首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The stabilization efficiencies of arsenic (As) in contaminated soil were evaluated using various additives such as limestone, steel mill slag, granular ferric hydroxide (GFH), and mine sludge collected from an acid mine drainage treatment system. The soil samples were collected from the Chungyang area, where abandoned Au-Ag mines are located. Toxicity characteristic leaching procedure, synthetic precipitation leaching procedure, sequential extraction analysis, aqua regia digestion, cation exchange capacity, loss on ignition, and particle size distribution were conducted to assess the physical and chemical characteristics of highly arsenic-contaminated soils. The total concentrations of arsenic in the Chungyang area soil ranged up to 145 mg/kg. After the stabilization tests, the removal percentages of dissolved As(III) and As(V) were found to differ from the additives employed. Approximately 80 and 40% of the As(V) and As(III), respectively, were removed with the use of steel mill slag. The addition of limestone had a lesser effect on the removal of arsenic from solution. However, more than 99% of arsenic was removed from solution within 24 h when using GFH and mine sludge, with similar results observed when the contaminated soils were stabilized using GFH and mine sludge. These results suggested that GFH and mine sludge may play a significant role on the arsenic stabilization. Moreover, this result showed that mine sludge can be used as a suitable additive for the stabilization of arsenic.  相似文献   

2.
Iron water treatment residues are a free by-product with high concentration of iron oxides Iron water treatment residues has a large potential for arsenic sorption Soils are highly contaminated by arsenic at wood preservation sites Iron water treatment residues were added to hot spots contaminated with arsenic The addition led to significant decrease in leaching of arsenic from the contaminated soil Iron water treatment residues (Fe-WTR) are a free by-product of the treatment of drinking water with high concentration of iron oxides and potential for arsenic sorption. This paper aims at applying Fe-WTR to a contaminated site, measuring the reduction in contaminant leaching, and discussing the design of delivery and mixing strategy for soil stabilization at field scale and present a cost-effective method of soil mixing by common contractor machinery. Soil contaminated by As, Cr, and Cu at an abandoned wood impregnation site was amended with 0.22% (dw) Fe-WTR. To evaluate the full scale amendment a 100 m2 test site and a control site (without amendment) were monitored for 14 months. Also soil analysis of Fe to evaluate the degree of soil and Fe-WTR mixing was done. Stabilization with Fe-WTR had a significant effect on leachable contaminants, reducing pore water As by 93%, Cu by 91% and Cr by 95% in the upper samplers. Dosage and mixing of Fe-WTR in the soil proved to be difficult in the deeper part of the field, and pore water concentrations of arsenic was generally higher. Despite water logged conditions no increase in dissolved iron or arsenic was observed in the amended soil. Our field scale amendment of contaminated soil was overall successful in decreasing leaching of As, Cr and Cu. With minor improvements in the mixing and delivery strategy, this stabilization method is suggested for use in cases, where leaching of Cu, Cr and As constitutes a risk for groundwater and freshwater.  相似文献   

3.
城市污泥的重金属含量超标是限制其资源化利用的主要瓶颈,论文采用石灰+硫粉+生物淋滤的方法去除重金属,制备改性污泥,探讨其对矿区Cu、Cd污染农田土壤的修复效果,以期实现以废治污的目标。供试水稻土采自江西某矿区附近农田,土壤Cu和Cd的TCLP(Toxicity characteristic leaching procedure)浸出量分别为40.34 mg·kg-1和660.1μg·kg-1,其中Cu的质量分数超过国际标准值15 mg·kg-1。通过室内土培的方法,将改性污泥分别按土重的0%、1%、3%、5%和10%施入供试土壤培养30 d后,分析土壤Cu和Cd的活性、形态变化以及土壤蛋白酶和脲酶活性等指标评价改性污泥对污染土壤的修复效果及作用机理。结果表明,改性污泥对土壤Cu产生显著的钝化作用,且各施用量对Cu的有效态含量表现出显著差异。当改性污泥的用量为土重的5%时,Cu的有效态含量降至12.03 mg·kg-1,低于国际标准。改性污泥对土壤Cd的钝化效果相对较弱。当改性污泥的用量为1%时,土壤Cd的活性反而有所增加。当改性污泥的用量为5%时,Cd的活性显著降低,土壤Cd的浸出量降至539.6μg·kg-1。土壤重金属形态分析的结果表明,土壤Cu主要以碳酸盐结合态、有机结合态和残渣态存在。改性污泥用量增加,可交换态Cu含量下降,当改良剂用量为土重的5%时,可交换态Cu由8.10%降至4.10%。相反,有机结合态Cu含量由26.45%增加至32.34%。土壤的可交换态Cd含量由36.80%降至30.69%。说明施用改性污泥,土壤可交换态Cu、Cd向有机结合态发生转化。土壤蛋白酶和脲酶的活性变化能较好地指示修复效果,且土壤脲酶的指示效果优于蛋白酶。  相似文献   

