow from vegetated sites, but were higher (375-615 mg L(-1)) in flow from sites with little ground cover (barnyard, cow path, plowed field). Under dry summer conditions the time to observed overland flow was shorter (<18 min) for nonfield areas (seeps, barnyard, cow path) than for field and forest areas (27-93 min), indicating that hydrologically active nonfield areas of minor spatial extent but with high soil P (e.g., cow paths and barnyards) can play a significant role in summertime P loading. When soils started from field capacity (second-day) time to overland flow was uniformly less than 23 min, indicating that under wet watershed conditions low-P source areas can dilute overland flow from concentrated sources. 相似文献
9.
Intensive manure application is an important source of diffuse phosphorus (P) pollution. Phosphorus availability from animal manure is influenced by its chemical speciation. The major objective of this study was to investigate the P speciation in raw and anaerobically digested dairy manure with an emphasis on the calcium (Ca) and magnesium (Mg) phosphate phases. Influent and effluent from an on-farm digester in Wisconsin were sampled and sieved, and the 25 to 53 microm size fraction was dried for X-ray powder diffraction (XRD) and P K-edge X-ray absorption near edge structure (XANES) analyses. Struvite (MgNH4PO4.6H2O) was identified in both the raw (influent) and anaerobically digested (effluent) manure using XRD. Qualitative analysis of P K-edge XANES spectra indicated that the Ca orthophosphate phases, except dicalcium phosphate anhydrous (DCPA) or monetite (CaHPO4), were not abundant in dairy manure. Linear combination fitting (LCF) of the P standard compounds showed that 57.0 and 43.0% of P was associated with DCPA and struvite, respectively, in the raw manure. In the anaerobically digested sample, 78.2% of P was present as struvite and 21.8% of P was associated with hydroxylapatite (HAp). The P speciation shifted toward Mg orthophosphates and least soluble Ca orthophosphates following anaerobic digestion. Similarity between the aqueous orthophosphate (aq-PO4), newberyite (MgHPO4.3H2O), and struvite spectra can cause inaccurate P speciation determination when dairy manure is analyzed solely using P K-edge XANES spectroscopy; however, XANES can be used in conjunction with XRD to quantify the distribution of inorganic P species in animal manure. 相似文献
10.
Application of animal manure amendments to agricultural soils is a common practice to improve soil fertility through the addition of essential plant nutrients. This practice may increase the potential for atrazine (2-chloro-4-ethylamino-6-isopropylamino-1, 3, 5-triazine) leaching due to competition for adsorption sites between the pesticide and dissolved organic carbon (DOC) added through manure. We evaluated the influence of liquid cow manure (LCM) application on soil properties, atrazine adsorption, and the physicochemical controlling mechanisms in an Andisol. The LCM was applied at rates equivalent to 0, 100,000, 200,000, and 300,000 L ha(-1), resulting in treatments S-0, S-100, S-200, and S-300, respectively. The LCM application increased DOC and pH of the soils immediately on addition, but pH returned to S-0 values 30 d after application. The LCM application did not modify atrazine adsorption with the two lowest application rates (S-100 and S-200), but atrazine adsorption was decreased in S-300 (K(f) = 0.96) compared with the control (S-0) (K(f) = 1.19), possibly due to the competitive adsorption of DOC with the pesticide. The Fourier-transformed infrared analysis showed that LCM increased aliphaticity and presence of N-containing groups and polysaccharide-like groups in amended soils; however, these properties did not modify the atrazine interaction in the studied amended soils. Interestingly the addition of DOC to soil at the high application rate (S-300) reduced atrazine adsorption in this rich OM Andisol despite the LCM not raising the concentration of stable organic matter. The application of high rates of liquid manure containing DOC incurs an increased risk of pesticide leaching. 相似文献
11.
