首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Colony structure and reproductive investment were studied in a population of Myrmica punctiventris. This species undergoes a seasonal cycle of polydomy. A colony overwinters in entirety but fractionates into two or more nest sites during the active season and then coalesces in the fall. Colony boundaries were determined by integrating data on spatial pattern, behavioral compatability, and genetic relatedness as revealed by protein electrophoresis. Colonies contained at most one queen. Consequently, a colony consisted of one queenright nest and one or more queenless nests. Furthermore, estimates of relatedness were fully consistent, with queens being single mated. M. punctiventris therefore has a colony genetic structure that conforms to the classical explanation of the maintenance of worker sterility by kin selection. Kin selection theory predicts that workers would favor a female-biased allocation ratio while selection on queens would favor equal investment in males and females. We predicted that in polydomous populations, queenless nests would rear more female reproductives from diploid larvae than queenright nests. There was a significant difference between queenright and queenless nests in sexual allocation; queenless nests allocated energy to reproductive females whereas queenright nests did not. At neither the nest nor colony levels did worker number limit sexual production. We also found that nests tended to rear either males or females but when colony reproduction was summed over nests, the sexes were more equally represented. The difference in allocation ratios between queenless and queenright nests was attributed solely to queen presence/absence. Our work shows that polydomy provides an opportunity for workers to evade queen control and thereby to sexualize brood.Offprint requests to: L.E. Snyder at the current address  相似文献   

2.
Summary Field observations and laboratory experiments demonstrate that in the Australian meat ant, Iridomyrmex purpureus, the modes of colony founding are remarkably diverse. New colonies can originate from single foundresses (haplometrosis), or foundress associations (pleometrosis), or by colony budding, or the adoption of newly-mated queens that dig founding chambers next to mature nests (probably their natal nests, as workers protect them and may help them dig). Readoption of foundresses and pleometrosis lead to the coexistence of several queens in one nest. We discovered a striking antagonistic behavior among coexisting queens in young colonies, in the form of ritualized antennation bouts. These interactions result in a reproductive rank order in which dominant queens inhibit egg-laying by subordinates, but escalation into physical fighting is rare. Workers ignore queen dominance interactions and treat all queens equally. The first quantitative ethogram of dominance display behavior between multiple ant queens, and its reproductive consequences, is presented. As a colony grows, queens become intolerant of each other's presence and permanently separate within the nest. Once separated, queens appear to be equal in status, laying approximately equal numbers of eggs. All queens continue to be tolerated by workers, even when the colony has reached a size of several thousand workers and begun to produce reproductives. Such mature nests of I. purpureus fulfill the criteria of oligogyny, defined by worker tolerance toward more than one queen and antagonism among queens, such that a limited number of fully functional queens are spaced far apart within a single colony. Oligogynous colonies can arise in this species by pleometrotic founding (primary oligogyny) or by adoption of queens into existing nests (secondary oligogyny). The adaptive significance of the complex system of colony founding, queen dominance and oligogyny in I. purpureus is discussed.  相似文献   

3.
Summary There is high within-nest relatedness for functional queens (with corpora lutea), nonfunctional queens (without corpora lutea), and workers in polygynous nests of Leptothorax acervorum. The high functional queen relatedness suggests that young mated queens are adopted back to their mother nest. Functional queen relatedness does not change with the number of queens present in the nest, suggesting that the number of generations of queens, on average two to three, is rather stable. Worker relatedness decreases with increasing number of functional queens per nest (Tables 5, 6). The number of queens contributing offspring to the nest (mothers), estimated from worker and functional queen relatedness, is lower than the number of functional queens, particularly in highly polygynous nests. Estimates of number of mothers in monogynous nests indicate that these nests previously were polygynous (Table 7). There is no correlation between nest relatedness and distance between nests, and budding-off, if present, thus appears to be a rare mode of nest founding (Table 8). There are no indications of inbreeding in the two populations studied since the frequency of heterozygotes is as high as expected from random mating (Table 4). Most likely, polygyny is the rule in L. acervorum and serves to secure the presence of queens in the nest.  相似文献   