4.
Stabilization is one of the best demonstrated available technologies for treating toxic pollutants in soils and has been used worldwide but is rarely used for treatment of contaminated sites in China despite many bench-scale studies. Here, a field-scale application of stabilization treatment in Shanghai, China was summarized to demonstrate the whole engineering process and the key technical issues regarding stabilization of contaminated soil. A site contaminated with arsenic (As) and polycyclic aromatic hydrocarbons (PAHs), formerly used as a lighting plant in Shanghai, was chosen as the demonstration site. Stabilizing measures were taken to treat the contaminated soil to reuse the site for residential purposes. The whole engineering remediation process consisted of phase I environmental site assessment (ESA) and phase II ESA, quantitative human health risk assessment, remediation alternatives evaluation, bench-scale testing, remedial design, engineering implementation, and post-remediation assessment. A third party conducted evaluation monitoring indicated desirable results were achieved via the stabilization treatment. In addition, some technical obstacles related to soil stabilization treatment were discussed, including soil quality evaluation, stabilization effectiveness validation, and soil reuse assessment.  相似文献   

5.
Tailings, agricultural soils, vegetables and groundwater samples were collected from abandoned metal mines (Duckum, Dongil, Dongjung, Myoungbong and Songchun mines) in Korea. Total concentrations of arsenic (As) and heavy metals (Cd, Cu, Pb and Zn) were analyzed to investigate the contamination level. Several digestion methods (Toxicity characteristics leaching procedure (TCLP), synthetic precipitation leaching procedure (SPLP), 0.1 N/1 N HCl) and sequential extraction analysis for mine tailings were conducted to examine the potential leachability of As and heavy metals from the tailings. The order of urgent remediation for the studied mines based on the risk assessment and remedial goals was suggested. The Songchun mine tailings were most severely contaminated by As and heavy metals. Total concentrations of As and Pb in the tailings were 38,600–58,700 mg/kg (av. 47,400 mg/kg) and 11,800–16,800 mg/kg (av. 14,600 mg/kg), respectively. Agricultural soils having high As concentrations were found at the all mines. Average concentrations of Cd in the vegetables exceeded the normal value at all mines areas, while As only at the Dongjung, Myoungbong, and Songchun mine area. One groundwater sample each from the Dongil and Myoungbong mines, and 4 groundwater samples from the Songchun mine had values above 10 μg/L of As concentration. The TCLP method revealed that only Pb in the Songchun tailings, 6.49 mg/L, exceeded the regulatory level (5 mg/L). Employing the 1-N HCl digestion method, the concentration of As in the Songchun mine tailings, 4,250 mg/kg, was up to 3,000 times higher than its Korean countermeasure standard. Results from the sequential extraction of As in the tailings showed that the easily releasable fraction in the Myoungbong and Songchun mine tailings was more than 30% and the residual fraction was less than 40%. Based on results showing the exposure health risk employing the hazard quotient and cancer risk of As, Cd and Zn, the Dongil mine needs the most urgent remedial action. The concentration reduction factor (CRF) of As in both soil and groundwater follows the order: Songchun>Dongjung>Dongil>Myoungbong>Duckum mine.  相似文献   

6.
The cement-based solidification/stabilization (S/S) of nitrobenzene (NB) contaminated soils, with cement and lime as binders, sodium silicate solution and powder activated carbon (PAC) as additives, was optimized through an orthogonal experiment, and S/S efficiency was estimated by both leaching test and volatilization measurement. The leaching test results showed that the factors affecting S/S efficiency were NB concentration, cement-to-lime ratio and binder-to-soils ratio, in sequence. With increasing curing time, the leaching concentration of NB between different levels of the same factor in the orthogonal experiment decreased, and less than 9% NB leached out from the 28 d cured samples. The volatilization measurement results indicated that 0.5‰ of NB was volatilized during the mixing and curing processes for the samples without PAC in the 28 d cycle, whereas adding 2 wt% and 5 wt% PAC, with respect to the weight of contaminated soils, could reduce NB volatilization to half of its original values either during the mixing or curing process. The optimizing formula, that is, contaminated soils (dry weight):cement:lime= 100:25:25, with 5 wt% additional sodium silicate and 2 wt% additional PAC, was applied to the engineering application of NB contaminated soils. Both the leaching test results of the product and the ambient air quality monitoring results met related regulations during the treating process.  相似文献   