Nutrient loading on impaired watersheds can be reduced through export of sod grown with manure and export of composted manure for turf production on other watersheds. Effects of the sod and manure exports on receiving watersheds were evaluated through monitoring of total dissolved phosphorus (TDP) and N concentrations and losses in runoff from establishing turf. Three replications of seven treatments were established on an 8.5% slope of a Booneville soil (loamy-skeletal, mixed, superactive Pachic Argicryolls). Three treatments comprised imported 'Tifway' bermudagrass [Cynodon dactylon (L.) Pers. x C. transvaalensis Burtt-Davy) sod grown with composted dairy manure (382 or 191 kg P ha(-1)) or fertilizer (50 kg P ha(-1)). Three treatments were sprigged with Tifway and top-dressed with either composted manure (92 or 184 kg P ha(-1)) or fertilizer (100 kg P ha(-1)). The control was established bermudagrass [Cynodon dactylon (L.) Pers. var. Guymon]. During eight fall rain events, mean TDP concentration in runoff (7.8 mg L(-1)) from sprigged Tifway top-dressed with manure (84 kg P ha(-1)) was 1.6 times greater than sod imported with 129 kg manure P ha(-1). During the first fall event, mass losses of TDP (232 mg m(-2)) and total Kjeldahl nitrogen (TKN) (317 mg m(-2)) from sprigged treatments top-dressed with manure or fertilizer were nearly three times greater than manure-grown sod. Percentages of manure P lost as TDP in runoff from imported sod were 33% of percentages lost from sprigged treatments top-dressed with manure. Sod grown with manure P rates of 190 kg P ha(-1) can be imported without increasing runoff losses of TDP compared with conventional fertilization of establishing turfgrass. 相似文献
12.
Effects of near-surface hydraulic gradients on nitrate and phosphorus losses in surface runoff 总被引:9,自引:0,他引:9
Phosphorous (P) and nitrogen (N) in runoff from agricultural fields are key components of nonpoint-source pollution and can accelerate eutrophication of surface waters. A laboratory study was designed to evaluate effects of near-surface hydraulic gradients on P and N losses in surface runoff from soil pans at 5% slope under simulated rainfall. Experimental treatments included three rates of fertilizer input (control [no fertilizer input], low [40 kg P ha(-1), 100 kg N ha(-1)], and high [80 kg P ha(-1), 200 kg N ha(-1)]) and four near-surface hydraulic gradients (free drainage [FD], saturation [Sa], artesian seepage without rain [Sp], and artesian seepage with rain [Sp + R]). Simulated rainfall of 50 mm h(-1) was applied for 90 min. The results showed that near-surface hydraulic gradients have dramatic effects on NO(3)-N and PO(4)-P losses and runoff water quality. Under the low fertilizer treatment, the average concentrations in surface runoff from FD, Sa, Sp, and Sp + R were 0.08, 2.20, 529.5, and 71.8 mg L(-1) for NO(3)-N and 0.11, 0.54, 0.91, and 0.72 mg L(-1) for PO(4)-P, respectively. Similar trends were observed for the concentrations of NO(3)-N and PO(4)-P under the high fertilizer treatment. The total NO(3)-N loss under the FD treatment was only 0.01% of the applied nitrogen, while under the Sp and Sp + R treatments, the total NO(3)-N loss was 11 to 16% of the applied nitrogen. These results show that artesian seepage could make a significant contribution to water quality problems. 相似文献
13.