4.
In several ant species, colonies are founded by small groups of queens (pleometrosis), which coexist until the first workers eclose, after which all but one queen is killed. It has been hypothesized that, by producing a larger cohort of workers, cooperating queens may increase colony success during brood raids, a form of competition in which brood and workers from losing nests are absorbed into winning colonies. To test whether this benefit is sufficient to favor pleometrosis, newly mated queens of the fire ant Solenopsis invicta were assembled in groups of one, two, three, or four, reared in the laboratory until the first workers eclosed, then planted in the field in replicated assemblages. The proportion of colonies engaging in brood raids increased with average foundress number per nest and with colony density but was unaffected by variance in foundress number among interacting colonies. Within mixed assemblages of single-queen and multiple-queen colonies, queen number had no effect on the likelihood of engaging in raids or the probability of nest survival through the brood raiding period. However, following nearly 30% of raids, queens moved to new nests and displaced the resident queens. When queen relocation and subsequent mortality were accounted for, it was found that the survival of queens from four-queen groups was substantially higher than that of solitary queens. By contrast, the survival of queens from two-queen colonies was no greater than that of solitary queens. These results show that the competitive advantages of multiple-queen colonies are sufficient to counterbalance the increased mortality of queens within groups only when the number of foundresses is greater than two and when colonies are founded at high density. When colonies lose brood raids, the workers appear to abandon their mothers to join surviving colonies. However, in laboratory experiments, queens attempting to enter foreign nests were significantly more likely to displace the resident queen if their own daughters were present within the invaded nest. Thus, workers may be able to bias the probability that their mother rejoins them and displaces competing queens.  相似文献   

5.
In many ants, young queens disperse by flying away from their natal nest and found new colonies alone (independent colony founding, ICF). Alternatively, in some species, ICF was replaced by colony fission, in which young queens accompanied by workers found a new colony at walking distance from the mother nest. We compared the queen morphology of Cataglyphis floricola, which disperses by fission, with that of its most likely living ancestor, Cataglyphis emmae, which disperses by ICF. As in other species, the transition from ICF to fission is associated with queen miniaturization. Interestingly, C. floricola presents two types of small queens: brachypters (with short non-functional wings) and ergatoids (worker-like apterous queens). Ergatoids are, on average, 2.8 mg lighter and have half the number of ovarioles than brachypters, which limits the advantage for a colony to produce ergatoids instead of brachypters. Furthermore, more ergatoids are produced than brachypters, but their individual survival rate is lower. During colony fission, 96% of the cocoons containing brachypters but only 31% of those containing ergatoids are transferred to the daughter nests where, after emergence, they compete for becoming the next queen. The remaining queen cocoons, which stay in the mother queen's nest, are eliminated by workers upon emergence, probably to maintain monogyny. This waste of energy suggests that producing ergatoids instead of brachypters is unlikely to increase colony efficiency. We argue that the evolution of ergatoids could derive from a selfish larval strategy, developing into worker-like queens in spite of the colony interest.  相似文献   

6.
The extended phenotype of a social insect colony enables selection to act at both the individual level (within-colony selection) and the colony level (between-colony selection). Whether a particular trait persists over time depends on the relative within- and between-colony selection pressures. Queen replacement in honey bee colonies exemplifies how selection may act at these different levels in opposing directions. Normally, a honey bee colony has only one queen, but a colony rears many new queens during the process of colony reproduction. The replacement of the mother queen has two distinct phases: queen rearing, where many queens develop and emerge from their cells, and queen elimination, where most queens die in a series of fatal duels. Which queens are reared to adulthood and which queens ultimately survive the elimination process depends on the strength and direction of selection at both the individual and colony levels. If within-colony selection is predominant, then conflict is expected to occur among nestmates over which queens are produced. If between-colony selection is predominant, then cooperation is expected among nestmates. We review the current evidence for conflict and cooperation during queen replacement in honey bees during both the queen rearing and queen elimination phases. In particular, we examine whether workers of different subfamilies exhibit conflict by acting nepotistically toward queens before and after they have emerged from their cells, and whether workers exhibit cooperation by collectively producing queens of high reproductive quality. We conclude that although workers may weakly compete through nepotism during queen rearing, workers largely cooperate to raise queens of similar reproductive potential so that any queen is suitable to inherit the nest. Thus it appears that potential conflict over queen replacement in honey bees has not translated into actual conflict, suggesting that between-colony selection predominates during these important events in a colonys life cycle.Communicated by A. Cockburn  相似文献   