7.
The addition of synthetic zeolites and similar materials to metal contaminated soils has been shown to reduce soil phytotoxicity and to improve the quality of plant growth on such amended soils. To gain an understanding of the mechanism by which the phytotoxicity of contaminated soils is reduced when treated with synthetic zeolites, sequential extraction procedures and soil solution techniques have been used to identify changes associated with metal speciation in amended soils. Sequential extraction data and changes in soil solution composition are presented for three different contaminated soils, amended with three synthetic zeolites (P, 4A and Y) at concentrations of 0.5%, 1% and 5% w/w, or lime at 1%. The soils were collected from the site of a metal refinery, an old lead zinc mine spoil tip and from a field which had been treated with sewage sludge. After incubation of the zeolite treated soils for between one and three months, results showed a reduction in the metal content of the ammonium acetate fraction between 42% and 70%, depending on soil, zeolite and rate of addition, compared with the unamended soils. In addition, soil solution experiments indicated that synthetic zeolite amendments were more efficient at reducing metal content than comparable lime treatment. The mechanism by which synthetic zeolites reduce metal bioavailability in contaminated soils is discussed and compared to other amendments.  相似文献   

8.
Mechanisms of natural attenuation of arsenic (As) by wetland plants may be classified by plant uptake and adsorption and/or co-precipitation by iron (oxy)hydroxide formed on the root surface of plants or in rhizosediment. A natural Cattail (Typha spp.) wetland impacted by tailings containing high levels of As from the Myungbong abandoned Au Mine, South Korea was selected, and the practical capability of this wetland to attenuate As was evaluated. The As concentrations in the plant tissues from the study wetland were several-fold higher than those from control wetland. SEM-EDX analyses demonstrated that iron plaques exist on the rhizome surface. Moreover, relatively high As contents bonded with hydrous iron oxides were found in the rhizosediments rather than in the bulk sediments. It was revealed through the leaching and sequential extraction analyses that As existed as more stable forms in the wetland sediment compared with adjacent paddy soil, which is also contaminated with As due to input of mine tailings. The As concentration ratios of extracted solution to sediment/soil represented that the wetland sediment showed significant lower values (10-fold) rather than the paddy soil with indicating high As stability. Also, As in the wetland sediment was predominantly bonded with residual phases on the basis of results from sequential extraction analysis. From these results, it is concluded that transformation of As contaminated agricultural field to wetland environment may be helpful for natural attenuation until active remediation action.  相似文献   

9.
Mechanisms of natural attenuation of arsenic (As) by wetland plants may be classified by plant uptake and adsorption and/or co-precipitation by iron (oxy)hydroxide formed on the root surface of plants or in rhizosediment. A natural Cattail (Typha spp.) wetland impacted by tailings containing high levels of As from the Myungbong abandoned Au Mine, South Korea was selected, and the practical capability of this wetland to attenuate As was evaluated. The As concentrations in the plant tissues from the study wetland were several-fold higher than those from control wetland. SEM-EDX analyses demonstrated that iron plaques exist on the rhizome surface. Moreover, relatively high As contents bonded with hydrous iron oxides were found in the rhizosediments rather than in the bulk sediments. It was revealed through the leaching and sequential extraction analyses that As existed as more stable forms in the wetland sediment compared with adjacent paddy soil, which is also contaminated with As due to input of mine tailings. The As concentration ratios of extracted solution to sediment/soil represented that the wetland sediment showed significant lower values (10-fold) rather than the paddy soil with indicating high As stability. Also, As in the wetland sediment was predominantly bonded with residual phases on the basis of results from sequential extraction analysis. From these results, it is concluded that transformation of As contaminated agricultural field to wetland environment may be helpful for natural attenuation until active remediation action.  相似文献   