Soil chemical constituents influence soil structure and erosion potential. We investigated manure and inorganic fertilizer applications on soil chemistry (carbon [C] quality and exchangeable cations), aggregation, and phosphorus (P) loss in overland flow. Surface samples (0-5 cm) of a Hagerstown (fine, mixed, semiactive, mesic Typic Hapludalf) soil, to which either dairy or poultry manure or triple superphosphate had been applied (0-200 kg P ha(-1) yr(-1) for 5 yr), were packed in boxes (1 m long, 0.15 m wide, and 0.10 m deep) to field bulk density (1.2 g cm(-3)). Rainfall was applied (65 mm h(-1)), overland flow collected, and sediment and P loss determined. All amendments increased Mehlich 3-extractable P (19-177 mg kg(-1)) and exchangeable Ca (4.2-11.5 cmol kg(-1)) compared with untreated soil. For all treatments, sediment transport was inversely related to the degree of soil aggregation (determined as ratio of dispersed and undispersed clay; r = 0.51), exchangeable Ca (r = 0.59), and hydrolyzable carbohydrate (r = 0.62). The loss of particulate P and total P in overland flow from soil treated with up to 50 kg P ha(-1) dairy manure (9.9 mg particulate phosphorus [PPI, 15.1 mg total phosphorus [TP]) was lower than untreated soil (13.3 mg PP, 18.1 mg TP), due to increased aggregation and decreased surface soil slaking attributed to added C in manure. Manure application at low rates (<50 kg P ha(-1)) imparts physical benefits to surface soil, which decrease P loss potential. However, at greater application rates, P transport is appreciably greater (26.9 mg PP, 29.5 mg TP) than from untreated soil (13.3 mg PP, 18.1 mg TP). 相似文献
14.
Excessive manure phosphorus (P) application increases risk of P loss from fields. This study assessed total runoff P (TPR), bioavailable P (BAP), and dissolved reactive P (DRP) concentrations and loads in surface runoff after liquid swine (Sus scrofa domesticus) manure application with or without incorporation into soil and different timing of rainfall. Four replicated manure P treatments were applied in 2002 and in 2003 to two Iowa soils testing low in P managed with corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotations. Total P applied each time was 0 to 80 kg P ha(-1) at one site and 0 to 108 kg P ha(-1) at the other. Simulated rainfall was applied within 24 h of P application or after 10 to 16 d and 5 to 6 mo. Nonincorporated manure P increased DRP, BAP, and TPR concentrations and loads linearly or exponentially for 24-h and 10- to 16-d runoff events. On average for the 24-h events, DRP, BAP, and TPR concentrations were 5.4, 4.7, and 2.2 times higher, respectively, for nonincorporated manure than for incorporated manure; P loads were 3.8, 7.7, and 3.6 times higher; and DRP and BAP concentrations were 54% of TPR for nonincorporated manure and 22 to 25% for incorporated manure. A 10- to 16-d rainfall delay resulted in DRP, BAP, and TPR concentrations that were 3.1, 2.7, and 1.1 times lower, respectively, than for 24-h events across all nonincorporated P rates, sites, and years, whereas runoff P loads were 3.8, 3.6, and 1.6 times lower, respectively. A 5- to 6-mo simulated rainfall delay reduced runoff P to levels similar to control plots. Incorporating swine manure when the probability of immediate rainfall is high reduces the risk of P loss in surface runoff; however, this benefit sharply decreases with time. 相似文献
15.
Effect of broadcast manure on runoff phosphorus concentrations over successive rainfall events 总被引:1,自引:0,他引:1
Concern over eutrophication has directed attention to manure management effects on phosphorus (P) loss in runoff. This study evaluates the effects of manure application rate and type on runoff P concentrations from two, acidic agricultural soils over successive runoff events. Soils were packed into 100- x 20- x 5-cm runoff boxes and broadcast with three manures (dairy, Bos taurus, layer poultry, Gallus gallus; swine, Sus scrofa) at six rates, from 0 to 150 kg total phosphorus (TP) ha(-1). Simulated rainfall (70 mm h(-1)) was applied until 30 min of runoff was collected 3, 10, and 24 d after manure application. Application rate was related to runoff P (r2 = 0.50-0.98), due to increased concentrations of dissolved reactive phosphorus (DRP) in runoff; as application rate increased, so did the contribution of DRP to runoff TP. Varied concentrations of water-extractable phosphorus (WEP) in manures (2-8 g WEP kg(-1)) resulted in significantly lower DRP concentrations in runoff from dairy manure treatments (0.4-2.2 mg DRP L(-1)) than from poultry (0.3-32.5 mg DRP L(-1)) and swine manure treatments (0.3-22.7 mg DRP L(-1)). Differences in runoff DRP concentrations related to manure type and application rate were diminished by repeated rainfall events, probably as a result of manure P translocation into the soil and removal of applied P by runoff. Differential erosion of broadcast manure caused significant differences in runoff TP concentrations between soils. Results highlight the important, but transient, role of soluble P in manure on runoff P, and point to the interactive effects of management and soils on runoff P losses. 相似文献
16.