7.
We document the variation in number of queens occurring naturally in founding, immature and mature nests of the ant Formica podzolica, and compare development of colonies and survivorship of queens in experimental nests started with 1–16 foundresses. Number of queens per nest was associated with stage of colony development. Most nests were monogynous, but 20% of immature nests (n = 66) and 25% of mature nests (n = 92) were oligogynous or polygynous. Colonies were usually established by single queens (i.e., haplometrosis), but colony establishment by multiple queens (i.e., pleometrotis) was also common, occurring in 27% of founding nests (n = 492). Foundress groups in the field were small ( = 1.47 ± 0.04 queens/nest), and large groups experienced high mortality and low productivity in artificial nests. Therefore, the many queens (up to 140) in some immature and mature colonies were probably secondarily pleometrotic. Experimental nests started with 1–4 queens were more successful than those initiated by 8 or 16 queens. Small groups (2–4 queens) produced more pupae before the first nests reared workers than single foundresses or larger groups (8 or 16 queens). Although single foundresses were less productive than queens in small groups, they experienced greater survivorship and less weight loss than queens in pleometrotic associations. Besides low productivity, queen mortality and weight loss were greatest in large groups.  相似文献   

8.
In many polygynous ant species, established colonies adopt new queens secondarily. Conflicts over queen adoption might arise between queens and workers of established colonies and the newly mated females seeking adoption into nests. Colony members are predicted to base adoption decisions on their relatednesses to other participants, on competition between queens for colony resources, and on the effects that adopted queens have on colony survivorship and productivity. To provide a better understanding of queen-adoption dynamics in a facultatively polygynous ant, colonies of Myrmica tahoensis were observed in the field for 4 consecutive years and analyzed genetically using highly polymorphic microsatellite DNA markers. The extreme rarity of newly founded colonies suggests that most newly mated queens that succeed do so by entering established nests. Queens are closely related on average (rˉ = 0.58), although a sizable minority of queen pairs (29%) are not close relatives. An experiment involving transfers of queens among nests showed that queens are often accepted by workers to which they are completely unrelated. Average queen numbers estimated from nest excavations (harmonic mean = 1.4) are broadly similar to effective queen numbers inferred from the genetic relatedness of colony members, suggesting that reproductive skew is low in this species. Queens appear to have reproductive lifespans of only 1 or 2 years. As a result, queens transmit a substantial fraction of their genes posthumously (through the reproduction of related nestmates), in comparison to direct and indirect reproduction while they are alive. Thus queens and other colony members should often accept new queens when doing so will increase colony survivorship, in some cases even when the adopted queens are not close relatives. Received: 20 February 1996/Accepted after revision: 25 May 1996  相似文献   