10.
矿区砷污染对土壤线虫群落结构特征的影响   总被引:8,自引:0,他引:8  
对湖南省石门县雄黄矿区不同As污染程度土壤线虫群落结构特征进行了研究.共获得线虫27属,食真菌线虫滑刃属(Aphelenchoides)在3种土壤中均为优势属.食细菌和食真菌线虫分别为低As和中As土壤的优势营养类群,而植物寄生线虫为高As土壤的优势营养类群.低As和中As土壤的自由生活线虫成熟度指数(IM)和瓦斯乐斯卡指数(IW)显著高于高As土壤,但植物寄生线虫成熟度指数(IPP)和IPP/IM比值则表现出相反的趋势.可见,高As土壤的食物网受到As污染的干扰较大,群落环境质量较差.因此,土壤线虫群落结构对土壤质量或生态系统的变化具有很好的生物指示作用.  相似文献   

11.
The combination of two bacteria (Bacillus sp. PY1 and Sphingomonas sp. PY2) and a fungus (Fusarium sp. PY3), isolated from contaminated soils near a coking plant, were investigated with respect to their capability to degrade pyrene and volatilize arsenic. The results showed that all strains could use pyrene and arsenic as carbon and energy sources in a basal salts medium (BSM), with the combined potential to degrade pyrene and volatilize arsenic. Bacillus sp. PY1, Sphingomonas sp. PY2 and Fusarium sp. PY3 were isolated from the consortium and were shown to degrade pyrene and volatilize arsenic independently and in combination. Fungal-bacterial coculture has shown that the most effective removal of pyrene was 96.0% and volatilized arsenic was 84.1% after incubation in liquid medium after 9 days culture, while bioremediation ability was 87.2% in contaminated soil with 100 mg·kg-1 pyrene. The highest level of arsenic volatilization amounted to 13.9% of the initial As concentration in contaminated soil after 63 days. Therefore, a synergistic degradation system is the most effective approach to degrade pyrene and remove arsenic in contaminated soil. These findings highlight the role of these strains in the bioremediation of environments contaminated with pyrene and arsenic.  相似文献   

12.
Historical mining in Alaska has created a legacy of approximately 6,830 abandoned mine sites which include adits, tailing piles and contaminated land that continue to impact surface and groundwater quality through run-off and leaching of potentially toxic metals, especially arsenic (As). One such site is the Lucky Shot Gold Mine in Hatcher Pass, south-central Alaska, which operated from 1920 until 1942, mining gold-bearing quartz veins hosted in a Cretaceous tonalite intrusion. Arsenopyrite (FeAsS) and pyrite (FeS2) present in the quartz veins contribute to elevated As levels in water draining, abandoned mine adits. As future underground mining at Lucky Shot may further adversely impact water quality, baseline geochemical studies were undertaken to assess As mobility in the vicinity of the mine adits. Water samples were collected from streams, adits and boreholes around the mine and analysed for major and minor elements using inductively coupled plasma-mass spectrometry (ICP-MS) and for anions by ion chromatography (IC). Arsenic species separation was performed in the field to determine the ratio of inorganic As(III)/As(V) using anion-exchange chromatography, following established methods. It was determined that water draining the adits had elevated levels of As roughly seventy times the United States Environmental Protection Agency Drinking Water Standard of 10?μg?L?1, although this was rapidly diluted downstream in Craigie Creek to <2?μg?L?1. Adit and surface water pH was circum-neutral and displayed no characteristics of acid mine drainage. Despite being well oxygenated, As(III) is the dominant As species in adit water, accounting for close to 100?% of total As. The proportion of As(V) increases downstream of the adits, as some As(III) is oxidized, but the speciation enhances arsenic mobility at the site. The δ18O measurements indicate that the water in the system has a short residence time as it is very similar to meteoric water, supporting the observation that the predominance of As(III) in adit water results from the lack of thermodynamical equilibrium being attained and preferential absorbance of As(V).  相似文献   

13.
广州市蔬菜地土壤重金属污染状况调查及评价   总被引:5,自引:0,他引:5  
探讨了广州市蔬菜地土壤重金属污染状况,测定了95份土壤样品中铅、镉、铬、砷、汞的含量水平。土壤中铅、镉、铬、砷、汞的含量分别在6.44~153.10mg/kg、0-0.682mg/kg、5.82~101.60mg/kg、0.04~45.36mg/kg、0.01~O.32mg/kg之间。就污染的普遍性而言,铅污染最为普遍,其次是砷污染;就污染的程度而言,镉污染最严重.其次为砷、汞。对比今昔污染变化.广州市土壤污染治理已取得显著成效,但仍需努力。土壤中镉、砷、汞三种元素的变异系数,特别是镉的变异系数较大,这可能预示着点源性污染的存在。  相似文献   