The potential loss of P in runoff is a function of the combined effects of fertilizer-soil interactions and climatic characteristics. In this study, we applied a Bayesian approach to experimental data to model the annualized long-term risk of P runoff following single and split P fertilizer applications using two example catchments with contrasting rainfall/runoff patterns. Split P fertilizer strategies are commonly used in intensive pasture production in Australia and our results showed that three applications of 13.3 kg P ha(-1) resulted in a greater risk of P runoff compared with a single application of 40 kg P ha(-1) when long-term surface runoff data were incorporated into a Bayesian P risk model. Splitting P fertilizer applications increased the likelihood of a coincidence of fertilizer application and runoff occurring. We found that the overall risk of P runoff is also increased in catchments where the rainfall/runoff pattern is less predictable, compared with catchments where rainfall/runoff is winter dominant. The findings of our study also question the effectiveness of current recommendations to avoid applying fertilizer if runoff is likely to occur in the next few days, as we found that total P concentrations at the half-life were still very high (18.2 and 8.2 mg P L(-1)) following single and split P treatments, respectively. Data from the current study also highlight that omitting P fertilizer on soils that already have adequate soil test P concentrations is an effective method of reducing P loss in surface runoff. If P fertilizer must be applied, we recommend less frequent applications and only during periods of the year when the risk of surface P runoff is low. 相似文献
17.
Maguire RO Edwards AC Sims JT Kleinman PJ Sharpley AN 《Journal of environmental quality》2002,31(4):1294-1299
At any time, the phosphorus (P) concentration in surface waters is determined by a complex interaction of inputs of soluble P and sorption-desorption reactions of P with sediments. This study investigated what factors control P in solution when various soil aggregates were mixed, seen as being analogous to selective soil erosion events, transport, and mixing within river systems. Fifteen soils with widely differing properties were each separated into three aggregate size fractions (2-52 microm, 53-150 microm, and 151-2,000 microm). Resin P, water-soluble phosphorus (WSP), and the phosphorus buffer capacity (PBC = resin P/WSP) were measured for each aggregate size fraction and WSP was also measured for 11 mixes of the aggregate fractions. The smallest aggregates tended to be enriched with resin P relative to the larger aggregates and the whole soils, while the opposite was true for WSP. As the PBC was a function of resin P and WSP, the PBC was greatest in the 2- to 52-microm aggregate size fraction in most cases. When two aggregate size fractions were mixed, the measured WSP was always lower than the predicted WSP (i.e., the average of the WSP in the two individual aggregates), indicating that WSP released by one aggregate fraction could be resorbed by another aggregate fraction. This resorption of P may result in lower than expected solution P concentration in some surface waters. The strength with which an eroded aggregate can release or resorb P to or from solution is in part determined by that aggregate's PBC. 相似文献
18.
Phosphorus (P) leaching losses from manure applications may be of concern when artificial drainage systems allow for hydrologic short-cuts to surface waters. This study quantified P leaching losses from liquid manure applications on two soil textural extremes, a clay loam and loamy sand soil, as affected by cropping system and timing of application. For each soil type, manure was applied at an annual rate of 93 800 L ha(-1) on replicated drained plots under maize (Zea mays L.) in early fall, late fall, early spring, and as a split application in early and late spring. Manure was applied on orchardgrass (Dactylis glomerata L.) in split applications in early fall and late spring, and early and late spring. Drain water was sampled at least weekly when lines were flowing, and outflow rate and total P content were determined. High P leaching losses were measured in the clay loam as soon as drain lines initiated flow after manure application. Flow-weighted mean P leaching losses on clay loam plots averaged 39 times higher (0.504 mg L(-1)) than those on loamy sand plots (0.013 mg L(-1)), and were above the USEPA level of concern of 0.1 mg L(-1). Phosphorus losses varied among application seasons on the clay loam soil, with highest losses generally measured for early fall applications. Phosphorus leaching patterns in clay loam showed short-term spikes and high losses were associated with high drain outflow rates, suggesting preferential flow as the main transport mechanism. Phosphorus leaching from manure applications on loamy sand soils does not pose environmental concerns as long as soil P levels remain below the saturation level. 相似文献
19.