9.
Summary ecological aspects of monogyny and polygyny in social insect colonies are important in comparing individual queen reproductive success. Inseminated, fecund, multiple foundresses are common in some groups of ants and eusocial wasps, but true polygyny in termites has not previously been studied. One third of Nasutitermes corniger (Isoptera: Termitidae) colonies sampled in areas of young second growth in Panama contained from 2–33 primary queens (not supplementary or neotenic reproductives). All queens in polygynous associations were fully pigmented, physogastric egg layers within a single royal cell. Multiple kings were found less frequently; true polyandry is apparently restricted to immature polygynous colonies.Data on queen weight and morphological features, and on colony composition, show that queens in polygynous nests are young and that a transition from polygyny to monogyny probably occurs after several years. The escalated growth rate of multiple queen colonies removes them from the vulnerable incipient colony size class more rapidly than colonies initiated by a single foundress, and gives them sufficient neuter support staff (workers and soldiers) to enable earlier production of fertile alates. Using a population model (Leslie matrix) I construct isoclines of equal population growth which show values of early age class probability of survival and reproductive output favoring monogyny or polygyny under individual selection. This model of queen mutualism accounts for the risk of a female in a polygynous group not succeeding as the final surviving queen.Multiple primary queens are considered rare in termites, but a review of the literature demonstrates that they may be more widespread than is currently recognized. Polygyny in termites has received scant attention but is of significance as an example of a further ecological and evolutionary convergence between the phylogenetically independent orders Isoptera and Hymenoptera.  相似文献   

10.
Models based on the kin selection theory predict that in social hymenopterans, queens may favor a lower investment in the production of sexuals than workers. However, in perennial colonies, this conflict may be tuned down by colony-level selection because of the trade off between colony survival and reproductive allocation. In this study, we present a survey of sexual production in colonies of Aphaenogaster senilis, a common species of ant in the Iberian Peninsula. Similar to most species that reproduce by fission, males were found in large excess compared to gynes (172:1). Sexuals were more likely to be found in queenless than in queenright (QR) field colonies. However, we also found a few gynes and numerous males in very large QR colonies. We compared these data with those available in the literature for A. rudis, a congeneric species from North America that has independent colony founding. The sex ratio in this species was only five males for each female, and sexuals were mostly found in QR nests, irrespective of colony size. We confirmed queen inhibition of sexual production in A. senilis in laboratory experiments and provide evidence that this inhibition is mediated by a nonvolatile pheromone. To seek the potential source of such a queen pheromone, we analyzed the secretions of two conspicuous exocrine glands, the Dufour’s and postpharyngeal glands (DG and PPG, respectively) in both queens and workers. Both secretions were composed of hydrocarbons, but that of DG also contained small quantities of tetradecanal and hexadecanal. The hydrocarbon profile of the DG and PPG showed notable caste specificity suggesting a role in caste-related behavior. The PPG secretions also differed between colonies suggesting its role in colony-level recognition. We suggest that in A. senilis, there are two modes of colony fission: First, in very large colonies, gynes are produced, probably because of the dilution of the queen pheromone, and consequently one or more gynes leave the mother colony with workers and brood to found a new nest. This is beneficial at the colony level because it avoids the production of costly sexuals in small colonies. However, because the queen and workers have different optima for sexual production, we hypothesize that queens tend to overproduce the pheromone to delay their production. This in turn may drive workers to leave the mother colony during nest relocation and to produce sexuals once they are away from the queen’s influence, creating a second mode of colony fission.  相似文献   

11.
How organisms allocate limited resources to reproduction is critical to their fitness. The size and number of offspring produced have been the focus of many studies. Offspring size affects survival and growth and determines offspring number in the many species where there is a trade-off between size and number. Many social insects reproduce by colony fission, whereby young queens and accompanying workers split off from a colony to form new colonies. The size of a new colony (number of workers) is set at the time of the split, and this may allow fine tuning size to local conditions. Despite the prevalence of colony fission and the ecological importance of social insects, little is known of colony fission except in honey bees. We studied colony fission in the ant Cataglyphis cursor. For clarity, "colony" and "nest" refer to colonies before and after colony fission, respectively (i.e., each colony fissions into several nests). The reproductive effort of colonies was highly variable: Colonies that fissioned varied markedly in size, and many colonies that did not fission were as large as some of the fissioning colonies. The mother queen was replaced in half of the fissioning colonies, which produced 4.0 +/- 1.3 (mean +/- SD) nests of markedly varied size. Larger fissioning colonies produced larger nests but did not produce more nests, and resource allocation among nests was highly biased. When a colony produced several nests and the mother queen was not replaced, the nest containing the mother queen was larger than nests with a young queen. These results show that the pattern of resource allocation differs between C. cursor and honey bees. They also suggest that C. cursor may follow a bet-hedging strategy with regard to both the colony size at which fission occurs and the partitioning of resources among nests. In addition, colony fission may be influenced by the age and/or condition of the mother queen, and the fact that workers allocating resources among nests have incomplete knowledge of the size and number of nests produced. These results show that the process of colony fission is more diverse than currently acknowledged and that studies of additional species are needed.  相似文献   