14.
This study focused on the evaluation of leaching behaviours for arsenic and heavy metals (Cd, Cu, Ni, Pb and Zn) in soils and tailings contaminated by mining activities. Ten representative mine soils were taken at four representative metal mines in Korea. To evaluate the leaching characteristics of the samples, eight extraction methods were adapted namely 0.1?M HCl, 0.5?M HCl, 1.0?M HCl, 3.0?M HCl, Korean Standard Leaching Procedure for waste materials (KSLP), Synthetic Precipitation Leaching Procedure (SPLP), Toxicity Characteristic Leaching Procedure (TCLP) and aqua regia extraction (AR) methods. In order to compare element concentrations as extraction methods, relative extraction ratios (RERs, %), defined as element concentration extracted by the individual leaching method divided by that extracted by aqua regia based on USEPA method 3050B, were calculated. Although the RER values can vary upon sample types and elements, they increase with increasing ionic strength of each extracting solution. Thus, the RER for arsenic and heavy metals in the samples increased in the order of KSLP?相似文献   

15.
The objectives of this study were to elucidate the effects of soil amendments [Ferrous sulfate (FeII), red mud, FeII with calcium carbonate (FeII/L) or red mud (RM/F), zero-valent iron (ZVI), furnace slag, spent mushroom waste and by-product fertilizer] on arsenic (As) stabilization and to establish relationships between soil properties, As fractions and soil enzyme activities in amended As-rich gold mine tailings (Kangwon and Keumkey). Following the application of amendments, a sequential extraction test and evaluation of the soil enzyme activities (dehydrogenase and β-glucosidase) were conducted. Weak and negative relationships were observed between water-soluble As fractions (AsWS) and oxalate extractable iron, while AsWS was mainly affected by dissolved organic carbon in alkaline tailings sample (Kangwon) and by soil pH in acidic tailings sample (Keumkey). The soil enzyme activities in both tailings were mainly associated with AsWS. Principal component and multiple regression analyses confirmed that AsWS was the most important factor to soil enzyme activities. However, with some of the treatments in Keumkey, contrary results were observed due to increased water-soluble heavy metals and carbon sources. In conclusion, our results suggest that to simultaneously achieve decreased AsWS and increased soil enzyme activities, Kangwon tailings should be amended with FeII, FeII/L or ZVI, while only ZVI or RM/F would be suitable for Keumkey tailings. Despite the limitations of specific soil samples, this result can be expected to provide useful information on developing a successful remediation strategy of As-contaminated soils.  相似文献   

16.
厌氧微生物作用下土壤中砷的形态转化及分配比例对砷的环境行为与归趋具有重要影响。实验利用张士污灌区土壤负载低浓度砷,研究了厌氧微生物作用下砷的形态转化过程,并通过磷酸盐及盐酸提取土壤中的砷、铁和硫,探讨了砷在土壤中结合形态的变化及土壤矿物结构转化与砷环境行为的关联。实验结果表明,微生物作用下土壤负载的砷被迅速还原为As(III)并释放进入液相,培养24h后液相累积的As(T)量达到16.9μmol·L-1,其中As(III)占液相总砷含量的91%以上;48h后释放的砷被再次固持,液相残留的As(III)浓度仅为1.5μmol·L-1。尽管微生物还原作用造成土壤中铁氧化物的活化,但固相中磷酸盐提取态与盐酸提取态砷所占的比例分别从载砷量的45.3%和49.8%降低到22.0%与0.22%,而体系中硫酸盐还原产生的硫离子的量与砷的释放量保持负相关。可见微生物还原作用下砷发生了活化,释放和再固定的过程,土壤负载的砷从溶解态、吸附态及铁氧化物结合态逐渐被转化为更稳定的硫化物结合态。此研究对于预测土壤中砷的行为与归趋及污染土壤修复具有一定意义。  相似文献   