Effect of poultry diet on phosphorus in runoff from soils amended with poultry manure and compost 总被引:1,自引:0,他引:1
Vadas PA Meisinger JJ Sikora LJ McMurtry JP Sefton AE 《Journal of environmental quality》2004,33(5):1845-1854
Phosphorus in runoff from fields where poultry litter is surface-applied is an environmental concern. We investigated the effect of adding phytase and reducing supplemental P in poultry diets and composting poultry manures, with and without Fe and Al amendments, on P in manures, composts, and runoff. We used four diets: normal (no phytase) with 0.4% supplemental P, normal + phytase, phytase + 0.3% P, and phytase + 0.2% P. Adding phytase and decreasing supplemental P in diets reduced total P but increased water-extractable P in manure. Compared with manures, composting reduced both total P, due to dilution of manure with woodchips and straw, and water-extractable P, but beyond a dilution effect so that the ratio of water-extractable P to total P was less in compost than manure. Adding Fe and Al during composting did not consistently change total P or water-extractable P. Manures and composts were surface-applied to soil boxes at a rate of 50 kg total P ha(-1) and subjected to simulated rainfall, with runoff collected for 30 min. For manures, phytase and decreased P in diets had no significant effect on total P or molybdate-reactive P loads (kg ha(-1)) in runoff. Composting reduced total P and molybdate-reactive P loads in runoff, and adding Fe and Al to compost reduced total P but not molybdate-reactive P loads in runoff. Molybdate-reactive P in runoff (mg box(-1)) was well correlated to water-extractable P applied to boxes (mg box(-1)) in manures and composts. Therefore, the final environmental impact of dietary phytase will depend on the management of poultry diets, manure, and farm-scale P balances. 相似文献
20.
Kimmell RJ Pierzynski GM Janssen KA Barnes PL 《Journal of environmental quality》2001,30(4):1324-1330
Phosphorus enhances eutrophication of fresh water bodies. This study was conducted to determine the influence of tillage and P placement on P losses in runoff water from a somewhat poorly drained soil (Woodson silt loam [fine, smectitic, thermic Abruptic Argiaquoll], 1.0-1.5% slope) in a grain sorghum [Sorghum bicolor (L.) Moenchl-soybean [Glycine mar (L.) Merr] rotation. Chisel-disk-field cultivate (ChT), ridge-till (RT), and no-till (NT) in combination with 0 kg P ha(-1) or 24 kg P ha(-1) broadcast or knifed (applied prior to planting grain sorghum) were studied. Runoff volume and losses of sediment and P were summed over the growing season. Significant interactions between tillage and P placement for soluble P losses were found. For example, soluble P loss in 1999 for NT-broadcast in grain sorghum was 358 g ha(-1); significantly greater than 31 g ha(-1) for NT-knife or 23 g ha(-1) for NT-check. Similar results were found for RT but no such differences were found for ChT. Bioavailable P losses were generally highest with broadcast P placement and for NT and RT. Total P losses were significantly higher at 959 g ha(-1) with broadcast P on grain sorghum in 1998, compared with 521 g ha(-1) for the check and 659 g ha(-1) for the knifed P applications. Total P losses in 1999 for soybeans were only 18 g ha(-1) for NT, which was significantly lower than 75 g ha(-1) for ChT and 66 g ha(-1) for RT. The results indicate that broadcast P applications on RT and NT will increase P losses, but the influence of tillage was not consistent. 相似文献