12.
In populations of various ant species, many queens reproduce in the same nest (polygyny), and colony boundaries appear to be absent with individuals able to move freely between nests (unicoloniality). Such societies depart strongly from a simple family structure and pose a potential challenge to kin selection theory, because high queen number coupled with unrestricted gene flow among nests should result in levels of relatedness among nestmates close to zero. This study investigated the breeding system and genetic structure of a highly polygynous and largely unicolonial population of the wood ant Formica paralugubris. A microsatellite analysis revealed that nestmate workers, reproductive queens and reproductive males (the queens' mates) are all equally related to each other, with relatedness estimates centring around 0.14. This suggests that most of the queens and males reproducing in the study population had mated within or close to their natal nest, and that the queens did not disperse far after mating. We developed a theoretical model to investigate how the breeding system affects the relatedness structure of polygynous colonies. By combining the model and our empirical data, it was estimated that about 99.8% of the reproducing queens and males originated from within the nest, or from a nearby nest. This high rate of local mating and the rarity of long-distance dispersal maintain significant relatedness among nestmates, and contrast with the common view that unicoloniality is coupled with unrestricted gene flow among nests. Received: 8 February 1999 / Received in revised form: 15 June 1999 / Accepted: 19 June 1999  相似文献   

13.
For primitively eusocial insects in which a single foundress establishes a nest at the start of the colony cycle, the solitary provisioning phase before first worker emergence represents a risky period when other, nestless foundresses may attempt to usurp the nest. In the primitively eusocial sweat bee Lasioglossum malachurum (Hymenoptera, Halictidae), spring foundresses compete for nests which are dug into hard soil. Nest-searching foundresses (‘floaters’) frequently inspected nests during this solitary phase and thereby exerted a usurpation pressure on resident queens. Usurpation has been hypothesised to increase across the solitary provisioning phase and favour closure of nests at an aggregation, marking the termination of the solitary provisioning phase by foundresses, before worker emergence. However, our experimental and observational data suggest that usurpation pressure may remain constant or even decrease across the solitary provisioning phase and therefore cannot explain nest closure before first worker emergence. Levels of aggression during encounters between residents and floaters were surprisingly low (9% of encounters across 2 years), and the outcome of confrontations was in favour of residents (resident maintains residency in 94% of encounters across 2 years). Residents were significantly larger than floaters. However, the relationship between queen size and offspring production, though positive, was not statistically significant. Size therefore seems to confer a considerable advantage to a queen during the solitary provisioning phase in terms of nest residency, but its importance in terms of worker production appears marginal. Factors other than intraspecific usurpation need to be invoked to explain the break in provisioning activity of a foundress before first worker emergence.  相似文献   

14.
Summary To investigate the possibility of queen control over the production of sexuals in polygyne colonies of the fire ant, Solenopsis invicta, large colonies were divided into polygyne (P) and monogyne (M) or queenless (Q-) halves. Sexual larvae were evident in the M and Q- halves 3 to 4 days after colony division, whereas sexual forms failed to develop in all but one of the 32 P halves examined. Both male and female sexuals were produced in abundance in all M (n=25) and Q- (n=7) halves. Evidently, individuals capable of sexualization are present in colonies with many functional queens but are normally prevented from developing. Electrophoretic and morphometric analyses indicated that both haploid and diploid males were produced in the Q- halves, although diploids far outnumbered haploids. It thus appears that queens exert control over all potential and genetically determined sexuals regardless of sex or ploidy. The timing of the appearance of sexual forms following colony division suggests that queen control may be pheromonally mediated and inhibits the growth of sexuals late in larval development. An experiment in which the queens from M and P halves of colonies were exchanged demonstrated the reversible nature of this inhibition within colonies, but also suggested that once individual larvae develop beyond a critical point they are no longer subject to queen control. Despite seasonal variation in the production of sexuals in the field, no substantial differences between colonies collected in the summer and fall were found in their response to colony manipulations. The interaction of colony weight and number of queens present prior to colony division was associated with the number of males produced in the Q- halves, but no factors examined were associated with the number of females produced in these halves, or with the number of males or females produced in the M halves.  相似文献   