17.
湘南4个矿区稻田As污染状况的初步调查   总被引:2,自引:0,他引:2  
通过实地调查以及土壤和水稻样品分析,研究了湘南郴州柿竹园铅锌矿、郴州界牌岭锡多金属矿、衡阳水口山有色金属矿、衡阳龙王山金矿4个矿区稻田的As污染状况.结果表明:4个矿区的稻田土壤和水稻植株均已受到严重的As污染.矿区稻田土壤As含量范围为30.0~225.7mg·kg-1,超过国家土壤环境质量3级标准;水稻根系、秸秆、谷壳、糙米As含量范围分别为115.6~588.2、4.19~20.88、1.388~5.374、0.214~0.892mg·kg-1,除部分糙米样品外,均超过我国食品中As限量卫生标准.矿区稻田土壤同时受到As和重金属的复合污染,综合污染指数(P)范围为0.76~13.12.矿区稻田的As污染主要由矿产的开采和冶炼造成,其中,水口山有色金属矿区和龙王山金矿区As污染以及As和重金属复合污染最为严重,柿竹园铅锌矿区污染面积较大,界牌岭锡多金属矿区由于发生过地质灾害改变了地表面貌,污染情况更为复杂.  相似文献   

18.
Evaluation of Electrokinetic Remediation of Arsenic-contaminated Soils   总被引:1,自引:0,他引:1  
The potential of electrokinetic (EK) remediation technology has been successfully demonstrated for the remediation of heavy metal-contaminated fine-grained soils through laboratory scale and field application studies. Arsenic contamination in soil is a serious problem affecting both site use and groundwater quality. The EK technology was evaluated for the removal of arsenic from two soil samples; a kaolinite soil artificially contaminated with arsenic and an arsenic-bearing tailing-soil taken from the Myungbong (MB) gold mine area. The effectiveness of enhancing agents was investigated using three different types of cathodic electrolytes; deionized water (DIW), potassium phosphate (KH2PO4) and sodium hydroxide (NaOH). The results of the experiments on the kaolinite show that the potassium phosphate was the most effective in extracting arsenic, probably due to anion exchange of arsenic species by phosphate. On the other hand, the sodium hydroxide seemed to be the most efficient in removing arsenic from the tailing-soil. This result may be explained by the fact that the sodium hydroxide increased the soil pH and accelerated ionic migration of arsenic species through the desorption of arsenic species as well as the dissolution of arsenic-bearing minerals.  相似文献   

19.
Pentachlorophenol (PCP) in contaminated soil was removed by treatment with aqueous solutions of iron(III)-porphyrin complexes as catalysts and potassium monopersulfate (KHSO5) as the oxygen donor. The contaminated soils were artificially prepared by spiking PCP to the kaolin and ando soils. Three types of iron(III)-porphyrin complexes, tetra(?p-sulfophenyl) porphineiron(III) (Fe(III)-TPPS), tetra(N-methyl-4-pyridil)porphineiron(III) (Fe(III)-TMPyP) and heme, were examined, and Fe(III)-TPPS was found to be the most effective for removing PCP. Although the sequential addition of KHSO5 was examined, in an attempt to improve the efficiency of PCP removal, it was not effective. In a preliminary test of various aqueous solutions, the addition of humic acid (HA), with a lower degree of humification, led to a significant enhancement in PCP removal. When HA was added to the soil system, the percentages of PCP removal were increased by up to 10% compared to the absence of HA. Therefore, the addition of HA to the catalytic system was useful in enhancing PCP removal from contaminated soil.  相似文献   

20.
This study focused on the evaluation of leaching behaviours for arsenic and heavy metals (Cd, Cu, Ni, Pb and Zn) in soils and tailings contaminated by mining activities. Ten representative mine soils were taken at four representative metal mines in Korea. To evaluate the leaching characteristics of the samples, eight extraction methods were adapted namely 0.1 M HCl, 0.5 M HCl, 1.0 M HCl, 3.0 M HCl, Korean Standard Leaching Procedure for waste materials (KSLP), Synthetic Precipitation Leaching Procedure (SPLP), Toxicity Characteristic Leaching Procedure (TCLP) and aqua regia extraction (AR) methods. In order to compare element concentrations as extraction methods, relative extraction ratios (RERs, %), defined as element concentration extracted by the individual leaching method divided by that extracted by aqua regia based on USEPA method 3050B, were calculated. Although the RER values can vary upon sample types and elements, they increase with increasing ionic strength of each extracting solution. Thus, the RER for arsenic and heavy metals in the samples increased in the order of KSLP < SPLP < TCLP < 0.1 M HCl < 0.5 M HCl < 1.0 M HCl < 3.0 M HCl. In the same extraction method, the RER values for Cd and Zn were relatively higher than those for As, Cu, Ni and Pb. This may be due to differences in geochemical behaviour of each element, namely high solubility of Cd and Zn and low solubility of As, Cu, Ni and Pb in surface environment. Thus, the extraction results can give important information on the degree and extent of arsenic and heavy metal dispersion in the surface environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号