15.
The ant Hypoponera opacior exhibits alternative reproductive morphs of males and females associated with distinct sexual behaviours. Our long-term study reports strong seasonality in sexual production with a mating season in early and one in late summer. Winged (alate) reproductives emerge in June, swarm during the monsoon season and establish new colonies independently. In contrast, wingless worker-like (ergatoid) reproductives that appear in late August mate within their natal or adjacent nests and either do not disperse or establish new nests close by. These divergent dispersal patterns allowed us to analyse the impact of local factors on investment strategies by comparing sex allocation between and within the two reproductive events. The optimal sex ratio for ergatoid reproductives should be influenced both by competition for matings between brothers (local mate competition) and rivalry among young locally dispersing queens for workers, nest sites or food (local resource competition). The greater importance of local resource competition was demonstrated both by a male-biased sex ratio for wingless sexuals and a stronger increase in the number of males with total sexual production than for the number of queens. Microsatellite analysis revealed that inter-nest variation in relatedness asymmetry cannot explain split sex ratios in the August generation. Instead, nests with related ergatoid males raised a male-biased sex ratio contrary to the expectations under local mate competition. In conclusion, male bias in wingless H. opacior indicates that local mate competition is less strong than local resource competition among ergatoid queens over the help of workers during nest foundation.  相似文献   

16.
Summary The genetic and social structures of polygyne and monogyne forms of the fire ant, Solenopsis invicta, are investigated in a comparative manner using allozyme data from two polymorphic loci. Foundress queens of the monogyne form are signly inseminated and appear to produce all males present in the colony during the major summer mating flights. The average regression coefficient of relatedness (b) among female nestmates of the monogyne form is 0.714 (Fig. 2), statistically indistinguishable from the pedigree coefficient of relatedness (G) of 0.75. We suggest that the evolution of obligate worker sterility in Solenopsis is associated with this high relatedness between workers and the queens they rear. Functional queens in polygyne nests also are singly inseminated and are no more closely related to nestmate queens than to other queens (within-nest b=0). Within-nest relatedness of workers in the polygyne population is similarly low (Fig. 2). Both the monogyne and polygyne populations from northcentral Georgia are in Hardy-Weinberg equilibrium at both allozyme loci and we found no evidence of significant population subdividion or inbreeding in the polygyne population. These results do not support the view that kin selection has promoted the evolution of polygyny in North American S. invicta. Rather, mutualism appears to be the most likely selective factor mediating queen associations inthis ant.  相似文献   

17.
Lasioglossum laevissimum was studied in Calgary, Alberta, where it is eusocial with one worker brood. Estimates of relatedness were obtained among various categories of nestmate based upon four polymorphic enzyme loci, two of which exhibited significant levels of linkage disequilibrium. Relatedness estimates among workers and among reproductive brood females were very close to the expected 0.75 value that obtains when nests are headed by one, singly mated queen. However, relatedness between workers and the reproductive brood females they reared was significantly lower than 0.75. A low frequency of orphaning with subsequent monopolisation of oviposition by one worker brood female in orphaned nests may explain these results. Workers were significantly more and queens significantly less closely related to male reproductives than expected if all males were to have resulted from queen-laid eggs. Orphaning and worker-produced males contribute to this result. The sex investment ratio was 1:2.2 in favour of females, in excellent agreement with the predictions based upon relative relatednesses between workers and reproductive brood males and females. Adaptive intercolony variation in investment ratios was detected: the sex ratio was more heavily female-biased in nests in which the relative relatedness asymmetry between workers and reproductive brood was more female-biased. The study species is the most weakly eusocial hymenopteran for which relatedness estimates and sex ratio data are available. With high relatedness among nestmates and a strongly female-biased sex ratio, this study suggests the importance of indirect fitness contributions in the early stages of social evolution. Correspondence to: L. Packer  相似文献   

18.
Establishment of new groups is an important step in the life history of a social species. Fissioning is a common mode not only in group proliferation, for instance, as a regular part of the life cycle in the honey bee, but also when multiple females reproduce in the same group, as in multiple-queen ant societies. We studied the genetic consequences of fissioning in the ant Proformica longiseta, based on DNA microsatellites. In P. longiseta, new nests arise by fissioning from the old ones when they grow large, and the daughter nests consist of workers and queens or queen pupae but never both. Our results show that fissioning is not entirely random with respect to kinship. Workers tend to segregate along kin lines, but only when the initial relatedness in the parental nests is low. Workers in a daughter nest also tend to be associated with closely related adult queens, whereas such an association is not detected between workers and queen pupae. Most queens and workers are carried to the daughter nest by a specialized group of transporting workers, suggesting active kin discrimination by them. Fissioning pattern in P. longiseta is different from that found in other social insects with regular fission (e.g., the honey bee, swarm-founding wasps), where no fissioning along kin lines has been found. It does, however, resemble fissioning in another group of social animals: primates.  相似文献   

19.
In ants dispersing through colony fission, queens mate near their natal nest and found a new society with the help of workers. This allows potential future queens to challenge the mother queen’s reproductive monopoly. Conflicts might be resolved if the mated queen signals her presence and the workers control the developmental fate of the diploid larvae (whether they develop to worker or queen). In this study we sought to determine whether, in the fission-performing ant Aphaenogaster senilis, conflicts between queens for control of the colony are resolved by the resident queen signalling her mating status. Virgin queens were less effective than newly mated queens in inhibiting queen rearing. Moreover, potential challenger queens were recognized and heavily aggressed independent of mating status. Chemical analyses showed that mating status was associated with changes in cuticular hydrocarbon and poison gland composition, but not in Dufour’s gland composition. Cuticular dimethylalkanes were identified as potential constituents that signal both caste (present in queens only) and mating status (mated queens have higher amounts). We hypothesised that pheromone emission by virgin queens did not reach the threshold needed to fully inhibit larval development into queens but was sufficiently high to stimulate overt aggression by mated queens. These findings provide evidence for the complexity of chemical communication in social insects, in which a small number of signals may have a variety of effects, depending on the context.  相似文献   

20.
Most research on animal contests has focused on the factors that influence the intensity and outcome of aggressive contests within nonsocial species, while relatively little is known about contests in social taxa. Here, we examine contests among queens of the social paper wasp, Polistes dominulus. Queens use multiple reproductive strategies, including nesting alone, usurping established colonies, and cooperatively joining other queens. We stage contests between a nesting queen and a challenger to test how resource value (RV) and resource holding potential (RHP) influence (a) who occupies the nest at the end of the contest and (b) the extent of conflict between the queen and challenger. We found that RHP, as measured by individuals’ facial patterns and body size, influenced the outcome of the contest. Challengers with high RHP were more likely to successfully usurp the nest than challengers with low RHP. Interestingly, queens with relatively high RHP were more likely to form a cooperative association with the challenger than queens with lower RHP, suggesting that queens may evict individuals that are an aggressive threat. RV influenced the intensity of conflict. There was more aggressive conflict over large nests than over small nests. Overall, social taxa have complex contest dynamics with important parallels to contests in nonsocial taxa. Studying contests in social taxa provides an important perspective on the factors that influence individual decisions about conflict versus cooperation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号